Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 16 Dec 2016 12:55:43 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481889384rqfgsrmcentrpmd.htm/, Retrieved Fri, 01 Nov 2024 03:45:14 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300194, Retrieved Fri, 01 Nov 2024 03:45:14 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact130
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [MULT REG STATPAP] [2016-12-16 11:55:43] [863feeaf19a0ddfce7bd9c25059c4d8a] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	4	5	4	16
5	4	5	3	19
4	3	5	4	18
3	3	4	4	16
4	4	5	3	17
5	4	5	4	17
5	2	4	2	16
3	2	4	4	16
4	2	5	2	18
5	2	5	4	19
5	3	3	4	17
4	3	5	3	15
4	5	5	4	17
4	4	5	3	16
4	3	4	3	14
5	4	4	2	14
3	4	5	4	16
NA	3	3	3	20
3	4	4	4	18
4	4	4	3	19
5	5	5	5	15
4	3	5	3	15
5	3	5	4	17
4	2	4	4	17
4	2	5	2	18
3	3	4	4	14
4	3	5	3	17
4	3	4	2	15
4	4	5	4	16
4	4	5	4	18
3	3	3	3	16
4	4	4	2	17
5	3	5	5	18
4	4	4	2	14
4	3	5	3	16
5	3	5	4	17
3	3	4	3	15
3	3	4	3	16
2	2	4	3	17
5	5	5	4	15
5	3	4	3	17
5	1	4	4	18
4	2	3	4	13
4	2	5	4	18
4	3	4	4	18
3	2	4	3	14
4	3	4	2	15
4	5	5	5	11
3	4	4	3	17
2	5	4	4	13
5	2	5	5	17
5	4	4	2	19
5	3	5	4	17
2	3	5	5	18
3	2	5	5	17
2	3	5	3	16
3	2	4	3	14
5	4	4	4	15
4	4	4	4	17
4	3	4	3	15
5	1	5	3	18
5	1	5	5	15
4	3	5	4	18
5	5	5	4	12
4	2	5	4	17
4	3	4	2	15
5	4	2	2	16
3	3	5	4	17
2	4	4	4	14
5	4	4	5	15
3	3	5	4	15
4	4	5	4	18
4	4	5	4	16
4	3	5	3	15
4	3	5	1	18
4	5	5	3	14
5	2	5	4	18
3	4	5	1	17
2	3	5	2	16
5	3	5	4	17
4	3	5	4	17
1	4	4	3	16
4	4	4	2	17
5	3	3	2	18
4	5	5	3	19
5	3	5	2	14
4	4	4	5	18
5	3	5	3	19
3	5	5	4	17
5	4	5	2	16
5	4	4	4	16
4	4	3	5	15
4	4	4	4	17
4	2	4	2	17
4	3	5	3	18
3	4	5	3	18
4	3	5	3	18
4	3	5	3	17
5	5	5	1	19
5	3	4	3	17
3	1	5	3	15
5	3	5	4	19
4	4	5	4	18
2	2	4	2	17
3	3	4	4	14
5	4	5	3	19
4	4	5	4	16
4	4	5	3	17
4	4	5	4	17
4	5	5	4	17
3	4	4	2	17
4	3	4	4	14
4	3	4	4	15
3	3	3	4	16
5	4	4	3	16
4	4	4	3	16
5	2	5	4	17
5	5	5	4	18
5	2	5	4	20
3	2	5	3	16
4	2	5	3	16
3	3	4	3	16
4	3	5	2	17
4	4	5	4	18
4	4	4	2	18
4	4	5	3	16
5	3	5	4	16
4	4	4	2	17
3	4	5	3	14
4	3	5	3	17
2	3	5	2	16
4	5	5	4	17
4	4	4	3	19
2	3	5	4	14
2	3	3	2	14
4	3	5	3	16
4	3	3	5	19
2	3	3	4	11
4	3	5	2	16
5	2	5	3	19
4	4	4	2	18
4	4	5	4	17
3	4	5	4	16
4	5	5	4	16
3	2	5	2	17
4	2	5	3	17
2	3	5	3	18
5	3	5	4	18
4	2	5	3	17
4	4	5	5	18
3	2	4	3	14
4	3	5	4	18
5	5	5	4	15
4	3	5	4	14
2	3	5	5	16
4	4	5	5	16
5	2	5	4	17
4	5	5	4	15
2	4	4	3	16
5	3	5	4	17
4	5	5	2	17
5	2	4	4	17
3	4	4	3	18
5	4	5	3	18
4	4	5	5	18
3	3	4	5	16
4	5	5	5	16
4	3	4	3	16
3	3	5	1	12




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300194&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300194&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300194&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
V[t] = + 0.444196 + 0.0403945W[t] + 0.118613X[t] + 0.0781361Y[t] + 0.153423Z[t] + e[t]
Warning: you did not specify the column number of the endogenous series! The first column was selected by default.

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
V[t] =  +  0.444196 +  0.0403945W[t] +  0.118613X[t] +  0.0781361Y[t] +  0.153423Z[t]  + e[t] \tabularnewline
Warning: you did not specify the column number of the endogenous series! The first column was selected by default. \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300194&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]V[t] =  +  0.444196 +  0.0403945W[t] +  0.118613X[t] +  0.0781361Y[t] +  0.153423Z[t]  + e[t][/C][/ROW]
[ROW][C]Warning: you did not specify the column number of the endogenous series! The first column was selected by default.[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300194&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300194&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
V[t] = + 0.444196 + 0.0403945W[t] + 0.118613X[t] + 0.0781361Y[t] + 0.153423Z[t] + e[t]
Warning: you did not specify the column number of the endogenous series! The first column was selected by default.







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+0.4442 0.8302+5.3510e-01 0.5933 0.2967
W+0.0404 0.0712+5.6730e-01 0.5713 0.2856
X+0.1186 0.1118+1.0610e+00 0.2902 0.1451
Y+0.07814 0.07117+1.0980e+00 0.2739 0.1369
Z+0.1534 0.04251+3.6090e+00 0.000408 0.000204

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +0.4442 &  0.8302 & +5.3510e-01 &  0.5933 &  0.2967 \tabularnewline
W & +0.0404 &  0.0712 & +5.6730e-01 &  0.5713 &  0.2856 \tabularnewline
X & +0.1186 &  0.1118 & +1.0610e+00 &  0.2902 &  0.1451 \tabularnewline
Y & +0.07814 &  0.07117 & +1.0980e+00 &  0.2739 &  0.1369 \tabularnewline
Z & +0.1534 &  0.04251 & +3.6090e+00 &  0.000408 &  0.000204 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300194&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+0.4442[/C][C] 0.8302[/C][C]+5.3510e-01[/C][C] 0.5933[/C][C] 0.2967[/C][/ROW]
[ROW][C]W[/C][C]+0.0404[/C][C] 0.0712[/C][C]+5.6730e-01[/C][C] 0.5713[/C][C] 0.2856[/C][/ROW]
[ROW][C]X[/C][C]+0.1186[/C][C] 0.1118[/C][C]+1.0610e+00[/C][C] 0.2902[/C][C] 0.1451[/C][/ROW]
[ROW][C]Y[/C][C]+0.07814[/C][C] 0.07117[/C][C]+1.0980e+00[/C][C] 0.2739[/C][C] 0.1369[/C][/ROW]
[ROW][C]Z[/C][C]+0.1534[/C][C] 0.04251[/C][C]+3.6090e+00[/C][C] 0.000408[/C][C] 0.000204[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300194&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300194&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+0.4442 0.8302+5.3510e-01 0.5933 0.2967
W+0.0404 0.0712+5.6730e-01 0.5713 0.2856
X+0.1186 0.1118+1.0610e+00 0.2902 0.1451
Y+0.07814 0.07117+1.0980e+00 0.2739 0.1369
Z+0.1534 0.04251+3.6090e+00 0.000408 0.000204







Multiple Linear Regression - Regression Statistics
Multiple R 0.3185
R-squared 0.1014
Adjusted R-squared 0.07936
F-TEST (value) 4.599
F-TEST (DF numerator)4
F-TEST (DF denominator)163
p-value 0.001521
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.8737
Sum Squared Residuals 124.4

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.3185 \tabularnewline
R-squared &  0.1014 \tabularnewline
Adjusted R-squared &  0.07936 \tabularnewline
F-TEST (value) &  4.599 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 163 \tabularnewline
p-value &  0.001521 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  0.8737 \tabularnewline
Sum Squared Residuals &  124.4 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300194&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.3185[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.1014[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.07936[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 4.599[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]163[/C][/ROW]
[ROW][C]p-value[/C][C] 0.001521[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 0.8737[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 124.4[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300194&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300194&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.3185
R-squared 0.1014
Adjusted R-squared 0.07936
F-TEST (value) 4.599
F-TEST (DF numerator)4
F-TEST (DF denominator)163
p-value 0.001521
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 0.8737
Sum Squared Residuals 124.4







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 4 3.966 0.03384
2 5 4.348 0.6517
3 4 4.233-0.2326
4 3 3.807-0.8071
5 4 4.041-0.04144
6 5 4.12 0.8804
7 5 3.61 1.39
8 3 3.767-0.7668
9 4 4.036-0.03594
10 5 4.346 0.6544
