Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationFri, 16 Dec 2016 10:08:19 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481879327nb0q3rnljjg7wca.htm/, Retrieved Fri, 01 Nov 2024 03:35:28 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300158, Retrieved Fri, 01 Nov 2024 03:35:28 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact105
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [MR] [2016-12-16 09:08:19] [71d167f7de04005af677e6526bf8917e] [Current]
Feedback Forum

Post a new message
Dataseries X:
13	10	1
16	6	2
17	10	2
16	10	2
17	10	1
17	9	1
15	6	1
16	9	1
14	9	1
16	10	1
17	9	2
16	9	2
16	10	2
16	10	1
15	9	1
16	10	1
16	10	1
13	10	1
15	10	2
17	10	1
13	9	2
17	8	1
14	10	2
14	10	1
18	10	1
17	10	2
13	10	2
16	10	2
15	10	2
15	10	2
13	9	2
17	10	2
11	7	2
14	7	1
13	6	2
17	10	1
16	10	2
17	10	2
16	10	2
16	10	2
16	10	2
15	8	1
12	10	2
17	8	1
14	4	1
16	7	2
15	9	2
16	6	1
14	9	2
15	8	1
17	10	2
10	8	1
17	10	1
20	8	2
17	10	2
18	10	2
17	8	1
14	8	2
17	6	1
17	10	1
16	8	2
18	10	2
18	4	1
16	10	2
15	8	1
13	10	2
16	10	1
12	8	1
16	10	2
16	10	1
16	10	2
14	10	1
15	9	1
14	9	1
15	10	2
15	10	2
16	9	2
11	10	2
18	8	1
11	8	1
18	8	1
15	8	2
19	10	1
17	4	1
14	8	1
13	10	1
17	8	2
14	9	2
19	6	2
14	10	2
16	8	1
16	10	1
15	10	2
12	9	2
17	10	2
18	6	1
15	10	2
15	10	1
16	10	2
16	7	1




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300158&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300158&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300158&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
Tevredenheid[t] = + 15.9721 -0.0300433privacy[t] -0.154197geslacht[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
Tevredenheid[t] =  +  15.9721 -0.0300433privacy[t] -0.154197geslacht[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300158&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]Tevredenheid[t] =  +  15.9721 -0.0300433privacy[t] -0.154197geslacht[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300158&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300158&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
Tevredenheid[t] = + 15.9721 -0.0300433privacy[t] -0.154197geslacht[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+15.97 1.179+1.3550e+01 4.262e-24 2.131e-24
privacy-0.03004 0.1311-2.2910e-01 0.8192 0.4096
geslacht-0.1542 0.3929-3.9240e-01 0.6956 0.3478

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +15.97 &  1.179 & +1.3550e+01 &  4.262e-24 &  2.131e-24 \tabularnewline
privacy & -0.03004 &  0.1311 & -2.2910e-01 &  0.8192 &  0.4096 \tabularnewline
geslacht & -0.1542 &  0.3929 & -3.9240e-01 &  0.6956 &  0.3478 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300158&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+15.97[/C][C] 1.179[/C][C]+1.3550e+01[/C][C] 4.262e-24[/C][C] 2.131e-24[/C][/ROW]
[ROW][C]privacy[/C][C]-0.03004[/C][C] 0.1311[/C][C]-2.2910e-01[/C][C] 0.8192[/C][C] 0.4096[/C][/ROW]
[ROW][C]geslacht[/C][C]-0.1542[/C][C] 0.3929[/C][C]-3.9240e-01[/C][C] 0.6956[/C][C] 0.3478[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300158&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300158&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+15.97 1.179+1.3550e+01 4.262e-24 2.131e-24
privacy-0.03004 0.1311-2.2910e-01 0.8192 0.4096
geslacht-0.1542 0.3929-3.9240e-01 0.6956 0.3478







Multiple Linear Regression - Regression Statistics
Multiple R 0.05295
R-squared 0.002803
Adjusted R-squared-0.01776
F-TEST (value) 0.1363
F-TEST (DF numerator)2
F-TEST (DF denominator)97
p-value 0.8727
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.894
Sum Squared Residuals 347.9

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.05295 \tabularnewline
R-squared &  0.002803 \tabularnewline
Adjusted R-squared & -0.01776 \tabularnewline
F-TEST (value) &  0.1363 \tabularnewline
F-TEST (DF numerator) & 2 \tabularnewline
F-TEST (DF denominator) & 97 \tabularnewline
p-value &  0.8727 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.894 \tabularnewline
Sum Squared Residuals &  347.9 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300158&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.05295[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.002803[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.01776[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.1363[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]2[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]97[/C][/ROW]
[ROW][C]p-value[/C][C] 0.8727[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.894[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 347.9[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300158&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300158&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.05295
R-squared 0.002803
Adjusted R-squared-0.01776
F-TEST (value) 0.1363
F-TEST (DF numerator)2
F-TEST (DF denominator)97
p-value 0.8727
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.894
Sum Squared Residuals 347.9







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 15.52-2.517
2 16 15.48 0.5166
3 17 15.36 1.637
4 16 15.36 0.6368
5 17 15.52 1.483
6 17 15.55 1.453
7 15 15.64-0.6376
8 16 15.55 0.4525
9 14 15.55-1.547
10 16 15.52 0.4826
11 17 15.39 1.607
12 16 15.39 0.6067
13 16 15.36 0.6368
14 16 15.52 0.4826
15 15 15.55-0.5475
16 16 15.52 0.4826
17 16 15.52 0.4826
18 13 15.52-2.517
19 15 15.36-0.3632
20 17 15.52 1.483
21 13 15.39-2.393
22 17 15.58 1.422
23 14 15.36-1.363
24 14 15.52-1.517
25 18 15.52 2.483
26 17 15.36 1.637
27 13 15.36-2.363
28 16 15.36 0.6368
29 15 15.36-0.3632
30 15 15.36-0.3632
31 13 15.39-2.393
32 17 15.36 1.637
33 11 15.45-4.453
34 14 15.61-1.608
35 13 15.48-2.483
36 17 15.52 1.483
37 16 15.36 0.6368
38 17 15.36 1.637
39 16 15.36 0.6368
40 16 15.36 0.6368
41 16 15.36 0.6368
42 15 15.58-0.5775
43 12 15.36-3.363
44 17 15.58 1.422
45 14 15.7-1.698
46 16 15.45 0.5466
47 15 15.39-0.3933
48 16 15.64 0.3624
49 14 15.39-1.393
50 15 15.58-0.5775
51 17 15.36 1.637
52 10 15.58-5.578
53 17 15.52 1.483
54 20 15.42 4.577
55 17 15.36 1.637
56 18 15.36 2.637
57 17 15.58 1.422
58 14 15.42-1.423
59 17 15.64 1.362
60 17 15.52 1.483
61 16 15.42 0.5767
62 18 15.36 2.637
63 18 15.7 2.302
64 16 15.36 0.6368
65 15 15.58-0.5775
66 13 15.36-2.363
67 16 15.52 0.4826
68 12 15.58-3.578
69 16 15.36 0.6368
70 16 15.52 0.4826
71 16 15.36 0.6368
72 14 15.52-1.517
73 15 15.55-0.5475