11 5 3.842 1.158
12 4 3.694 0.3058
13 4 4.16-0.16
14 4 3.888 0.112
15 4 3.422 0.5778
16 5 3.384 1.616
17 3 3.966-0.9662
18 3 4.154-1.154
19 4 4.23-0.2297
20 5 3.931 1.069
21 4 3.694 0.3058
22 5 4.079 0.9208
23 4 3.92 0.07982
24 4 4.036-0.03594
25 3 3.5-0.5003
26 4 4.001-0.001049
27 4 3.497 0.5025
28 4 3.966 0.03384
29 4 4.273-0.273
30 3 3.61-0.6104
31 4 3.845 0.1553
32 5 4.311 0.6893
33 4 3.384 0.6156
34 4 3.848 0.1524
35 5 4.079 0.9208
36 3 3.576-0.5756
37 3 3.729-0.729
38 2 3.842-1.842
39 5 3.853 1.147
40 5 3.882 1.118
41 5 4.033 0.9668
42 4 3.188 0.8121
43 4 4.192-0.1922
44 4 4.114-0.114
45 3 3.382-0.3818
46 4 3.497 0.5025
47 4 3.318 0.6824
48 3 3.923-0.9228
49 2 3.428-1.428
50 5 4.117 0.8831
51 5 4.152 0.8485
52 5 4.079 0.9208
53 2 4.311-2.311
54 3 4.117-1.117
55 2 3.848-1.848
56 3 3.382-0.3818
57 5 3.694 1.306
58 4 4.001-0.000967
59 4 3.576 0.4244
60 5 4.074 0.9263
61 5 3.77 1.23
62 4 4.233-0.2326
63 5 3.393 1.607
64 4 4.039-0.03879
65 4 3.497 0.5025
66 5 3.454 1.546
67 3 4.079-1.079
68 2 3.541-1.541
69 5 3.772 1.228
70 3 3.772-0.7723
71 4 4.273-0.273
72 4 3.966 0.03384
73 4 3.694 0.3058
74 4 3.998 0.0018
75 4 3.622 0.3784
76 5 4.192 0.8078
77 3 3.885-0.8852
78 2 3.769-1.769
79 5 4.079 0.9208
80 4 4.079-0.07918
81 1 3.769-2.769
82 4 3.845 0.1553
83 5 3.839 1.161
84 4 4.389-0.3887
85 5 3.463 1.537
86 4 4.233-0.2325
87 5 4.308 0.6921
88 3 4.16-1.16
89 5 3.81 1.19
90 5 3.848 1.152
91 4 3.654 0.3464
92 4 4.001-0.000967
93 4 3.764 0.2361
94 4 4.154-0.1545
95 3 4.195-1.195
96 4 4.154-0.1545
97 4 4.001-0.001049
98 5 4.232 0.7676
99 5 3.882 1.118
100 3 3.613-0.6134
101 5 4.386 0.614
102 4 4.273-0.273
103 2 3.764-1.764
104 3 3.5-0.5003
105 5 4.348 0.6517
106 4 3.966 0.03384
107 4 4.041-0.04144
108 4 4.12-0.1196
109 4 4.16-0.16
110 3 3.845-0.8447
111 4 3.5 0.4997
112 4 3.654 0.3463
113 3 3.689-0.6885
114 5 3.769 1.231
115 4 3.769 0.2306
116 5 4.039 0.9612
117 5 4.313 0.6866
118 5 4.499 0.5009
119 3 3.807-0.8072
120 4 3.807 0.1928
121 3 3.729-0.729
122 4 3.923 0.07709
123 4 4.273-0.273
124 4 3.998 0.001882
125 4 3.888 0.112
126 5 3.926 1.074
127 4 3.845 0.1553
128 3 3.581-0.5812
129 4 4.001-0.001049
130 2 3.769-1.769
131 4 4.16-0.16
132 4 4.23-0.2297
133 2 3.619-1.619
134 2 3.225-1.225
135 4 3.848 0.1524
136 4 4.227-0.2269
137 2 2.921-0.9214
138 4 3.769 0.2305
139 5 4.268 0.7325
140 4 3.998 0.001882
141 4 4.12-0.1196
142 3 3.966-0.9662
143 4 4.007-0.006551
144 3 3.883-0.8825
145 4 3.961 0.03935
146 2 4.154-2.154
147 5 4.233 0.7674
148 4 3.961 0.03935
149 4 4.351-0.3511
150 3 3.382-0.3818
151 4 4.233-0.2326
152 5 3.853 1.147
153 4 3.619 0.3811
154 2 4.004-2.004
155 4 4.044-0.04429
156 5 4.039 0.9612
157 4 3.853 0.1469
158 2 3.769-1.769
159 5 4.079 0.9208
160 4 4.004-0.003702
161 5 3.92 1.08
162 3 4.076-1.076
163 5 4.195 0.8051
164 4 4.351-0.3511
165 3 3.885-0.8853
166 4 4.085-0.08469
167 4 3.729 0.271
168 3 3.078-0.07766

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  4 &  3.966 &  0.03384 \tabularnewline
2 &  5 &  4.348 &  0.6517 \tabularnewline
3 &  4 &  4.233 & -0.2326 \tabularnewline
4 &  3 &  3.807 & -0.8071 \tabularnewline
5 &  4 &  4.041 & -0.04144 \tabularnewline
6 &  5 &  4.12 &  0.8804 \tabularnewline
7 &  5 &  3.61 &  1.39 \tabularnewline
8 &  3 &  3.767 & -0.7668 \tabularnewline
9 &  4 &  4.036 & -0.03594 \tabularnewline
10 &  5 &  4.346 &  0.6544 \tabularnewline
11 &  5 &  3.842 &  1.158 \tabularnewline
12 &  4 &  3.694 &  0.3058 \tabularnewline
13 &  4 &  4.16 & -0.16 \tabularnewline
14 &  4 &  3.888 &  0.112 \tabularnewline
15 &  4 &  3.422 &  0.5778 \tabularnewline
16 &  5 &  3.384 &  1.616 \tabularnewline
17 &  3 &  3.966 & -0.9662 \tabularnewline
18 &  3 &  4.154 & -1.154 \tabularnewline
19 &  4 &  4.23 & -0.2297 \tabularnewline
20 &  5 &  3.931 &  1.069 \tabularnewline
21 &  4 &  3.694 &  0.3058 \tabularnewline
22 &  5 &  4.079 &  0.9208 \tabularnewline
23 &  4 &  3.92 &  0.07982 \tabularnewline
24 &  4 &  4.036 & -0.03594 \tabularnewline
25 &  3 &  3.5 & -0.5003 \tabularnewline
26 &  4 &  4.001 & -0.001049 \tabularnewline
27 &  4 &  3.497 &  0.5025 \tabularnewline
28 &  4 &  3.966 &  0.03384 \tabularnewline
29 &  4 &  4.273 & -0.273 \tabularnewline
30 &  3 &  3.61 & -0.6104 \tabularnewline
31 &  4 &  3.845 &  0.1553 \tabularnewline
32 &  5 &  4.311 &  0.6893 \tabularnewline
33 &  4 &  3.384 &  0.6156 \tabularnewline
34 &  4 &  3.848 &  0.1524 \tabularnewline
35 &  5 &  4.079 &  0.9208 \tabularnewline
36 &  3 &  3.576 & -0.5756 \tabularnewline
37 &  3 &  3.729 & -0.729 \tabularnewline
38 &  2 &  3.842 & -1.842 \tabularnewline
39 &  5 &  3.853 &  1.147 \tabularnewline
40 &  5 &  3.882 &  1.118 \tabularnewline
41 &  5 &  4.033 &  0.9668 \tabularnewline
42 &  4 &  3.188 &  0.8121 \tabularnewline
43 &  4 &  4.192 & -0.1922 \tabularnewline
44 &  4 &  4.114 & -0.114 \tabularnewline
45 &  3 &  3.382 & -0.3818 \tabularnewline
46 &  4 &  3.497 &  0.5025 \tabularnewline
47 &  4 &  3.318 &  0.6824 \tabularnewline
48 &  3 &  3.923 & -0.9228 \tabularnewline
49 &  2 &  3.428 & -1.428 \tabularnewline
50 &  5 &  4.117 &  0.8831 \tabularnewline
51 &  5 &  4.152 &  0.8485 \tabularnewline
52 &  5 &  4.079 &  0.9208 \tabularnewline
53 &  2 &  4.311 & -2.311 \tabularnewline
54 &  3 &  4.117 & -1.117 \tabularnewline
55 &  2 &  3.848 & -1.848 \tabularnewline
56 &  3 &  3.382 & -0.3818 \tabularnewline
57 &  5 &  3.694 &  1.306 \tabularnewline
58 &  4 &  4.001 & -0.000967 \tabularnewline
59 &  4 &  3.576 &  0.4244 \tabularnewline
60 &  5 &  4.074 &  0.9263 \tabularnewline
61 &  5 &  3.77 &  1.23 \tabularnewline
62 &  4 &  4.233 & -0.2326 \tabularnewline
63 &  5 &  3.393 &  1.607 \tabularnewline
64 &  4 &  4.039 & -0.03879 \tabularnewline
65 &  4 &  3.497 &  0.5025 \tabularnewline
66 &  5 &  3.454 &  1.546 \tabularnewline
67 &  3 &  4.079 & -1.079 \tabularnewline
68 &  2 &  3.541 & -1.541 \tabularnewline
69 &  5 &  3.772 &  1.228 \tabularnewline
70 &  3 &  3.772 & -0.7723 \tabularnewline
71 &  4 &  4.273 & -0.273 \tabularnewline
72 &  4 &  3.966 &  0.03384 \tabularnewline
73 &  4 &  3.694 &  0.3058 \tabularnewline
74 &  4 &  3.998 &  0.0018 \tabularnewline
75 &  4 &  3.622 &  0.3784 \tabularnewline
76 &  5 &  4.192 &  0.8078 \tabularnewline
77 &  3 &  3.885 & -0.8852 \tabularnewline
78 &  2 &  3.769 & -1.769 \tabularnewline
79 &  5 &  4.079 &  0.9208 \tabularnewline
80 &  4 &  4.079 & -0.07918 \tabularnewline
81 &  1 &  3.769 & -2.769 \tabularnewline
82 &  4 &  3.845 &  0.1553 \tabularnewline
83 &  5 &  3.839 &  1.161 \tabularnewline
84 &  4 &  4.389 & -0.3887 \tabularnewline
85 &  5 &  3.463 &  1.537 \tabularnewline
86 &  4 &  4.233 & -0.2325 \tabularnewline
87 &  5 &  4.308 &  0.6921 \tabularnewline
88 &  3 &  4.16 & -1.16 \tabularnewline
89 &  5 &  3.81 &  1.19 \tabularnewline
90 &  5 &  3.848 &  1.152 \tabularnewline
91 &  4 &  3.654 &  0.3464 \tabularnewline
92 &  4 &  4.001 & -0.000967 \tabularnewline
93 &  4 &  3.764 &  0.2361 \tabularnewline
94 &  4 &  4.154 & -0.1545 \tabularnewline
95 &  3 &  4.195 & -1.195 \tabularnewline
96 &  4 &  4.154 & -0.1545 \tabularnewline
97 &  4 &  4.001 & -0.001049 \tabularnewline
98 &  5 &  4.232 &  0.7676 \tabularnewline
99 &  5 &  3.882 &  1.118 \tabularnewline
100 &  3 &  3.613 & -0.6134 \tabularnewline
101 &  5 &  4.386 &  0.614 \tabularnewline
102 &  4 &  4.273 & -0.273 \tabularnewline