74 14 15.55-1.547
75 15 15.36-0.3632
76 15 15.36-0.3632
77 16 15.39 0.6067
78 11 15.36-4.363
79 18 15.58 2.422
80 11 15.58-4.578
81 18 15.58 2.422
82 15 15.42-0.4233
83 19 15.52 3.483
84 17 15.7 1.302
85 14 15.58-1.578
86 13 15.52-2.517
87 17 15.42 1.577
88 14 15.39-1.393
89 19 15.48 3.517
90 14 15.36-1.363
91 16 15.58 0.4225
92 16 15.52 0.4826
93 15 15.36-0.3632
94 12 15.39-3.393
95 17 15.36 1.637
96 18 15.64 2.362
97 15 15.36-0.3632
98 15 15.52-0.5174
99 16 15.36 0.6368
100 16 15.61 0.3924

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  13 &  15.52 & -2.517 \tabularnewline
2 &  16 &  15.48 &  0.5166 \tabularnewline
3 &  17 &  15.36 &  1.637 \tabularnewline
4 &  16 &  15.36 &  0.6368 \tabularnewline
5 &  17 &  15.52 &  1.483 \tabularnewline
6 &  17 &  15.55 &  1.453 \tabularnewline
7 &  15 &  15.64 & -0.6376 \tabularnewline
8 &  16 &  15.55 &  0.4525 \tabularnewline
9 &  14 &  15.55 & -1.547 \tabularnewline
10 &  16 &  15.52 &  0.4826 \tabularnewline
11 &  17 &  15.39 &  1.607 \tabularnewline
12 &  16 &  15.39 &  0.6067 \tabularnewline
13 &  16 &  15.36 &  0.6368 \tabularnewline
14 &  16 &  15.52 &  0.4826 \tabularnewline
15 &  15 &  15.55 & -0.5475 \tabularnewline
16 &  16 &  15.52 &  0.4826 \tabularnewline
17 &  16 &  15.52 &  0.4826 \tabularnewline
18 &  13 &  15.52 & -2.517 \tabularnewline
19 &  15 &  15.36 & -0.3632 \tabularnewline
20 &  17 &  15.52 &  1.483 \tabularnewline
21 &  13 &  15.39 & -2.393 \tabularnewline
22 &  17 &  15.58 &  1.422 \tabularnewline
23 &  14 &  15.36 & -1.363 \tabularnewline
24 &  14 &  15.52 & -1.517 \tabularnewline
25 &  18 &  15.52 &  2.483 \tabularnewline
26 &  17 &  15.36 &  1.637 \tabularnewline
27 &  13 &  15.36 & -2.363 \tabularnewline
28 &  16 &  15.36 &  0.6368 \tabularnewline
29 &  15 &  15.36 & -0.3632 \tabularnewline
30 &  15 &  15.36 & -0.3632 \tabularnewline
31 &  13 &  15.39 & -2.393 \tabularnewline
32 &  17 &  15.36 &  1.637 \tabularnewline
33 &  11 &  15.45 & -4.453 \tabularnewline
34 &  14 &  15.61 & -1.608 \tabularnewline
35 &  13 &  15.48 & -2.483 \tabularnewline
36 &  17 &  15.52 &  1.483 \tabularnewline
37 &  16 &  15.36 &  0.6368 \tabularnewline
38 &  17 &  15.36 &  1.637 \tabularnewline
39 &  16 &  15.36 &  0.6368 \tabularnewline
40 &  16 &  15.36 &  0.6368 \tabularnewline
41 &  16 &  15.36 &  0.6368 \tabularnewline
42 &  15 &  15.58 & -0.5775 \tabularnewline
43 &  12 &  15.36 & -3.363 \tabularnewline
44 &  17 &  15.58 &  1.422 \tabularnewline
45 &  14 &  15.7 & -1.698 \tabularnewline
46 &  16 &  15.45 &  0.5466 \tabularnewline
47 &  15 &  15.39 & -0.3933 \tabularnewline
48 &  16 &  15.64 &  0.3624 \tabularnewline
49 &  14 &  15.39 & -1.393 \tabularnewline
50 &  15 &  15.58 & -0.5775 \tabularnewline
51 &  17 &  15.36 &  1.637 \tabularnewline
52 &  10 &  15.58 & -5.578 \tabularnewline
53 &  17 &  15.52 &  1.483 \tabularnewline
54 &  20 &  15.42 &  4.577 \tabularnewline
55 &  17 &  15.36 &  1.637 \tabularnewline
56 &  18 &  15.36 &  2.637 \tabularnewline
57 &  17 &  15.58 &  1.422 \tabularnewline
58 &  14 &  15.42 & -1.423 \tabularnewline
59 &  17 &  15.64 &  1.362 \tabularnewline
60 &  17 &  15.52 &  1.483 \tabularnewline
61 &  16 &  15.42 &  0.5767 \tabularnewline