103 &  2 &  3.764 & -1.764 \tabularnewline
104 &  3 &  3.5 & -0.5003 \tabularnewline
105 &  5 &  4.348 &  0.6517 \tabularnewline
106 &  4 &  3.966 &  0.03384 \tabularnewline
107 &  4 &  4.041 & -0.04144 \tabularnewline
108 &  4 &  4.12 & -0.1196 \tabularnewline
109 &  4 &  4.16 & -0.16 \tabularnewline
110 &  3 &  3.845 & -0.8447 \tabularnewline
111 &  4 &  3.5 &  0.4997 \tabularnewline
112 &  4 &  3.654 &  0.3463 \tabularnewline
113 &  3 &  3.689 & -0.6885 \tabularnewline
114 &  5 &  3.769 &  1.231 \tabularnewline
115 &  4 &  3.769 &  0.2306 \tabularnewline
116 &  5 &  4.039 &  0.9612 \tabularnewline
117 &  5 &  4.313 &  0.6866 \tabularnewline
118 &  5 &  4.499 &  0.5009 \tabularnewline
119 &  3 &  3.807 & -0.8072 \tabularnewline
120 &  4 &  3.807 &  0.1928 \tabularnewline
121 &  3 &  3.729 & -0.729 \tabularnewline
122 &  4 &  3.923 &  0.07709 \tabularnewline
123 &  4 &  4.273 & -0.273 \tabularnewline
124 &  4 &  3.998 &  0.001882 \tabularnewline
125 &  4 &  3.888 &  0.112 \tabularnewline
126 &  5 &  3.926 &  1.074 \tabularnewline
127 &  4 &  3.845 &  0.1553 \tabularnewline
128 &  3 &  3.581 & -0.5812 \tabularnewline
129 &  4 &  4.001 & -0.001049 \tabularnewline
130 &  2 &  3.769 & -1.769 \tabularnewline
131 &  4 &  4.16 & -0.16 \tabularnewline
132 &  4 &  4.23 & -0.2297 \tabularnewline
133 &  2 &  3.619 & -1.619 \tabularnewline
134 &  2 &  3.225 & -1.225 \tabularnewline
135 &  4 &  3.848 &  0.1524 \tabularnewline
136 &  4 &  4.227 & -0.2269 \tabularnewline
137 &  2 &  2.921 & -0.9214 \tabularnewline
138 &  4 &  3.769 &  0.2305 \tabularnewline
139 &  5 &  4.268 &  0.7325 \tabularnewline
140 &  4 &  3.998 &  0.001882 \tabularnewline
141 &  4 &  4.12 & -0.1196 \tabularnewline
142 &  3 &  3.966 & -0.9662 \tabularnewline
143 &  4 &  4.007 & -0.006551 \tabularnewline
144 &  3 &  3.883 & -0.8825 \tabularnewline
145 &  4 &  3.961 &  0.03935 \tabularnewline
146 &  2 &  4.154 & -2.154 \tabularnewline
147 &  5 &  4.233 &  0.7674 \tabularnewline
148 &  4 &  3.961 &  0.03935 \tabularnewline
149 &  4 &  4.351 & -0.3511 \tabularnewline
150 &  3 &  3.382 & -0.3818 \tabularnewline
151 &  4 &  4.233 & -0.2326 \tabularnewline
152 &  5 &  3.853 &  1.147 \tabularnewline
153 &  4 &  3.619 &  0.3811 \tabularnewline
154 &  2 &  4.004 & -2.004 \tabularnewline
155 &  4 &  4.044 & -0.04429 \tabularnewline
156 &  5 &  4.039 &  0.9612 \tabularnewline
157 &  4 &  3.853 &  0.1469 \tabularnewline
158 &  2 &  3.769 & -1.769 \tabularnewline
159 &  5 &  4.079 &  0.9208 \tabularnewline
160 &  4 &  4.004 & -0.003702 \tabularnewline
161 &  5 &  3.92 &  1.08 \tabularnewline
162 &  3 &  4.076 & -1.076 \tabularnewline
163 &  5 &  4.195 &  0.8051 \tabularnewline
164 &  4 &  4.351 & -0.3511 \tabularnewline
165 &  3 &  3.885 & -0.8853 \tabularnewline
166 &  4 &  4.085 & -0.08469 \tabularnewline
167 &  4 &  3.729 &  0.271 \tabularnewline
168 &  3 &  3.078 & -0.07766 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300194&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 4[/C][C] 3.966[/C][C] 0.03384[/C][/ROW]
[ROW][C]2[/C][C] 5[/C][C] 4.348[/C][C] 0.6517[/C][/ROW]
[ROW][C]3[/C][C] 4[/C][C] 4.233[/C][C]-0.2326[/C][/ROW]
[ROW][C]4[/C][C] 3[/C][C] 3.807[/C][C]-0.8071[/C][/ROW]
[ROW][C]5[/C][C] 4[/C][C] 4.041[/C][C]-0.04144[/C][/ROW]
[ROW][C]6[/C][C] 5[/C][C] 4.12[/C][C] 0.8804[/C][/ROW]
[ROW][C]7[/C][C] 5[/C][C] 3.61[/C][C] 1.39[/C][/ROW]
[ROW][C]8[/C][C] 3[/C][C] 3.767[/C][C]-0.7668[/C][/ROW]
[ROW][C]9[/C][C] 4[/C][C] 4.036[/C][C]-0.03594[/C][/ROW]
[ROW][C]10[/C][C] 5[/C][C] 4.346[/C][C] 0.6544[/C][/ROW]
[ROW][C]11[/C][C] 5[/C][C] 3.842[/C][C] 1.158[/C][/ROW]
[ROW][C]12[/C][C] 4[/C][C] 3.694[/C][C] 0.3058[/C][/ROW]
[ROW][C]13[/C][C] 4[/C][C] 4.16[/C][C]-0.16[/C][/ROW]
[ROW][C]14[/C][C] 4[/C][C] 3.888[/C][C] 0.112[/C][/ROW]
[ROW][C]15[/C][C] 4[/C][C] 3.422[/C][C] 0.5778[/C][/ROW]
[ROW][C]16[/C][C] 5[/C][C] 3.384[/C][C] 1.616[/C][/ROW]
[ROW][C]17[/C][C] 3[/C][C] 3.966[/C][C]-0.9662[/C][/ROW]
[ROW][C]18[/C][C] 3[/C][C] 4.154[/C][C]-1.154[/C][/ROW]
[ROW][C]19[/C][C] 4[/C][C] 4.23[/C][C]-0.2297[/C][/ROW]
[ROW][C]20[/C][C] 5[/C][C] 3.931[/C][C] 1.069[/C][/ROW]
[ROW][C]21[/C][C] 4[/C][C] 3.694[/C][C] 0.3058[/C][/ROW]
[ROW][C]22[/C][C] 5[/C][C] 4.079[/C][C] 0.9208[/C][/ROW]
[ROW][C]23[/C][C] 4[/C][C] 3.92[/C][C] 0.07982[/C][/ROW]
[ROW][C]24[/C][C] 4[/C][C] 4.036[/C][C]-0.03594[/C][/ROW]
[ROW][C]25[/C][C] 3[/C][C] 3.5[/C][C]-0.5003[/C][/ROW]
[ROW][C]26[/C][C] 4[/C][C] 4.001[/C][C]-0.001049[/C][/ROW]
[ROW][C]27[/C][C] 4[/C][C] 3.497[/C][C] 0.5025[/C][/ROW]
[ROW][C]28[/C][C] 4[/C][C] 3.966[/C][C] 0.03384[/C][/ROW]
[ROW][C]29[/C][C] 4[/C][C] 4.273[/C][C]-0.273[/C][/ROW]
[ROW][C]30[/C][C] 3[/C][C] 3.61[/C][C]-0.6104[/C][/ROW]
[ROW][C]31[/C][C] 4[/C][C] 3.845[/C][C] 0.1553[/C][/ROW]
[ROW][C]32[/C][C] 5[/C][C] 4.311[/C][C] 0.6893[/C][/ROW]
[ROW][C]33[/C][C] 4[/C][C] 3.384[/C][C] 0.6156[/C][/ROW]
[ROW][C]34[/C][C] 4[/C][C] 3.848[/C][C] 0.1524[/C][/ROW]
[ROW][C]35[/C][C] 5[/C][C] 4.079[/C][C] 0.9208[/C][/ROW]
[ROW][C]36[/C][C] 3[/C][C] 3.576[/C][C]-0.5756[/C][/ROW]
[ROW][C]37[/C][C] 3[/C][C] 3.729[/C][C]-0.729[/C][/ROW]
[ROW][C]38[/C][C] 2[/C][C] 3.842[/C][C]-1.842[/C][/ROW]
[ROW][C]39[/C][C] 5[/C][C] 3.853[/C][C] 1.147[/C][/ROW]
[ROW][C]40[/C][C] 5[/C][C] 3.882[/C][C] 1.118[/C][/ROW]
[ROW][C]41[/C][C] 5[/C][C] 4.033[/C][C] 0.9668[/C][/ROW]
[ROW][C]42[/C][C] 4[/C][C] 3.188[/C][C] 0.8121[/C][/ROW]
[ROW][C]43[/C][C] 4[/C][C] 4.192[/C][C]-0.1922[/C][/ROW]
[ROW][C]44[/C][C] 4[/C][C] 4.114[/C][C]-0.114[/C][/ROW]
[ROW][C]45[/C][C] 3[/C][C] 3.382[/C][C]-0.3818[/C][/ROW]
[ROW][C]46[/C][C] 4[/C][C] 3.497[/C][C] 0.5025[/C][/ROW]
[ROW][C]47[/C][C] 4[/C][C] 3.318[/C][C] 0.6824[/C][/ROW]
[ROW][C]48[/C][C] 3[/C][C] 3.923[/C][C]-0.9228[/C][/ROW]
[ROW][C]49[/C][C] 2[/C][C] 3.428[/C][C]-1.428[/C][/ROW]
[ROW][C]50[/C][C] 5[/C][C] 4.117[/C][C] 0.8831[/C][/ROW]
[ROW][C]51[/C][C] 5[/C][C] 4.152[/C][C] 0.8485[/C][/ROW]
[ROW][C]52[/C][C] 5[/C][C] 4.079[/C][C] 0.9208[/C][/ROW]
[ROW][C]53[/C][C] 2[/C][C] 4.311[/C][C]-2.311[/C][/ROW]
[ROW][C]54[/C][C] 3[/C][C] 4.117[/C][C]-1.117[/C][/ROW]
[ROW][C]55[/C][C] 2[/C][C] 3.848[/C][C]-1.848[/C][/ROW]
[ROW][C]56[/C][C] 3[/C][C] 3.382[/C][C]-0.3818[/C][/ROW]
[ROW][C]57[/C][C] 5[/C][C] 3.694[/C][C] 1.306[/C][/ROW]
[ROW][C]58[/C][C] 4[/C][C] 4.001[/C][C]-0.000967[/C][/ROW]
[ROW][C]59[/C][C] 4[/C][C] 3.576[/C][C] 0.4244[/C][/ROW]
[ROW][C]60[/C][C] 5[/C][C] 4.074[/C][C] 0.9263[/C][/ROW]
[ROW][C]61[/C][C] 5[/C][C] 3.77[/C][C] 1.23[/C][/ROW]
[ROW][C]62[/C][C] 4[/C][C] 4.233[/C][C]-0.2326[/C][/ROW]
[ROW][C]63[/C][C] 5[/C][C] 3.393[/C][C] 1.607[/C][/ROW]
[ROW][C]64[/C][C] 4[/C][C] 4.039[/C][C]-0.03879[/C][/ROW]
[ROW][C]65[/C][C] 4[/C][C] 3.497[/C][C] 0.5025[/C][/ROW]
[ROW][C]66[/C][C] 5[/C][C] 3.454[/C][C] 1.546[/C][/ROW]
[ROW][C]67[/C][C] 3[/C][C] 4.079[/C][C]-1.079[/C][/ROW]
[ROW][C]68[/C][C] 2[/C][C] 3.541[/C][C]-1.541[/C][/ROW]
[ROW][C]69[/C][C] 5[/C][C] 3.772[/C][C] 1.228[/C][/ROW]
[ROW][C]70[/C][C] 3[/C][C] 3.772[/C][C]-0.7723[/C][/ROW]
[ROW][C]71[/C][C] 4[/C][C] 4.273[/C][C]-0.273[/C][/ROW]
[ROW][C]72[/C][C] 4[/C][C] 3.966[/C][C] 0.03384[/C][/ROW]
[ROW][C]73[/C][C] 4[/C][C] 3.694[/C][C] 0.3058[/C][/ROW]
[ROW][C]74[/C][C] 4[/C][C] 3.998[/C][C] 0.0018[/C][/ROW]
[ROW][C]75[/C][C] 4[/C][C] 3.622[/C][C] 0.3784[/C][/ROW]
[ROW][C]76[/C][C] 5[/C][C] 4.192[/C][C] 0.8078[/C][/ROW]
[ROW][C]77[/C][C] 3[/C][C] 3.885[/C][C]-0.8852[/C][/ROW]
[ROW][C]78[/C][C] 2[/C][C] 3.769[/C][C]-1.769[/C][/ROW]
[ROW][C]79[/C][C] 5[/C][C] 4.079[/C][C] 0.9208[/C][/ROW]
[ROW][C]80[/C][C] 4[/C][C] 4.079[/C][C]-0.07918[/C][/ROW]
[ROW][C]81[/C][C] 1[/C][C] 3.769[/C][C]-2.769[/C][/ROW]
[ROW][C]82[/C][C] 4[/C][C] 3.845[/C][C] 0.1553[/C][/ROW]
[ROW][C]83[/C][C] 5[/C][C] 3.839[/C][C] 1.161[/C][/ROW]
[ROW][C]84[/C][C] 4[/C][C] 4.389[/C][C]-0.3887[/C][/ROW]
[ROW][C]85[/C][C] 5[/C][C] 3.463[/C][C] 1.537[/C][/ROW]
[ROW][C]86[/C][C] 4[/C][C] 4.233[/C][C]-0.2325[/C][/ROW]
[ROW][C]87[/C][C] 5[/C][C] 4.308[/C][C] 0.6921[/C][/ROW]
[ROW][C]88[/C][C] 3[/C][C] 4.16[/C][C]-1.16[/C][/ROW]
[ROW][C]89[/C][C] 5[/C][C] 3.81[/C][C] 1.19[/C][/ROW]
[ROW][C]90[/C][C] 5[/C][C] 3.848[/C][C] 1.152[/C][/ROW]
[ROW][C]91[/C][C] 4[/C][C] 3.654[/C][C] 0.3464[/C][/ROW]
[ROW][C]92[/C][C] 4[/C][C] 4.001[/C][C]-0.000967[/C][/ROW]
[ROW][C]93[/C][C] 4[/C][C] 3.764[/C][C] 0.2361[/C][/ROW]
[ROW][C]94[/C][C] 4[/C][C] 4.154[/C][C]-0.1545[/C][/ROW]
[ROW][C]95[/C][C] 3[/C][C] 4.195[/C][C]-1.195[/C][/ROW]
[ROW][C]96[/C][C] 4[/C][C] 4.154[/C][C]-0.1545[/C][/ROW]
[ROW][C]97[/C][C] 4[/C][C] 4.001[/C][C]-0.001049[/C][/ROW]
[ROW][C]98[/C][C] 5[/C][C] 4.232[/C][C] 0.7676[/C][/ROW]
[ROW][C]99[/C][C] 5[/C][C] 3.882[/C][C] 1.118[/C][/ROW]
[ROW][C]100[/C][C] 3[/C][C] 3.613[/C][C]-0.6134[/C][/ROW]
[ROW][C]101[/C][C] 5[/C][C] 4.386[/C][C] 0.614[/C][/ROW]
[ROW][C]102[/C][C] 4[/C][C] 4.273[/C][C]-0.273[/C][/ROW]
[ROW][C]103[/C][C] 2[/C][C] 3.764[/C][C]-1.764[/C][/ROW]
[ROW][C]104[/C][C] 3[/C][C] 3.5[/C][C]-0.5003[/C][/ROW]
[ROW][C]105[/C][C] 5[/C][C] 4.348[/C][C] 0.6517[/C][/ROW]
[ROW][C]106[/C][C] 4[/C][C] 3.966[/C][C] 0.03384[/C][/ROW]
[ROW][C]107[/C][C] 4[/C][C] 4.041[/C][C]-0.04144[/C][/ROW]
[ROW][C]108[/C][C] 4[/C][C] 4.12[/C][C]-0.1196[/C][/ROW]
[ROW][C]109[/C][C] 4[/C][C] 4.16[/C][C]-0.16[/C][/ROW]
[ROW][C]110[/C][C] 3[/C][C] 3.845[/C][C]-0.8447[/C][/ROW]
[ROW][C]111[/C][C] 4[/C][C] 3.5[/C][C] 0.4997[/C][/ROW]
[ROW][C]112[/C][C] 4[/C][C] 3.654[/C][C] 0.3463[/C][/ROW]
[ROW][C]113[/C][C] 3[/C][C] 3.689[/C][C]-0.6885[/C][/ROW]
[ROW][C]114[/C][C] 5[/C][C] 3.769[/C][C] 1.231[/C][/ROW]
[ROW][C]115[/C][C] 4[/C][C] 3.769[/C][C] 0.2306[/C][/ROW]
[ROW][C]116[/C][C] 5[/C][C] 4.039[/C][C] 0.9612[/C][/ROW]
[ROW][C]117[/C][C] 5[/C][C] 4.313[/C][C] 0.6866[/C][/ROW]
[ROW][C]118[/C][C] 5[/C][C] 4.499[/C][C] 0.5009[/C][/ROW]
[ROW][C]119[/C][C] 3[/C][C] 3.807[/C][C]-0.8072[/C][/ROW]
[ROW][C]120[/C][C] 4[/C][C] 3.807[/C][C] 0.1928[/C][/ROW]
[ROW][C]121[/C][C] 3[/C][C] 3.729[/C][C]-0.729[/C][/ROW]
[ROW][C]122[/C][C] 4[/C][C] 3.923[/C][C] 0.07709[/C][/ROW]
[ROW][C]123[/C][C] 4[/C][C] 4.273[/C][C]-0.273[/C][/ROW]
[ROW][C]124[/C][C] 4[/C][C] 3.998[/C][C] 0.001882[/C][/ROW]
[ROW][C]125[/C][C] 4[/C][C] 3.888[/C][C] 0.112[/C][/ROW]
[ROW][C]126[/C][C] 5[/C][C] 3.926[/C][C] 1.074[/C][/ROW]
[ROW][C]127[/C][C] 4[/C][C] 3.845[/C][C] 0.1553[/C][/ROW]
[ROW][C]128[/C][C] 3[/C][C] 3.581[/C][C]-0.5812[/C][/ROW]
[ROW][C]129[/C][C] 4[/C][C] 4.001[/C][C]-0.001049[/C][/ROW]
[ROW][C]130[/C][C] 2[/C][C] 3.769[/C][C]-1.769[/C][/ROW]
[ROW][C]131[/C][C] 4[/C][C] 4.16[/C][C]-0.16[/C][/ROW]
[ROW][C]132[/C][C] 4[/C][C] 4.23[/C][C]-0.2297[/C][/ROW]
[ROW][C]133[/C][C] 2[/C][C] 3.619[/C][C]-1.619[/C][/ROW]
[ROW][C]134[/C][C] 2[/C][C] 3.225[/C][C]-1.225[/C][/ROW]
[ROW][C]135[/C][C] 4[/C][C] 3.848[/C][C] 0.1524[/C][/ROW]
[ROW][C]136[/C][C] 4[/C][C] 4.227[/C][C]-0.2269[/C][/ROW]
[ROW][C]137[/C][C] 2[/C][C] 2.921[/C][C]-0.9214[/C][/ROW]
[ROW][C]138[/C][C] 4[/C][C] 3.769[/C][C] 0.2305[/C][/ROW]
[ROW][C]139[/C][C] 5[/C][C] 4.268[/C][C] 0.7325[/C][/ROW]
[ROW][C]140[/C][C] 4[/C][C] 3.998[/C][C] 0.001882[/C][/ROW]
[ROW][C]141[/C][C] 4[/C][C] 4.12[/C][C]-0.1196[/C][/ROW]
[ROW][C]142[/C][C] 3[/C][C] 3.966[/C][C]-0.9662[/C][/ROW]
[ROW][C]143[/C][C] 4[/C][C] 4.007[/C][C]-0.006551[/C][/ROW]
[ROW][C]144[/C][C] 3[/C][C] 3.883[/C][C]-0.8825[/C][/ROW]
[ROW][C]145[/C][C] 4[/C][C] 3.961[/C][C] 0.03935[/C][/ROW]
[ROW][C]146[/C][C] 2[/C][C] 4.154[/C][C]-2.154[/C][/ROW]
[ROW][C]147[/C][C] 5[/C][C] 4.233[/C][C] 0.7674[/C][/ROW]
[ROW][C]148[/C][C] 4[/C][C] 3.961[/C][C] 0.03935[/C][/ROW]
[ROW][C]149[/C][C] 4[/C][C] 4.351[/C][C]-0.3511[/C][/ROW]
[ROW][C]150[/C][C] 3[/C][C] 3.382[/C][C]-0.3818[/C][/ROW]
[ROW][C]151[/C][C] 4[/C][C] 4.233[/C][C]-0.2326[/C][/ROW]
[ROW][C]152[/C][C] 5[/C][C] 3.853[/C][C] 1.147[/C][/ROW]
[ROW][C]153[/C][C] 4[/C][C] 3.619[/C][C] 0.3811[/C][/ROW]
[ROW][C]154[/C][C] 2[/C][C] 4.004[/C][C]-2.004[/C][/ROW]
[ROW][C]155[/C][C] 4[/C][C] 4.044[/C][C]-0.04429[/C][/ROW]
[ROW][C]156[/C][C] 5[/C][C] 4.039[/C][C] 0.9612[/C][/ROW]
[ROW][C]157[/C][C] 4[/C][C] 3.853[/C][C] 0.1469[/C][/ROW]
[ROW][C]158[/C][C] 2[/C][C] 3.769[/C][C]-1.769[/C][/ROW]
[ROW][C]159[/C][C] 5[/C][C] 4.079[/C][C] 0.9208[/C][/ROW]
[ROW][C]160[/C][C] 4[/C][C] 4.004[/C][C]-0.003702[/C][/ROW]
[ROW][C]161[/C][C] 5[/C][C] 3.92[/C][C] 1.08[/C][/ROW]
[ROW][C]162[/C][C] 3[/C][C] 4.076[/C][C]-1.076[/C][/ROW]
[ROW][C]163[/C][C] 5[/C][C] 4.195[/C][C] 0.8051[/C][/ROW]
[ROW][C]164[/C][C] 4[/C][C] 4.351[/C][C]-0.3511[/C][/ROW]
[ROW][C]165[/C][C] 3[/C][C] 3.885[/C][C]-0.8853[/C][/ROW]
[ROW][C]166[/C][C] 4[/C][C] 4.085[/C][C]-0.08469[/C][/ROW]
[ROW][C]167[/C][C] 4[/C][C] 3.729[/C][C] 0.271[/C][/ROW]
[ROW][C]168[/C][C] 3[/C][C] 3.078[/C][C]-0.07766[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300194&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300194&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 4 3.966 0.03384
2 5 4.348 0.6517
3 4 4.233-0.2326
4 3 3.807-0.8071
5 4 4.041-0.04144
6 5 4.12 0.8804
7 5 3.61 1.39
8 3 3.767-0.7668
9 4 4.036-0.03594
10 5 4.346 0.6544
11 5 3.842 1.158
12 4 3.694 0.3058
13 4 4.16-0.16
14 4 3.888 0.112
15 4 3.422 0.5778
16 5 3.384 1.616
17 3 3.966-0.9662
18 3 4.154-1.154
19 4 4.23-0.2297
20 5 3.931 1.069
21 4 3.694 0.3058
22 5 4.079 0.9208
23 4 3.92 0.07982
24 4 4.036-0.03594
25 3 3.5-0.5003
26 4 4.001-0.001049
27 4 3.497 0.5025
28 4 3.966 0.03384
29 4 4.273-0.273
30 3 3.61-0.6104
31 4 3.845 0.1553
32 5 4.311 0.6893
33 4 3.384 0.6156
34 4 3.848 0.1524
35 5 4.079 0.9208
36 3 3.576-0.5756
37 3 3.729-0.729
38 2 3.842-1.842
39 5 3.853 1.147
40 5 3.882 1.118
41 5 4.033 0.9668
42 4 3.188 0.8121
43 4 4.192-0.1922
44 4 4.114-0.114
45 3 3.382-0.3818
46 4 3.497 0.5025
47 4 3.318 0.6824
48 3 3.923-0.9228
49 2 3.428-1.428
50 5 4.117 0.8831
51 5 4.152 0.8485
52 5 4.079 0.9208
53 2 4.311-2.311
54 3 4.117-1.117
55 2 3.848-1.848
56 3 3.382-0.3818
57 5 3.694 1.306
58 4 4.001-0.000967
59 4 3.576 0.4244
60 5 4.074 0.9263
61 5 3.77 1.23
62 4 4.233-0.2326
63 5 3.393 1.607
64 4 4.039-0.03879
65 4 3.497 0.5025
66 5 3.454 1.546
67 3 4.079-1.079
68 2 3.541-1.541
69 5 3.772 1.228
70 3 3.772-0.7723
71 4 4.273-0.273
72 4 3.966 0.03384
73 4 3.694 0.3058
74 4 3.998 0.0018
75 4 3.622 0.3784
76 5 4.192 0.8078
77 3 3.885-0.8852
78 2 3.769-1.769
79 5 4.079 0.9208
80 4 4.079-0.07918
81 1 3.769-2.769
82 4 3.845 0.1553
83 5 3.839 1.161
84 4 4.389-0.3887
85 5 3.463 1.537
86 4 4.233-0.2325
87 5 4.308 0.6921
88 3 4.16-1.16
89 5 3.81 1.19
90 5 3.848 1.152
91 4 3.654 0.3464
92 4 4.001-0.000967
93 4 3.764 0.2361
94 4 4.154-0.1545
95 3 4.195-1.195
96 4 4.154-0.1545
97 4 4.001-0.001049
98 5 4.232 0.7676
99 5 3.882 1.118
100 3 3.613-0.6134
101 5 4.386 0.614
102 4 4.273-0.273
103 2 3.764-1.764