62 &  18 &  15.36 &  2.637 \tabularnewline
63 &  18 &  15.7 &  2.302 \tabularnewline
64 &  16 &  15.36 &  0.6368 \tabularnewline
65 &  15 &  15.58 & -0.5775 \tabularnewline
66 &  13 &  15.36 & -2.363 \tabularnewline
67 &  16 &  15.52 &  0.4826 \tabularnewline
68 &  12 &  15.58 & -3.578 \tabularnewline
69 &  16 &  15.36 &  0.6368 \tabularnewline
70 &  16 &  15.52 &  0.4826 \tabularnewline
71 &  16 &  15.36 &  0.6368 \tabularnewline
72 &  14 &  15.52 & -1.517 \tabularnewline
73 &  15 &  15.55 & -0.5475 \tabularnewline
74 &  14 &  15.55 & -1.547 \tabularnewline
75 &  15 &  15.36 & -0.3632 \tabularnewline
76 &  15 &  15.36 & -0.3632 \tabularnewline
77 &  16 &  15.39 &  0.6067 \tabularnewline
78 &  11 &  15.36 & -4.363 \tabularnewline
79 &  18 &  15.58 &  2.422 \tabularnewline
80 &  11 &  15.58 & -4.578 \tabularnewline
81 &  18 &  15.58 &  2.422 \tabularnewline
82 &  15 &  15.42 & -0.4233 \tabularnewline
83 &  19 &  15.52 &  3.483 \tabularnewline
84 &  17 &  15.7 &  1.302 \tabularnewline
85 &  14 &  15.58 & -1.578 \tabularnewline
86 &  13 &  15.52 & -2.517 \tabularnewline
87 &  17 &  15.42 &  1.577 \tabularnewline
88 &  14 &  15.39 & -1.393 \tabularnewline
89 &  19 &  15.48 &  3.517 \tabularnewline
90 &  14 &  15.36 & -1.363 \tabularnewline
91 &  16 &  15.58 &  0.4225 \tabularnewline
92 &  16 &  15.52 &  0.4826 \tabularnewline
93 &  15 &  15.36 & -0.3632 \tabularnewline
94 &  12 &  15.39 & -3.393 \tabularnewline
95 &  17 &  15.36 &  1.637 \tabularnewline
96 &  18 &  15.64 &  2.362 \tabularnewline
97 &  15 &  15.36 & -0.3632 \tabularnewline
98 &  15 &  15.52 & -0.5174 \tabularnewline
99 &  16 &  15.36 &  0.6368 \tabularnewline
100 &  16 &  15.61 &  0.3924 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300158&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 13[/C][C] 15.52[/C][C]-2.517[/C][/ROW]
[ROW][C]2[/C][C] 16[/C][C] 15.48[/C][C] 0.5166[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 15.36[/C][C] 1.637[/C][/ROW]
[ROW][C]4[/C][C] 16[/C][C] 15.36[/C][C] 0.6368[/C][/ROW]
[ROW][C]5[/C][C] 17[/C][C] 15.52[/C][C] 1.483[/C][/ROW]
[ROW][C]6[/C][C] 17[/C][C] 15.55[/C][C] 1.453[/C][/ROW]
[ROW][C]7[/C][C] 15[/C][C] 15.64[/C][C]-0.6376[/C][/ROW]
[ROW][C]8[/C][C] 16[/C][C] 15.55[/C][C] 0.4525[/C][/ROW]
[ROW][C]9[/C][C] 14[/C][C] 15.55[/C][C]-1.547[/C][/ROW]
[ROW][C]10[/C][C] 16[/C][C] 15.52[/C][C] 0.4826[/C][/ROW]
[ROW][C]11[/C][C] 17[/C][C] 15.39[/C][C] 1.607[/C][/ROW]
[ROW][C]12[/C][C] 16[/C][C] 15.39[/C][C] 0.6067[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 15.36[/C][C] 0.6368[/C][/ROW]
[ROW][C]14[/C][C] 16[/C][C] 15.52[/C][C] 0.4826[/C][/ROW]
[ROW][C]15[/C][C] 15[/C][C] 15.55[/C][C]-0.5475[/C][/ROW]
[ROW][C]16[/C][C] 16[/C][C] 15.52[/C][C] 0.4826[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 15.52[/C][C] 0.4826[/C][/ROW]
[ROW][C]18[/C][C] 13[/C][C] 15.52[/C][C]-2.517[/C][/ROW]
[ROW][C]19[/C][C] 15[/C][C] 15.36[/C][C]-0.3632[/C][/ROW]
[ROW][C]20[/C][C] 17[/C][C] 15.52[/C][C] 1.483[/C][/ROW]
[ROW][C]21[/C][C] 13[/C][C] 15.39[/C][C]-2.393[/C][/ROW]
[ROW][C]22[/C][C] 17[/C][C] 15.58[/C][C] 1.422[/C][/ROW]
[ROW][C]23[/C][C] 14[/C][C] 15.36[/C][C]-1.363[/C][/ROW]
[ROW][C]24[/C][C] 14[/C][C] 15.52[/C][C]-1.517[/C][/ROW]