104 3 3.5-0.5003
105 5 4.348 0.6517
106 4 3.966 0.03384
107 4 4.041-0.04144
108 4 4.12-0.1196
109 4 4.16-0.16
110 3 3.845-0.8447
111 4 3.5 0.4997
112 4 3.654 0.3463
113 3 3.689-0.6885
114 5 3.769 1.231
115 4 3.769 0.2306
116 5 4.039 0.9612
117 5 4.313 0.6866
118 5 4.499 0.5009
119 3 3.807-0.8072
120 4 3.807 0.1928
121 3 3.729-0.729
122 4 3.923 0.07709
123 4 4.273-0.273
124 4 3.998 0.001882
125 4 3.888 0.112
126 5 3.926 1.074
127 4 3.845 0.1553
128 3 3.581-0.5812
129 4 4.001-0.001049
130 2 3.769-1.769
131 4 4.16-0.16
132 4 4.23-0.2297
133 2 3.619-1.619
134 2 3.225-1.225
135 4 3.848 0.1524
136 4 4.227-0.2269
137 2 2.921-0.9214
138 4 3.769 0.2305
139 5 4.268 0.7325
140 4 3.998 0.001882
141 4 4.12-0.1196
142 3 3.966-0.9662
143 4 4.007-0.006551
144 3 3.883-0.8825
145 4 3.961 0.03935
146 2 4.154-2.154
147 5 4.233 0.7674
148 4 3.961 0.03935
149 4 4.351-0.3511
150 3 3.382-0.3818
151 4 4.233-0.2326
152 5 3.853 1.147
153 4 3.619 0.3811
154 2 4.004-2.004
155 4 4.044-0.04429
156 5 4.039 0.9612
157 4 3.853 0.1469
158 2 3.769-1.769
159 5 4.079 0.9208
160 4 4.004-0.003702
161 5 3.92 1.08
162 3 4.076-1.076
163 5 4.195 0.8051
164 4 4.351-0.3511
165 3 3.885-0.8853
166 4 4.085-0.08469
167 4 3.729 0.271
168 3 3.078-0.07766







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.471 0.942 0.529
9 0.4559 0.9118 0.5441
10 0.4909 0.9819 0.5091
11 0.4214 0.8427 0.5786
12 0.3556 0.7112 0.6444
13 0.2761 0.5521 0.7239
14 0.1927 0.3855 0.8073
15 0.1431 0.2861 0.8569
16 0.1286 0.2572 0.8714
17 0.1273 0.2547 0.8727
18 0.2756 0.5511 0.7244
19 0.2563 0.5127 0.7437
20 0.3745 0.749 0.6255
21 0.3049 0.6098 0.6951
22 0.3226 0.6452 0.6774
23 0.2585 0.517 0.7415
24 0.2125 0.4251 0.7875
25 0.2096 0.4193 0.7904
26 0.1654 0.3308 0.8346
27 0.1288 0.2576 0.8712
28 0.09637 0.1927 0.9036
29 0.07241 0.1448 0.9276
30 0.07461 0.1492 0.9254
31 0.05556 0.1111 0.9444
32 0.0584 0.1168 0.9416
33 0.04358 0.08716 0.9564
34 0.03147 0.06294 0.9685
35 0.0321 0.06421 0.9679
36 0.03245 0.0649 0.9676
37 0.03406 0.06811 0.9659
38 0.1064 0.2129 0.8936
39 0.1047 0.2094 0.8953
40 0.129 0.2581 0.871
41 0.16 0.32 0.84
42 0.1494 0.2988 0.8506
43 0.1224 0.2448 0.8776
44 0.09708 0.1942 0.9029
45 0.08733 0.1747 0.9127
46 0.07081 0.1416 0.9292
47 0.05806 0.1161 0.9419
48 0.06418 0.1284 0.9358
49 0.1175 0.2351 0.8825
50 0.1107 0.2214 0.8893
51 0.115 0.2299 0.885
52 0.1107 0.2214 0.8893
53 0.335 0.67 0.665
54 0.3614 0.7228 0.6386
55 0.5628 0.8744 0.4372
56 0.5281 0.9437 0.4719
57 0.5816 0.8367 0.4184
58 0.5343 0.9314 0.4657
59 0.4951 0.9903 0.5049
60 0.4962 0.9924 0.5038
61 0.5374 0.9251 0.4626
62 0.4941 0.9881 0.5059
63 0.5801 0.8397 0.4199
64 0.5349 0.9302 0.4651
65 0.5009 0.9981 0.4991
66 0.6045 0.7911 0.3955
67 0.6308 0.7385 0.3692
68 0.7228 0.5543 0.2772
69 0.7656 0.4688 0.2344
70 0.76 0.4799 0.24
71 0.727 0.546 0.273
72 0.688 0.6239 0.312
73 0.6522 0.6957 0.3478
74 0.6108 0.7784 0.3892
75 0.5794 0.8412 0.4206
76 0.572 0.8559 0.428
77 0.5799 0.8403 0.4201
78 0.7098 0.5803 0.2902
79 0.7139 0.5721 0.2861
80 0.6746 0.6508 0.3254
81 0.9254 0.1491 0.07455
82 0.909 0.1821 0.09103
83 0.9248 0.1503 0.07516
84 0.9115 0.1769 0.08847
85 0.9479 0.1043 0.05213
86 0.9356 0.1289 0.06445
87 0.9298 0.1404 0.0702
88 0.9414 0.1171 0.05857
89 0.9549 0.09011 0.04505
90 0.9654 0.06915 0.03458
91 0.9604 0.07928 0.03964
92 0.9497 0.1005 0.05026
93 0.9402 0.1196 0.05981
94 0.9259 0.1483 0.07415
95 0.9412 0.1175 0.05877
96 0.9272 0.1457 0.07285
97 0.9098 0.1805 0.09025
98 0.9063 0.1874 0.09372
99 0.928 0.144 0.072
100 0.9191 0.1618 0.08092
101 0.9088 0.1823 0.09117
102 0.8912 0.2176 0.1088
103 0.9392 0.1216 0.06082
104 0.9273 0.1455 0.07275
105 0.9189 0.1622 0.08111
106 0.8996 0.2008 0.1004
107 0.8769 0.2462 0.1231
108 0.8512 0.2975 0.1488
109 0.8224 0.3552 0.1776
110 0.8122 0.3755 0.1878
111 0.8064 0.3871 0.1936
112 0.7901 0.4199 0.2099
113 0.7644 0.4712 0.2356
114 0.8326 0.3348 0.1674
115 0.8142 0.3716 0.1858
116 0.8235 0.3531 0.1765
117 0.8118 0.3763 0.1882
118 0.7835 0.433 0.2165
119 0.7747 0.4506 0.2253
120 0.7383 0.5234 0.2617
121 0.7103 0.5793 0.2897
122 0.6655 0.6689 0.3345
123 0.6216 0.7568 0.3784
124 0.5754 0.8492 0.4246
125 0.5277 0.9446 0.4723
126 0.5721 0.8557 0.4279
127 0.5364 0.9272 0.4636
128 0.4931 0.9861 0.5069
129 0.4394 0.8789 0.5606
130 0.5836 0.8329 0.4164
131 0.5284 0.9431 0.4716
132 0.4726 0.9453 0.5274
133 0.5851 0.8298 0.4149
134 0.566 0.868 0.434
135 0.5094 0.9812 0.4906
136 0.465 0.93 0.535
137 0.4193 0.8386 0.5807
138 0.3642 0.7284 0.6358
139 0.3482 0.6965 0.6518
140 0.3114 0.6229 0.6886
141 0.2575 0.5151 0.7425
142 0.2588 0.5177 0.7412
143 0.2085 0.417 0.7915
144 0.2025 0.405 0.7975
145 0.1579 0.3158 0.8421
146 0.4857 0.9715 0.5143
147 0.4392 0.8784 0.5608
148 0.3843 0.7685 0.6157
149 0.3228 0.6455 0.6772
150 0.2558 0.5117 0.7442
151 0.2215 0.4431 0.7785
152 0.3503 0.7006 0.6497
153 0.2888 0.5777 0.7112
154 0.8452 0.3096 0.1548
155 0.7735 0.4531 0.2265
156 0.7242 0.5516 0.2758
157 0.7409 0.5181 0.2591
158 0.7334 0.5331 0.2666
159 0.5967 0.8067 0.4033
160 0.4404 0.8808 0.5596

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.471 &  0.942 &  0.529 \tabularnewline
9 &  0.4559 &  0.9118 &  0.5441 \tabularnewline
10 &  0.4909 &  0.9819 &  0.5091 \tabularnewline
11 &  0.4214 &  0.8427 &  0.5786 \tabularnewline
12 &  0.3556 &  0.7112 &  0.6444 \tabularnewline
13 &  0.2761 &  0.5521 &  0.7239 \tabularnewline
14 &  0.1927 &  0.3855 &  0.8073 \tabularnewline
15 &  0.1431 &  0.2861 &  0.8569 \tabularnewline
16 &  0.1286 &  0.2572 &  0.8714 \tabularnewline
17 &  0.1273 &  0.2547 &  0.8727 \tabularnewline
18 &  0.2756 &  0.5511 &  0.7244 \tabularnewline
19 &  0.2563 &  0.5127 &  0.7437 \tabularnewline
20 &  0.3745 &  0.749 &  0.6255 \tabularnewline
21 &  0.3049 &  0.6098 &  0.6951 \tabularnewline
22 &  0.3226 &  0.6452 &  0.6774 \tabularnewline
23 &  0.2585 &  0.517 &  0.7415 \tabularnewline
24 &  0.2125 &  0.4251 &  0.7875 \tabularnewline
25 &  0.2096 &  0.4193 &  0.7904 \tabularnewline
26 &  0.1654 &  0.3308 &  0.8346 \tabularnewline
27 &  0.1288 &  0.2576 &  0.8712 \tabularnewline
28 &  0.09637 &  0.1927 &  0.9036 \tabularnewline
29 &  0.07241 &  0.1448 &  0.9276 \tabularnewline
30 &  0.07461 &  0.1492 &  0.9254 \tabularnewline
31 &  0.05556 &  0.1111 &  0.9444 \tabularnewline
32 &  0.0584 &  0.1168 &  0.9416 \tabularnewline
33 &  0.04358 &  0.08716 &  0.9564 \tabularnewline
34 &  0.03147 &  0.06294 &  0.9685 \tabularnewline
35 &  0.0321 &  0.06421 &  0.9679 \tabularnewline
36 &  0.03245 &  0.0649 &  0.9676 \tabularnewline
37 &  0.03406 &  0.06811 &  0.9659 \tabularnewline
38 &  0.1064 &  0.2129 &  0.8936 \tabularnewline
39 &  0.1047 &  0.2094 &  0.8953 \tabularnewline
40 &  0.129 &  0.2581 &  0.871 \tabularnewline
41 &  0.16 &  0.32 &  0.84 \tabularnewline
42 &  0.1494 &  0.2988 &  0.8506 \tabularnewline
43 &  0.1224 &  0.2448 &  0.8776 \tabularnewline
44 &  0.09708 &  0.1942 &  0.9029 \tabularnewline
45 &  0.08733 &  0.1747 &  0.9127 \tabularnewline
46 &  0.07081 &  0.1416 &  0.9292 \tabularnewline
47 &  0.05806 &  0.1161 &  0.9419 \tabularnewline
48 &  0.06418 &  0.1284 &  0.9358 \tabularnewline
49 &  0.1175 &  0.2351 &  0.8825 \tabularnewline
50 &  0.1107 &  0.2214 &  0.8893 \tabularnewline
51 &  0.115 &  0.2299 &  0.885 \tabularnewline
52 &  0.1107 &  0.2214 &  0.8893 \tabularnewline
53 &  0.335 &  0.67 &  0.665 \tabularnewline
54 &  0.3614 &  0.7228 &  0.6386 \tabularnewline
55 &  0.5628 &  0.8744 &  0.4372 \tabularnewline
56 &  0.5281 &  0.9437 &  0.4719 \tabularnewline
57 &  0.5816 &  0.8367 &  0.4184 \tabularnewline
58 &  0.5343 &  0.9314 &  0.4657 \tabularnewline
59 &  0.4951 &  0.9903 &  0.5049 \tabularnewline
60 &  0.4962 &  0.9924 &  0.5038 \tabularnewline
61 &  0.5374 &  0.9251 &  0.4626 \tabularnewline
62 &  0.4941 &  0.9881 &  0.5059 \tabularnewline
63 &  0.5801 &  0.8397 &  0.4199 \tabularnewline
64 &  0.5349 &  0.9302 &  0.4651 \tabularnewline
65 &  0.5009 &  0.9981 &  0.4991 \tabularnewline
66 &  0.6045 &  0.7911 &  0.3955 \tabularnewline
67 &  0.6308 &  0.7385 &  0.3692 \tabularnewline
68 &  0.7228 &  0.5543 &  0.2772 \tabularnewline
69 &  0.7656 &  0.4688 &  0.2344 \tabularnewline
70 &  0.76 &  0.4799 &  0.24 \tabularnewline
71 &  0.727 &  0.546 &  0.273 \tabularnewline
72 &  0.688 &  0.6239 &  0.312 \tabularnewline
73 &  0.6522 &  0.6957 &  0.3478 \tabularnewline
74 &  0.6108 &  0.7784 &  0.3892 \tabularnewline
75 &  0.5794 &  0.8412 &  0.4206 \tabularnewline
76 &  0.572 &  0.8559 &  0.428 \tabularnewline
77 &  0.5799 &  0.8403 &  0.4201 \tabularnewline
78 &  0.7098 &  0.5803 &  0.2902 \tabularnewline
79 &  0.7139 &  0.5721 &  0.2861 \tabularnewline
80 &  0.6746 &  0.6508 &  0.3254 \tabularnewline
81 &  0.9254 &  0.1491 &  0.07455 \tabularnewline
82 &  0.909 &  0.1821 &  0.09103 \tabularnewline
83 &  0.9248 &  0.1503 &  0.07516 \tabularnewline
84 &  0.9115 &  0.1769 &  0.08847 \tabularnewline
85 &  0.9479 &  0.1043 &  0.05213 \tabularnewline
86 &  0.9356 &  0.1289 &  0.06445 \tabularnewline
87 &  0.9298 &  0.1404 &  0.0702 \tabularnewline
88 &  0.9414 &  0.1171 &  0.05857 \tabularnewline
89 &  0.9549 &  0.09011 &  0.04505 \tabularnewline
90 &  0.9654 &  0.06915 &  0.03458 \tabularnewline
91 &  0.9604 &  0.07928 &  0.03964 \tabularnewline
92 &  0.9497 &  0.1005 &  0.05026 \tabularnewline
93 &  0.9402 &  0.1196 &  0.05981 \tabularnewline
94 &  0.9259 &  0.1483 &  0.07415 \tabularnewline
95 &  0.9412 &  0.1175 &  0.05877 \tabularnewline
96 &  0.9272 &  0.1457 &  0.07285 \tabularnewline
97 &  0.9098 &  0.1805 &  0.09025 \tabularnewline
98 &  0.9063 &  0.1874 &  0.09372 \tabularnewline
99 &  0.928 &  0.144 &  0.072 \tabularnewline
100 &  0.9191 &  0.1618 &  0.08092 \tabularnewline
101 &  0.9088 &  0.1823 &  0.09117 \tabularnewline
102 &  0.8912 &  0.2176 &  0.1088 \tabularnewline
103 &  0.9392 &  0.1216 &  0.06082 \tabularnewline
104 &  0.9273 &  0.1455 &  0.07275 \tabularnewline
105 &  0.9189 &  0.1622 &  0.08111 \tabularnewline
106 &  0.8996 &  0.2008 &  0.1004 \tabularnewline
107 &  0.8769 &  0.2462 &  0.1231 \tabularnewline
108 &  0.8512 &  0.2975 &  0.1488 \tabularnewline
109 &  0.8224 &  0.3552 &  0.1776 \tabularnewline
110 &  0.8122 &  0.3755 &  0.1878 \tabularnewline
111 &  0.8064 &  0.3871 &  0.1936 \tabularnewline
112 &  0.7901 &  0.4199 &  0.2099 \tabularnewline
113 &  0.7644 &  0.4712 &  0.2356 \tabularnewline
114 &  0.8326 &  0.3348 &  0.1674 \tabularnewline
115 &  0.8142 &  0.3716 &  0.1858 \tabularnewline
116 &  0.8235 &  0.3531 &  0.1765 \tabularnewline
117 &  0.8118 &  0.3763 &  0.1882 \tabularnewline
118 &  0.7835 &  0.433 &  0.2165 \tabularnewline
119 &  0.7747 &  0.4506 &  0.2253 \tabularnewline
120 &  0.7383 &  0.5234 &  0.2617 \tabularnewline
121 &  0.7103 &  0.5793 &  0.2897 \tabularnewline
122 &  0.6655 &  0.6689 &  0.3345 \tabularnewline
123 &  0.6216 &  0.7568 &  0.3784 \tabularnewline
124 &  0.5754 &  0.8492 &  0.4246 \tabularnewline
125 &  0.5277 &  0.9446 &  0.4723 \tabularnewline
126 &  0.5721 &  0.8557 &  0.4279 \tabularnewline
127 &  0.5364 &  0.9272 &  0.4636 \tabularnewline
128 &  0.4931 &  0.9861 &  0.5069 \tabularnewline
129 &  0.4394 &  0.8789 &  0.5606 \tabularnewline
130 &  0.5836 &  0.8329 &  0.4164 \tabularnewline
131 &  0.5284 &  0.9431 &  0.4716 \tabularnewline
132 &  0.4726 &  0.9453 &  0.5274 \tabularnewline
133 &  0.5851 &  0.8298 &  0.4149 \tabularnewline
134 &  0.566 &  0.868 &  0.434 \tabularnewline
135 &  0.5094 &  0.9812 &  0.4906 \tabularnewline
136 &  0.465 &  0.93 &  0.535 \tabularnewline
137 &  0.4193 &  0.8386 &  0.5807 \tabularnewline
138 &  0.3642 &  0.7284 &  0.6358 \tabularnewline
139 &  0.3482 &  0.6965 &  0.6518 \tabularnewline
140 &  0.3114 &  0.6229 &  0.6886 \tabularnewline
141 &  0.2575 &  0.5151 &  0.7425 \tabularnewline
142 &  0.2588 &  0.5177 &  0.7412 \tabularnewline
143 &  0.2085 &  0.417 &  0.7915 \tabularnewline
144 &  0.2025 &  0.405 &  0.7975 \tabularnewline
145 &  0.1579 &  0.3158 &  0.8421 \tabularnewline
146 &  0.4857 &  0.9715 &  0.5143 \tabularnewline
147 &  0.4392 &  0.8784 &  0.5608 \tabularnewline
148 &  0.3843 &  0.7685 &  0.6157 \tabularnewline
149 &  0.3228 &  0.6455 &  0.6772 \tabularnewline
150 &  0.2558 &  0.5117 &  0.7442 \tabularnewline
151 &  0.2215 &  0.4431 &  0.7785 \tabularnewline
152 &  0.3503 &  0.7006 &  0.6497 \tabularnewline
153 &  0.2888 &  0.5777 &  0.7112 \tabularnewline
154 &  0.8452 &  0.3096 &  0.1548 \tabularnewline
155 &  0.7735 &  0.4531 &  0.2265 \tabularnewline
156 &  0.7242 &  0.5516 &  0.2758 \tabularnewline
157 &  0.7409 &  0.5181 &  0.2591 \tabularnewline
158 &  0.7334 &  0.5331 &  0.2666 \tabularnewline
159 &  0.5967 &  0.8067 &  0.4033 \tabularnewline
160 &  0.4404 &  0.8808 &  0.5596 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300194&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.471[/C][C] 0.942[/C][C] 0.529[/C][/ROW]
[ROW][C]9[/C][C] 0.4559[/C][C] 0.9118[/C][C] 0.5441[/C][/ROW]
[ROW][C]10[/C][C] 0.4909[/C][C] 0.9819[/C][C] 0.5091[/C][/ROW]
[ROW][C]11[/C][C] 0.4214[/C][C] 0.8427[/C][C] 0.5786[/C][/ROW]
[ROW][C]12[/C][C] 0.3556[/C][C] 0.7112[/C][C] 0.6444[/C][/ROW]
[ROW][C]13[/C][C] 0.2761[/C][C] 0.5521[/C][C] 0.7239[/C][/ROW]
[ROW][C]14[/C][C] 0.1927[/C][C] 0.3855[/C][C] 0.8073[/C][/ROW]
[ROW][C]15[/C][C] 0.1431[/C][C] 0.2861[/C][C] 0.8569[/C][/ROW]
[ROW][C]16[/C][C] 0.1286[/C][C] 0.2572[/C][C] 0.8714[/C][/ROW]
[ROW][C]17[/C][C] 0.1273[/C][C] 0.2547[/C][C] 0.8727[/C][/ROW]
[ROW][C]18[/C][C] 0.2756[/C][C] 0.5511[/C][C] 0.7244[/C][/ROW]
[ROW][C]19[/C][C] 0.2563[/C][C] 0.5127[/C][C] 0.7437[/C][/ROW]
[ROW][C]20[/C][C] 0.3745[/C][C] 0.749[/C][C] 0.6255[/C][/ROW]
[ROW][C]21[/C][C] 0.3049[/C][C] 0.6098[/C][C] 0.6951[/C][/ROW]
[ROW][C]22[/C][C] 0.3226[/C][C] 0.6452[/C][C] 0.6774[/C][/ROW]
[ROW][C]23[/C][C] 0.2585[/C][C] 0.517[/C][C] 0.7415[/C][/ROW]
[ROW][C]24[/C][C] 0.2125[/C][C] 0.4251[/C][C] 0.7875[/C][/ROW]
[ROW][C]25[/C][C] 0.2096[/C][C] 0.4193[/C][C] 0.7904[/C][/ROW]
[ROW][C]26[/C][C] 0.1654[/C][C] 0.3308[/C][C] 0.8346[/C][/ROW]
[ROW][C]27[/C][C] 0.1288[/C][C] 0.2576[/C][C] 0.8712[/C][/ROW]
[ROW][C]28[/C][C] 0.09637[/C][C] 0.1927[/C][C] 0.9036[/C][/ROW]
[ROW][C]29[/C][C] 0.07241[/C][C] 0.1448[/C][C] 0.9276[/C][/ROW]
[ROW][C]30[/C][C] 0.07461[/C][C] 0.1492[/C][C] 0.9254[/C][/ROW]
[ROW][C]31[/C][C] 0.05556[/C][C] 0.1111[/C][C] 0.9444[/C][/ROW]
[ROW][C]32[/C][C] 0.0584[/C][C] 0.1168[/C][C] 0.9416[/C][/ROW]
[ROW][C]33[/C][C] 0.04358[/C][C] 0.08716[/C][C] 0.9564[/C][/ROW]
[ROW][C]34[/C][C] 0.03147[/C][C] 0.06294[/C][C] 0.9685[/C][/ROW]
[ROW][C]35[/C][C] 0.0321[/C][C] 0.06421[/C][C] 0.9679[/C][/ROW]
[ROW][C]36[/C][C] 0.03245[/C][C] 0.0649[/C][C] 0.9676[/C][/ROW]