[ROW][C]25[/C][C] 18[/C][C] 15.52[/C][C] 2.483[/C][/ROW]
[ROW][C]26[/C][C] 17[/C][C] 15.36[/C][C] 1.637[/C][/ROW]
[ROW][C]27[/C][C] 13[/C][C] 15.36[/C][C]-2.363[/C][/ROW]
[ROW][C]28[/C][C] 16[/C][C] 15.36[/C][C] 0.6368[/C][/ROW]
[ROW][C]29[/C][C] 15[/C][C] 15.36[/C][C]-0.3632[/C][/ROW]
[ROW][C]30[/C][C] 15[/C][C] 15.36[/C][C]-0.3632[/C][/ROW]
[ROW][C]31[/C][C] 13[/C][C] 15.39[/C][C]-2.393[/C][/ROW]
[ROW][C]32[/C][C] 17[/C][C] 15.36[/C][C] 1.637[/C][/ROW]
[ROW][C]33[/C][C] 11[/C][C] 15.45[/C][C]-4.453[/C][/ROW]
[ROW][C]34[/C][C] 14[/C][C] 15.61[/C][C]-1.608[/C][/ROW]
[ROW][C]35[/C][C] 13[/C][C] 15.48[/C][C]-2.483[/C][/ROW]
[ROW][C]36[/C][C] 17[/C][C] 15.52[/C][C] 1.483[/C][/ROW]
[ROW][C]37[/C][C] 16[/C][C] 15.36[/C][C] 0.6368[/C][/ROW]
[ROW][C]38[/C][C] 17[/C][C] 15.36[/C][C] 1.637[/C][/ROW]
[ROW][C]39[/C][C] 16[/C][C] 15.36[/C][C] 0.6368[/C][/ROW]
[ROW][C]40[/C][C] 16[/C][C] 15.36[/C][C] 0.6368[/C][/ROW]
[ROW][C]41[/C][C] 16[/C][C] 15.36[/C][C] 0.6368[/C][/ROW]
[ROW][C]42[/C][C] 15[/C][C] 15.58[/C][C]-0.5775[/C][/ROW]
[ROW][C]43[/C][C] 12[/C][C] 15.36[/C][C]-3.363[/C][/ROW]
[ROW][C]44[/C][C] 17[/C][C] 15.58[/C][C] 1.422[/C][/ROW]
[ROW][C]45[/C][C] 14[/C][C] 15.7[/C][C]-1.698[/C][/ROW]
[ROW][C]46[/C][C] 16[/C][C] 15.45[/C][C] 0.5466[/C][/ROW]
[ROW][C]47[/C][C] 15[/C][C] 15.39[/C][C]-0.3933[/C][/ROW]
[ROW][C]48[/C][C] 16[/C][C] 15.64[/C][C] 0.3624[/C][/ROW]
[ROW][C]49[/C][C] 14[/C][C] 15.39[/C][C]-1.393[/C][/ROW]
[ROW][C]50[/C][C] 15[/C][C] 15.58[/C][C]-0.5775[/C][/ROW]
[ROW][C]51[/C][C] 17[/C][C] 15.36[/C][C] 1.637[/C][/ROW]
[ROW][C]52[/C][C] 10[/C][C] 15.58[/C][C]-5.578[/C][/ROW]
[ROW][C]53[/C][C] 17[/C][C] 15.52[/C][C] 1.483[/C][/ROW]
[ROW][C]54[/C][C] 20[/C][C] 15.42[/C][C] 4.577[/C][/ROW]
[ROW][C]55[/C][C] 17[/C][C] 15.36[/C][C] 1.637[/C][/ROW]
[ROW][C]56[/C][C] 18[/C][C] 15.36[/C][C] 2.637[/C][/ROW]
[ROW][C]57[/C][C] 17[/C][C] 15.58[/C][C] 1.422[/C][/ROW]
[ROW][C]58[/C][C] 14[/C][C] 15.42[/C][C]-1.423[/C][/ROW]
[ROW][C]59[/C][C] 17[/C][C] 15.64[/C][C] 1.362[/C][/ROW]
[ROW][C]60[/C][C] 17[/C][C] 15.52[/C][C] 1.483[/C][/ROW]
[ROW][C]61[/C][C] 16[/C][C] 15.42[/C][C] 0.5767[/C][/ROW]
[ROW][C]62[/C][C] 18[/C][C] 15.36[/C][C] 2.637[/C][/ROW]
[ROW][C]63[/C][C] 18[/C][C] 15.7[/C][C] 2.302[/C][/ROW]
[ROW][C]64[/C][C] 16[/C][C] 15.36[/C][C] 0.6368[/C][/ROW]
[ROW][C]65[/C][C] 15[/C][C] 15.58[/C][C]-0.5775[/C][/ROW]
[ROW][C]66[/C][C] 13[/C][C] 15.36[/C][C]-2.363[/C][/ROW]
[ROW][C]67[/C][C] 16[/C][C] 15.52[/C][C] 0.4826[/C][/ROW]
[ROW][C]68[/C][C] 12[/C][C] 15.58[/C][C]-3.578[/C][/ROW]
[ROW][C]69[/C][C] 16[/C][C] 15.36[/C][C] 0.6368[/C][/ROW]
[ROW][C]70[/C][C] 16[/C][C] 15.52[/C][C] 0.4826[/C][/ROW]
[ROW][C]71[/C][C] 16[/C][C] 15.36[/C][C] 0.6368[/C][/ROW]
[ROW][C]72[/C][C] 14[/C][C] 15.52[/C][C]-1.517[/C][/ROW]
[ROW][C]73[/C][C] 15[/C][C] 15.55[/C][C]-0.5475[/C][/ROW]
[ROW][C]74[/C][C] 14[/C][C] 15.55[/C][C]-1.547[/C][/ROW]
[ROW][C]75[/C][C] 15[/C][C] 15.36[/C][C]-0.3632[/C][/ROW]
[ROW][C]76[/C][C] 15[/C][C] 15.36[/C][C]-0.3632[/C][/ROW]
[ROW][C]77[/C][C] 16[/C][C] 15.39[/C][C] 0.6067[/C][/ROW]
[ROW][C]78[/C][C] 11[/C][C] 15.36[/C][C]-4.363[/C][/ROW]
[ROW][C]79[/C][C] 18[/C][C] 15.58[/C][C] 2.422[/C][/ROW]