[ROW][C]37[/C][C] 0.03406[/C][C] 0.06811[/C][C] 0.9659[/C][/ROW]
[ROW][C]38[/C][C] 0.1064[/C][C] 0.2129[/C][C] 0.8936[/C][/ROW]
[ROW][C]39[/C][C] 0.1047[/C][C] 0.2094[/C][C] 0.8953[/C][/ROW]
[ROW][C]40[/C][C] 0.129[/C][C] 0.2581[/C][C] 0.871[/C][/ROW]
[ROW][C]41[/C][C] 0.16[/C][C] 0.32[/C][C] 0.84[/C][/ROW]
[ROW][C]42[/C][C] 0.1494[/C][C] 0.2988[/C][C] 0.8506[/C][/ROW]
[ROW][C]43[/C][C] 0.1224[/C][C] 0.2448[/C][C] 0.8776[/C][/ROW]
[ROW][C]44[/C][C] 0.09708[/C][C] 0.1942[/C][C] 0.9029[/C][/ROW]
[ROW][C]45[/C][C] 0.08733[/C][C] 0.1747[/C][C] 0.9127[/C][/ROW]
[ROW][C]46[/C][C] 0.07081[/C][C] 0.1416[/C][C] 0.9292[/C][/ROW]
[ROW][C]47[/C][C] 0.05806[/C][C] 0.1161[/C][C] 0.9419[/C][/ROW]
[ROW][C]48[/C][C] 0.06418[/C][C] 0.1284[/C][C] 0.9358[/C][/ROW]
[ROW][C]49[/C][C] 0.1175[/C][C] 0.2351[/C][C] 0.8825[/C][/ROW]
[ROW][C]50[/C][C] 0.1107[/C][C] 0.2214[/C][C] 0.8893[/C][/ROW]
[ROW][C]51[/C][C] 0.115[/C][C] 0.2299[/C][C] 0.885[/C][/ROW]
[ROW][C]52[/C][C] 0.1107[/C][C] 0.2214[/C][C] 0.8893[/C][/ROW]
[ROW][C]53[/C][C] 0.335[/C][C] 0.67[/C][C] 0.665[/C][/ROW]
[ROW][C]54[/C][C] 0.3614[/C][C] 0.7228[/C][C] 0.6386[/C][/ROW]
[ROW][C]55[/C][C] 0.5628[/C][C] 0.8744[/C][C] 0.4372[/C][/ROW]
[ROW][C]56[/C][C] 0.5281[/C][C] 0.9437[/C][C] 0.4719[/C][/ROW]
[ROW][C]57[/C][C] 0.5816[/C][C] 0.8367[/C][C] 0.4184[/C][/ROW]
[ROW][C]58[/C][C] 0.5343[/C][C] 0.9314[/C][C] 0.4657[/C][/ROW]
[ROW][C]59[/C][C] 0.4951[/C][C] 0.9903[/C][C] 0.5049[/C][/ROW]
[ROW][C]60[/C][C] 0.4962[/C][C] 0.9924[/C][C] 0.5038[/C][/ROW]
[ROW][C]61[/C][C] 0.5374[/C][C] 0.9251[/C][C] 0.4626[/C][/ROW]
[ROW][C]62[/C][C] 0.4941[/C][C] 0.9881[/C][C] 0.5059[/C][/ROW]
[ROW][C]63[/C][C] 0.5801[/C][C] 0.8397[/C][C] 0.4199[/C][/ROW]
[ROW][C]64[/C][C] 0.5349[/C][C] 0.9302[/C][C] 0.4651[/C][/ROW]
[ROW][C]65[/C][C] 0.5009[/C][C] 0.9981[/C][C] 0.4991[/C][/ROW]
[ROW][C]66[/C][C] 0.6045[/C][C] 0.7911[/C][C] 0.3955[/C][/ROW]
[ROW][C]67[/C][C] 0.6308[/C][C] 0.7385[/C][C] 0.3692[/C][/ROW]
[ROW][C]68[/C][C] 0.7228[/C][C] 0.5543[/C][C] 0.2772[/C][/ROW]
[ROW][C]69[/C][C] 0.7656[/C][C] 0.4688[/C][C] 0.2344[/C][/ROW]
[ROW][C]70[/C][C] 0.76[/C][C] 0.4799[/C][C] 0.24[/C][/ROW]
[ROW][C]71[/C][C] 0.727[/C][C] 0.546[/C][C] 0.273[/C][/ROW]
[ROW][C]72[/C][C] 0.688[/C][C] 0.6239[/C][C] 0.312[/C][/ROW]
[ROW][C]73[/C][C] 0.6522[/C][C] 0.6957[/C][C] 0.3478[/C][/ROW]
[ROW][C]74[/C][C] 0.6108[/C][C] 0.7784[/C][C] 0.3892[/C][/ROW]
[ROW][C]75[/C][C] 0.5794[/C][C] 0.8412[/C][C] 0.4206[/C][/ROW]
[ROW][C]76[/C][C] 0.572[/C][C] 0.8559[/C][C] 0.428[/C][/ROW]
[ROW][C]77[/C][C] 0.5799[/C][C] 0.8403[/C][C] 0.4201[/C][/ROW]
[ROW][C]78[/C][C] 0.7098[/C][C] 0.5803[/C][C] 0.2902[/C][/ROW]
[ROW][C]79[/C][C] 0.7139[/C][C] 0.5721[/C][C] 0.2861[/C][/ROW]
[ROW][C]80[/C][C] 0.6746[/C][C] 0.6508[/C][C] 0.3254[/C][/ROW]
[ROW][C]81[/C][C] 0.9254[/C][C] 0.1491[/C][C] 0.07455[/C][/ROW]
[ROW][C]82[/C][C] 0.909[/C][C] 0.1821[/C][C] 0.09103[/C][/ROW]
[ROW][C]83[/C][C] 0.9248[/C][C] 0.1503[/C][C] 0.07516[/C][/ROW]
[ROW][C]84[/C][C] 0.9115[/C][C] 0.1769[/C][C] 0.08847[/C][/ROW]
[ROW][C]85[/C][C] 0.9479[/C][C] 0.1043[/C][C] 0.05213[/C][/ROW]
[ROW][C]86[/C][C] 0.9356[/C][C] 0.1289[/C][C] 0.06445[/C][/ROW]
[ROW][C]87[/C][C] 0.9298[/C][C] 0.1404[/C][C] 0.0702[/C][/ROW]
[ROW][C]88[/C][C] 0.9414[/C][C] 0.1171[/C][C] 0.05857[/C][/ROW]
[ROW][C]89[/C][C] 0.9549[/C][C] 0.09011[/C][C] 0.04505[/C][/ROW]
[ROW][C]90[/C][C] 0.9654[/C][C] 0.06915[/C][C] 0.03458[/C][/ROW]
[ROW][C]91[/C][C] 0.9604[/C][C] 0.07928[/C][C] 0.03964[/C][/ROW]
[ROW][C]92[/C][C] 0.9497[/C][C] 0.1005[/C][C] 0.05026[/C][/ROW]
[ROW][C]93[/C][C] 0.9402[/C][C] 0.1196[/C][C] 0.05981[/C][/ROW]
[ROW][C]94[/C][C] 0.9259[/C][C] 0.1483[/C][C] 0.07415[/C][/ROW]
[ROW][C]95[/C][C] 0.9412[/C][C] 0.1175[/C][C] 0.05877[/C][/ROW]
[ROW][C]96[/C][C] 0.9272[/C][C] 0.1457[/C][C] 0.07285[/C][/ROW]
[ROW][C]97[/C][C] 0.9098[/C][C] 0.1805[/C][C] 0.09025[/C][/ROW]
[ROW][C]98[/C][C] 0.9063[/C][C] 0.1874[/C][C] 0.09372[/C][/ROW]
[ROW][C]99[/C][C] 0.928[/C][C] 0.144[/C][C] 0.072[/C][/ROW]
[ROW][C]100[/C][C] 0.9191[/C][C] 0.1618[/C][C] 0.08092[/C][/ROW]
[ROW][C]101[/C][C] 0.9088[/C][C] 0.1823[/C][C] 0.09117[/C][/ROW]
[ROW][C]102[/C][C] 0.8912[/C][C] 0.2176[/C][C] 0.1088[/C][/ROW]
[ROW][C]103[/C][C] 0.9392[/C][C] 0.1216[/C][C] 0.06082[/C][/ROW]
[ROW][C]104[/C][C] 0.9273[/C][C] 0.1455[/C][C] 0.07275[/C][/ROW]
[ROW][C]105[/C][C] 0.9189[/C][C] 0.1622[/C][C] 0.08111[/C][/ROW]
[ROW][C]106[/C][C] 0.8996[/C][C] 0.2008[/C][C] 0.1004[/C][/ROW]
[ROW][C]107[/C][C] 0.8769[/C][C] 0.2462[/C][C] 0.1231[/C][/ROW]
[ROW][C]108[/C][C] 0.8512[/C][C] 0.2975[/C][C] 0.1488[/C][/ROW]
[ROW][C]109[/C][C] 0.8224[/C][C] 0.3552[/C][C] 0.1776[/C][/ROW]
[ROW][C]110[/C][C] 0.8122[/C][C] 0.3755[/C][C] 0.1878[/C][/ROW]
[ROW][C]111[/C][C] 0.8064[/C][C] 0.3871[/C][C] 0.1936[/C][/ROW]
[ROW][C]112[/C][C] 0.7901[/C][C] 0.4199[/C][C] 0.2099[/C][/ROW]
[ROW][C]113[/C][C] 0.7644[/C][C] 0.4712[/C][C] 0.2356[/C][/ROW]
[ROW][C]114[/C][C] 0.8326[/C][C] 0.3348[/C][C] 0.1674[/C][/ROW]
[ROW][C]115[/C][C] 0.8142[/C][C] 0.3716[/C][C] 0.1858[/C][/ROW]
[ROW][C]116[/C][C] 0.8235[/C][C] 0.3531[/C][C] 0.1765[/C][/ROW]
[ROW][C]117[/C][C] 0.8118[/C][C] 0.3763[/C][C] 0.1882[/C][/ROW]
[ROW][C]118[/C][C] 0.7835[/C][C] 0.433[/C][C] 0.2165[/C][/ROW]
[ROW][C]119[/C][C] 0.7747[/C][C] 0.4506[/C][C] 0.2253[/C][/ROW]
[ROW][C]120[/C][C] 0.7383[/C][C] 0.5234[/C][C] 0.2617[/C][/ROW]
[ROW][C]121[/C][C] 0.7103[/C][C] 0.5793[/C][C] 0.2897[/C][/ROW]
[ROW][C]122[/C][C] 0.6655[/C][C] 0.6689[/C][C] 0.3345[/C][/ROW]
[ROW][C]123[/C][C] 0.6216[/C][C] 0.7568[/C][C] 0.3784[/C][/ROW]
[ROW][C]124[/C][C] 0.5754[/C][C] 0.8492[/C][C] 0.4246[/C][/ROW]
[ROW][C]125[/C][C] 0.5277[/C][C] 0.9446[/C][C] 0.4723[/C][/ROW]
[ROW][C]126[/C][C] 0.5721[/C][C] 0.8557[/C][C] 0.4279[/C][/ROW]
[ROW][C]127[/C][C] 0.5364[/C][C] 0.9272[/C][C] 0.4636[/C][/ROW]
[ROW][C]128[/C][C] 0.4931[/C][C] 0.9861[/C][C] 0.5069[/C][/ROW]
[ROW][C]129[/C][C] 0.4394[/C][C] 0.8789[/C][C] 0.5606[/C][/ROW]
[ROW][C]130[/C][C] 0.5836[/C][C] 0.8329[/C][C] 0.4164[/C][/ROW]
[ROW][C]131[/C][C] 0.5284[/C][C] 0.9431[/C][C] 0.4716[/C][/ROW]
[ROW][C]132[/C][C] 0.4726[/C][C] 0.9453[/C][C] 0.5274[/C][/ROW]
[ROW][C]133[/C][C] 0.5851[/C][C] 0.8298[/C][C] 0.4149[/C][/ROW]
[ROW][C]134[/C][C] 0.566[/C][C] 0.868[/C][C] 0.434[/C][/ROW]
[ROW][C]135[/C][C] 0.5094[/C][C] 0.9812[/C][C] 0.4906[/C][/ROW]
[ROW][C]136[/C][C] 0.465[/C][C] 0.93[/C][C] 0.535[/C][/ROW]
[ROW][C]137[/C][C] 0.4193[/C][C] 0.8386[/C][C] 0.5807[/C][/ROW]
[ROW][C]138[/C][C] 0.3642[/C][C] 0.7284[/C][C] 0.6358[/C][/ROW]
[ROW][C]139[/C][C] 0.3482[/C][C] 0.6965[/C][C] 0.6518[/C][/ROW]
[ROW][C]140[/C][C] 0.3114[/C][C] 0.6229[/C][C] 0.6886[/C][/ROW]
[ROW][C]141[/C][C] 0.2575[/C][C] 0.5151[/C][C] 0.7425[/C][/ROW]
[ROW][C]142[/C][C] 0.2588[/C][C] 0.5177[/C][C] 0.7412[/C][/ROW]
[ROW][C]143[/C][C] 0.2085[/C][C] 0.417[/C][C] 0.7915[/C][/ROW]
[ROW][C]144[/C][C] 0.2025[/C][C] 0.405[/C][C] 0.7975[/C][/ROW]
[ROW][C]145[/C][C] 0.1579[/C][C] 0.3158[/C][C] 0.8421[/C][/ROW]
[ROW][C]146[/C][C] 0.4857[/C][C] 0.9715[/C][C] 0.5143[/C][/ROW]
[ROW][C]147[/C][C] 0.4392[/C][C] 0.8784[/C][C] 0.5608[/C][/ROW]
[ROW][C]148[/C][C] 0.3843[/C][C] 0.7685[/C][C] 0.6157[/C][/ROW]
[ROW][C]149[/C][C] 0.3228[/C][C] 0.6455[/C][C] 0.6772[/C][/ROW]
[ROW][C]150[/C][C] 0.2558[/C][C] 0.5117[/C][C] 0.7442[/C][/ROW]
[ROW][C]151[/C][C] 0.2215[/C][C] 0.4431[/C][C] 0.7785[/C][/ROW]
[ROW][C]152[/C][C] 0.3503[/C][C] 0.7006[/C][C] 0.6497[/C][/ROW]
[ROW][C]153[/C][C] 0.2888[/C][C] 0.5777[/C][C] 0.7112[/C][/ROW]
[ROW][C]154[/C][C] 0.8452[/C][C] 0.3096[/C][C] 0.1548[/C][/ROW]
[ROW][C]155[/C][C] 0.7735[/C][C] 0.4531[/C][C] 0.2265[/C][/ROW]
[ROW][C]156[/C][C] 0.7242[/C][C] 0.5516[/C][C] 0.2758[/C][/ROW]
[ROW][C]157[/C][C] 0.7409[/C][C] 0.5181[/C][C] 0.2591[/C][/ROW]
[ROW][C]158[/C][C] 0.7334[/C][C] 0.5331[/C][C] 0.2666[/C][/ROW]
[ROW][C]159[/C][C] 0.5967[/C][C] 0.8067[/C][C] 0.4033[/C][/ROW]
[ROW][C]160[/C][C] 0.4404[/C][C] 0.8808[/C][C] 0.5596[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300194&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300194&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.471 0.942 0.529
9 0.4559 0.9118 0.5441
10 0.4909 0.9819 0.5091
11 0.4214 0.8427 0.5786
12 0.3556 0.7112 0.6444
13 0.2761 0.5521 0.7239
14 0.1927 0.3855 0.8073
15 0.1431 0.2861 0.8569
16 0.1286 0.2572 0.8714
17 0.1273 0.2547 0.8727
18 0.2756 0.5511 0.7244
19 0.2563 0.5127 0.7437
20 0.3745 0.749 0.6255
21 0.3049 0.6098 0.6951
22 0.3226 0.6452 0.6774
23 0.2585 0.517 0.7415
24 0.2125 0.4251 0.7875
25 0.2096 0.4193 0.7904
26 0.1654 0.3308 0.8346
27 0.1288 0.2576 0.8712
28 0.09637 0.1927 0.9036
29 0.07241 0.1448 0.9276
30 0.07461 0.1492 0.9254
31 0.05556 0.1111 0.9444
32 0.0584 0.1168 0.9416
33 0.04358 0.08716 0.9564
34 0.03147 0.06294 0.9685
35 0.0321 0.06421 0.9679
36 0.03245 0.0649 0.9676
37 0.03406 0.06811 0.9659
38 0.1064 0.2129 0.8936
39 0.1047 0.2094 0.8953
40 0.129 0.2581 0.871
41 0.16 0.32 0.84
42 0.1494 0.2988 0.8506
43 0.1224 0.2448 0.8776
44 0.09708 0.1942 0.9029
45 0.08733 0.1747 0.9127
46 0.07081 0.1416 0.9292
47 0.05806 0.1161 0.9419
48 0.06418 0.1284 0.9358
49 0.1175 0.2351 0.8825
50 0.1107 0.2214 0.8893
51 0.115 0.2299 0.885
52 0.1107 0.2214 0.8893
53 0.335 0.67 0.665
54 0.3614 0.7228 0.6386
55 0.5628 0.8744 0.4372
56 0.5281 0.9437 0.4719
57 0.5816 0.8367 0.4184
58 0.5343 0.9314 0.4657
59 0.4951 0.9903 0.5049
60 0.4962 0.9924 0.5038
61 0.5374 0.9251 0.4626
62 0.4941 0.9881 0.5059
63 0.5801 0.8397 0.4199
64 0.5349 0.9302 0.4651
65 0.5009 0.9981 0.4991
66 0.6045 0.7911 0.3955
67 0.6308 0.7385 0.3692
68 0.7228 0.5543 0.2772
69 0.7656 0.4688 0.2344
70 0.76 0.4799 0.24
71 0.727 0.546 0.273
72 0.688 0.6239 0.312
73 0.6522 0.6957 0.3478
74 0.6108 0.7784 0.3892
75 0.5794 0.8412 0.4206
76 0.572 0.8559 0.428
77 0.5799 0.8403 0.4201
78 0.7098 0.5803 0.2902
79 0.7139 0.5721 0.2861
80 0.6746 0.6508 0.3254
81 0.9254 0.1491 0.07455
82 0.909 0.1821 0.09103
83 0.9248 0.1503 0.07516
84 0.9115 0.1769 0.08847
85 0.9479 0.1043 0.05213
86 0.9356 0.1289 0.06445
87 0.9298 0.1404 0.0702
88 0.9414 0.1171 0.05857
89 0.9549 0.09011 0.04505
90 0.9654 0.06915 0.03458
91 0.9604 0.07928 0.03964
92 0.9497 0.1005 0.05026
93 0.9402 0.1196 0.05981
94 0.9259 0.1483 0.07415
95 0.9412 0.1175 0.05877
96 0.9272 0.1457 0.07285
97 0.9098 0.1805 0.09025
98 0.9063 0.1874 0.09372
99 0.928 0.144 0.072
100 0.9191 0.1618 0.08092
101 0.9088 0.1823 0.09117
102 0.8912 0.2176 0.1088
103 0.9392 0.1216 0.06082
104 0.9273 0.1455 0.07275
105 0.9189 0.1622 0.08111
106 0.8996 0.2008 0.1004
107 0.8769 0.2462 0.1231
108 0.8512 0.2975 0.1488
109 0.8224 0.3552 0.1776
110 0.8122 0.3755 0.1878
111 0.8064 0.3871 0.1936
112 0.7901 0.4199 0.2099
113 0.7644 0.4712 0.2356
114 0.8326 0.3348 0.1674
115 0.8142 0.3716 0.1858
116 0.8235 0.3531 0.1765
117 0.8118 0.3763 0.1882
118 0.7835 0.433 0.2165
119 0.7747 0.4506 0.2253
120 0.7383 0.5234 0.2617
121 0.7103 0.5793 0.2897
122 0.6655 0.6689 0.3345
123 0.6216 0.7568 0.3784
124 0.5754 0.8492 0.4246
125 0.5277 0.9446 0.4723
126 0.5721 0.8557 0.4279
127 0.5364 0.9272 0.4636
128 0.4931 0.9861 0.5069
129 0.4394 0.8789 0.5606
130 0.5836 0.8329 0.4164
131 0.5284 0.9431 0.4716
132 0.4726 0.9453 0.5274
133 0.5851 0.8298 0.4149
134 0.566 0.868 0.434
135 0.5094 0.9812 0.4906
136 0.465 0.93 0.535
137 0.4193 0.8386 0.5807
138 0.3642 0.7284 0.6358
139 0.3482 0.6965 0.6518
140 0.3114 0.6229 0.6886
141 0.2575 0.5151 0.7425
142 0.2588 0.5177 0.7412
143 0.2085 0.417 0.7915
144 0.2025 0.405 0.7975
145 0.1579 0.3158 0.8421
146 0.4857 0.9715 0.5143
147 0.4392 0.8784 0.5608
148 0.3843 0.7685 0.6157
149 0.3228 0.6455 0.6772
150 0.2558 0.5117 0.7442
151 0.2215 0.4431 0.7785
152 0.3503 0.7006 0.6497
153 0.2888 0.5777 0.7112
154 0.8452 0.3096 0.1548
155 0.7735 0.4531 0.2265
156 0.7242 0.5516 0.2758
157 0.7409 0.5181 0.2591
158 0.7334 0.5331 0.2666
159 0.5967 0.8067 0.4033
160 0.4404 0.8808 0.5596







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level80.0522876OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 0 & 0 & OK \tabularnewline
10% type I error level & 8 & 0.0522876 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300194&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]0[/C][C]0[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]8[/C][C]0.0522876[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300194&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300194&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level00OK
10% type I error level80.0522876OK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.70278, df1 = 2, df2 = 161, p-value = 0.4967
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3206, df1 = 8, df2 = 155, p-value = 0.237
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.6602, df1 = 2, df2 = 161, p-value = 0.1933

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.70278, df1 = 2, df2 = 161, p-value = 0.4967
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3206, df1 = 8, df2 = 155, p-value = 0.237
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.6602, df1 = 2, df2 = 161, p-value = 0.1933
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300194&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.70278, df1 = 2, df2 = 161, p-value = 0.4967
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3206, df1 = 8, df2 = 155, p-value = 0.237
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.6602, df1 = 2, df2 = 161, p-value = 0.1933
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300194&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300194&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.70278, df1 = 2, df2 = 161, p-value = 0.4967
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3206, df1 = 8, df2 = 155, p-value = 0.237
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.6602, df1 = 2, df2 = 161, p-value = 0.1933







Variance Inflation Factors (Multicollinearity)
> vif
       W        X        Y        Z 
1.013755 1.074113 1.020744 1.058907 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
       W        X        Y        Z 
1.013755 1.074113 1.020744 1.058907 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300194&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
       W        X        Y        Z 
1.013755 1.074113 1.020744 1.058907 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300194&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300194&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
       W        X        Y        Z 
1.013755 1.074113 1.020744 1.058907 



Parameters (Session):
par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ;
Parameters (R input):
par1 = ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')