[ROW][C]80[/C][C] 11[/C][C] 15.58[/C][C]-4.578[/C][/ROW]
[ROW][C]81[/C][C] 18[/C][C] 15.58[/C][C] 2.422[/C][/ROW]
[ROW][C]82[/C][C] 15[/C][C] 15.42[/C][C]-0.4233[/C][/ROW]
[ROW][C]83[/C][C] 19[/C][C] 15.52[/C][C] 3.483[/C][/ROW]
[ROW][C]84[/C][C] 17[/C][C] 15.7[/C][C] 1.302[/C][/ROW]
[ROW][C]85[/C][C] 14[/C][C] 15.58[/C][C]-1.578[/C][/ROW]
[ROW][C]86[/C][C] 13[/C][C] 15.52[/C][C]-2.517[/C][/ROW]
[ROW][C]87[/C][C] 17[/C][C] 15.42[/C][C] 1.577[/C][/ROW]
[ROW][C]88[/C][C] 14[/C][C] 15.39[/C][C]-1.393[/C][/ROW]
[ROW][C]89[/C][C] 19[/C][C] 15.48[/C][C] 3.517[/C][/ROW]
[ROW][C]90[/C][C] 14[/C][C] 15.36[/C][C]-1.363[/C][/ROW]
[ROW][C]91[/C][C] 16[/C][C] 15.58[/C][C] 0.4225[/C][/ROW]
[ROW][C]92[/C][C] 16[/C][C] 15.52[/C][C] 0.4826[/C][/ROW]
[ROW][C]93[/C][C] 15[/C][C] 15.36[/C][C]-0.3632[/C][/ROW]
[ROW][C]94[/C][C] 12[/C][C] 15.39[/C][C]-3.393[/C][/ROW]
[ROW][C]95[/C][C] 17[/C][C] 15.36[/C][C] 1.637[/C][/ROW]
[ROW][C]96[/C][C] 18[/C][C] 15.64[/C][C] 2.362[/C][/ROW]
[ROW][C]97[/C][C] 15[/C][C] 15.36[/C][C]-0.3632[/C][/ROW]
[ROW][C]98[/C][C] 15[/C][C] 15.52[/C][C]-0.5174[/C][/ROW]
[ROW][C]99[/C][C] 16[/C][C] 15.36[/C][C] 0.6368[/C][/ROW]
[ROW][C]100[/C][C] 16[/C][C] 15.61[/C][C] 0.3924[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300158&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300158&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 15.52-2.517
2 16 15.48 0.5166
3 17 15.36 1.637
4 16 15.36 0.6368
5 17 15.52 1.483
6 17 15.55 1.453
7 15 15.64-0.6376
8 16 15.55 0.4525
9 14 15.55-1.547
10 16 15.52 0.4826
11 17 15.39 1.607
12 16 15.39 0.6067
13 16 15.36 0.6368
14 16 15.52 0.4826
15 15 15.55-0.5475
16 16 15.52 0.4826
17 16 15.52 0.4826
18 13 15.52-2.517
19 15 15.36-0.3632
20 17 15.52 1.483
21 13 15.39-2.393
22 17 15.58 1.422
23 14 15.36-1.363
24 14 15.52-1.517
25 18 15.52 2.483
26 17 15.36 1.637
27 13 15.36-2.363
28 16 15.36 0.6368
29 15 15.36-0.3632
30 15 15.36-0.3632
31 13 15.39-2.393
32 17 15.36 1.637
33 11 15.45-4.453
34 14 15.61-1.608
35 13 15.48-2.483
36 17 15.52 1.483
37 16 15.36 0.6368
38 17 15.36 1.637
39 16 15.36 0.6368
40 16 15.36 0.6368
41 16 15.36 0.6368
42 15 15.58-0.5775
43 12 15.36-3.363
44 17 15.58 1.422
45 14 15.7-1.698
46 16 15.45 0.5466
47 15 15.39-0.3933
48 16 15.64 0.3624
49 14 15.39-1.393
50 15 15.58-0.5775
51 17 15.36 1.637
52 10 15.58-5.578
53 17 15.52 1.483
54 20 15.42 4.577
55 17 15.36 1.637
56 18 15.36 2.637
57 17 15.58 1.422
58 14 15.42-1.423
59 17 15.64 1.362
60 17 15.52 1.483
61 16 15.42 0.5767
62 18 15.36 2.637
63 18 15.7 2.302
64 16 15.36 0.6368
65 15 15.58-0.5775
66 13 15.36-2.363
67 16 15.52 0.4826
68 12 15.58-3.578
69 16 15.36 0.6368
70 16 15.52 0.4826
71 16 15.36 0.6368
72 14 15.52-1.517
73 15 15.55-0.5475
74 14 15.55-1.547
75 15 15.36-0.3632
76 15 15.36-0.3632
77 16 15.39 0.6067
78 11 15.36-4.363
79 18 15.58 2.422
80 11 15.58-4.578
81 18 15.58 2.422
82 15 15.42-0.4233
83 19 15.52 3.483
84 17 15.7 1.302
85 14 15.58-1.578
86 13 15.52-2.517
87 17 15.42 1.577
88 14 15.39-1.393
89 19 15.48 3.517
90 14 15.36-1.363
91 16 15.58 0.4225
92 16 15.52 0.4826
93 15 15.36-0.3632
94 12 15.39-3.393
95 17 15.36 1.637
96 18 15.64 2.362
97 15 15.36-0.3632
98 15 15.52-0.5174
99 16 15.36 0.6368
100 16 15.61 0.3924







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
6 0.6168 0.7664 0.3832
7 0.4569 0.9138 0.5431
8 0.3187 0.6374 0.6813
9 0.2824 0.5647 0.7176
10 0.1917 0.3834 0.8083
11 0.1284 0.2568 0.8716
12 0.0807 0.1614 0.9193
13 0.04902 0.09805 0.951
14 0.02862 0.05724 0.9714
15 0.01627 0.03253 0.9837
16 0.008918 0.01784 0.9911
17 0.004694 0.009387 0.9953
18 0.01515 0.0303 0.9849
19 0.01226 0.02452 0.9877
20 0.01231 0.02463 0.9877
21 0.03615 0.07231 0.9638
22 0.03331 0.06662 0.9667
23 0.03184 0.06368 0.9682
24 0.02875 0.0575 0.9713
25 0.04523 0.09046 0.9548
26 0.03986 0.07971 0.9601
27 0.05938 0.1188 0.9406
28 0.04284 0.08568 0.9572
29 0.02986 0.05971 0.9701
30 0.02033 0.04066 0.9797
31 0.02847 0.05695 0.9715
32 0.02735 0.05471 0.9726
33 0.1068 0.2136 0.8932
34 0.08977 0.1795 0.9102
35 0.08758 0.1752 0.9124
36 0.07727 0.1545 0.9227
37 0.05915 0.1183 0.9409
38 0.05534 0.1107 0.9447
39 0.04128 0.08256 0.9587
40 0.03028 0.06055 0.9697
41 0.02184 0.04368 0.9782
42 0.01512 0.03024 0.9849
43 0.03963 0.07925 0.9604
44 0.03861 0.07722 0.9614
45 0.03481 0.06963 0.9652
46 0.03012 0.06025 0.9699
47 0.02163 0.04327 0.9784
48 0.01698 0.03396 0.983
49 0.01432 0.02863 0.9857
50 0.009988 0.01998 0.99
51 0.00928 0.01856 0.9907
52 0.1173 0.2346 0.8827
53 0.1091 0.2182 0.8909
54 0.3196 0.6391 0.6804
55 0.3073 0.6145 0.6927
56 0.3639 0.7279 0.6361
57 0.3444 0.6888 0.6556
58 0.3252 0.6503 0.6748
59 0.308 0.6159 0.692
60 0.3006 0.6013 0.6994
61 0.2552 0.5103 0.7448
62 0.3157 0.6315 0.6843
63 0.3337 0.6674 0.6663
64 0.2929 0.5858 0.7071
65 0.2474 0.4947 0.7526
66 0.2614 0.5228 0.7386
67 0.2252 0.4504 0.7748
68 0.3654 0.7307 0.6346
69 0.3225 0.6451 0.6775
70 0.2813 0.5625 0.7187
71 0.2454 0.4908 0.7546
72 0.2143 0.4285 0.7857
73 0.1713 0.3426 0.8287
74 0.153 0.3061 0.847
75 0.1182 0.2364 0.8818
76 0.08913 0.1783 0.9109
77 0.0683 0.1366 0.9317
78 0.169 0.3381 0.831
79 0.1826 0.3652 0.8174
80 0.5373 0.9254 0.4627
81 0.5479 0.9043 0.4521
82 0.4821 0.9641 0.5179
83 0.7891 0.4219 0.2109
84 0.7631 0.4739 0.2369
85 0.7714 0.4572 0.2286
86 0.7779 0.4442 0.2221
87 0.7225 0.555 0.2775
88 0.6962 0.6077 0.3038
89 0.7559 0.4882 0.2441
90 0.6822 0.6355 0.3178
91 0.567 0.8661 0.433
92 0.437 0.8739 0.563
93 0.3026 0.6053 0.6974
94 0.8501 0.2998 0.1499

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
6 &  0.6168 &  0.7664 &  0.3832 \tabularnewline
7 &  0.4569 &  0.9138 &  0.5431 \tabularnewline
8 &  0.3187 &  0.6374 &  0.6813 \tabularnewline
9 &  0.2824 &  0.5647 &  0.7176 \tabularnewline
10 &  0.1917 &  0.3834 &  0.8083 \tabularnewline
11 &  0.1284 &  0.2568 &  0.8716 \tabularnewline
12 &  0.0807 &  0.1614 &  0.9193 \tabularnewline
13 &  0.04902 &  0.09805 &  0.951 \tabularnewline
14 &  0.02862 &  0.05724 &  0.9714 \tabularnewline
15 &  0.01627 &  0.03253 &  0.9837 \tabularnewline
16 &  0.008918 &  0.01784 &  0.9911 \tabularnewline
17 &  0.004694 &  0.009387 &  0.9953 \tabularnewline
18 &  0.01515 &  0.0303 &  0.9849 \tabularnewline
19 &  0.01226 &  0.02452 &  0.9877 \tabularnewline
20 &  0.01231 &  0.02463 &  0.9877 \tabularnewline
21 &  0.03615 &  0.07231 &  0.9638 \tabularnewline
22 &  0.03331 &  0.06662 &  0.9667 \tabularnewline
23 &  0.03184 &  0.06368 &  0.9682 \tabularnewline
24 &  0.02875 &  0.0575 &  0.9713 \tabularnewline
25 &  0.04523 &  0.09046 &  0.9548 \tabularnewline
26 &  0.03986 &  0.07971 &  0.9601 \tabularnewline
27 &  0.05938 &  0.1188 &  0.9406 \tabularnewline
28 &  0.04284 &  0.08568 &  0.9572 \tabularnewline
29 &  0.02986 &  0.05971 &  0.9701 \tabularnewline
30 &  0.02033 &  0.04066 &  0.9797 \tabularnewline
31 &  0.02847 &  0.05695 &  0.9715 \tabularnewline
32 &  0.02735 &  0.05471 &  0.9726 \tabularnewline
33 &  0.1068 &  0.2136 &  0.8932 \tabularnewline
34 &  0.08977 &  0.1795 &  0.9102 \tabularnewline
35 &  0.08758 &  0.1752 &  0.9124 \tabularnewline
36 &  0.07727 &  0.1545 &  0.9227 \tabularnewline
37 &  0.05915 &  0.1183 &  0.9409 \tabularnewline
38 &  0.05534 &  0.1107 &  0.9447 \tabularnewline
39 &  0.04128 &  0.08256 &  0.9587 \tabularnewline
40 &  0.03028 &  0.06055 &  0.9697 \tabularnewline
41 &  0.02184 &  0.04368 &  0.9782 \tabularnewline
42 &  0.01512 &  0.03024 &  0.9849 \tabularnewline
43 &  0.03963 &  0.07925 &  0.9604 \tabularnewline
44 &  0.03861 &  0.07722 &  0.9614 \tabularnewline
45 &  0.03481 &  0.06963 &  0.9652 \tabularnewline
46 &  0.03012 &  0.06025 &  0.9699 \tabularnewline
47 &  0.02163 &  0.04327 &  0.9784 \tabularnewline
48 &  0.01698 &  0.03396 &  0.983 \tabularnewline
49 &  0.01432 &  0.02863 &  0.9857 \tabularnewline
50 &  0.009988 &  0.01998 &  0.99 \tabularnewline
51 &  0.00928 &  0.01856 &  0.9907 \tabularnewline
52 &  0.1173 &  0.2346 &  0.8827 \tabularnewline
53 &  0.1091 &  0.2182 &  0.8909 \tabularnewline
54 &  0.3196 &  0.6391 &  0.6804 \tabularnewline
55 &  0.3073 &  0.6145 &  0.6927 \tabularnewline
56 &  0.3639 &  0.7279 &  0.6361 \tabularnewline
57 &  0.3444 &  0.6888 &  0.6556 \tabularnewline
58 &  0.3252 &  0.6503 &  0.6748 \tabularnewline
59 &  0.308 &  0.6159 &  0.692 \tabularnewline
60 &  0.3006 &  0.6013 &  0.6994 \tabularnewline
61 &  0.2552 &  0.5103 &  0.7448 \tabularnewline
62 &  0.3157 &  0.6315 &  0.6843 \tabularnewline
63 &  0.3337 &  0.6674 &  0.6663 \tabularnewline
64 &  0.2929 &  0.5858 &  0.7071 \tabularnewline
65 &  0.2474 &  0.4947 &  0.7526 \tabularnewline
66 &  0.2614 &  0.5228 &  0.7386 \tabularnewline
67 &  0.2252 &  0.4504 &  0.7748 \tabularnewline
68 &  0.3654 &  0.7307 &  0.6346 \tabularnewline
69 &  0.3225 &  0.6451 &  0.6775 \tabularnewline
70 &  0.2813 &  0.5625 &  0.7187 \tabularnewline
71 &  0.2454 &  0.4908 &  0.7546 \tabularnewline
72 &  0.2143 &  0.4285 &  0.7857 \tabularnewline
73 &  0.1713 &  0.3426 &  0.8287 \tabularnewline
74 &  0.153 &  0.3061 &  0.847 \tabularnewline
75 &  0.1182 &  0.2364 &  0.8818 \tabularnewline
76 &  0.08913 &  0.1783 &  0.9109 \tabularnewline
77 &  0.0683 &  0.1366 &  0.9317 \tabularnewline
78 &  0.169 &  0.3381 &  0.831 \tabularnewline
79 &  0.1826 &  0.3652 &  0.8174 \tabularnewline
80 &  0.5373 &  0.9254 &  0.4627 \tabularnewline
81 &  0.5479 &  0.9043 &  0.4521 \tabularnewline
82 &  0.4821 &  0.9641 &  0.5179 \tabularnewline
83 &  0.7891 &  0.4219 &  0.2109 \tabularnewline
84 &  0.7631 &  0.4739 &  0.2369 \tabularnewline
85 &  0.7714 &  0.4572 &  0.2286 \tabularnewline
86 &  0.7779 &  0.4442 &  0.2221 \tabularnewline
87 &  0.7225 &  0.555 &  0.2775 \tabularnewline
88 &  0.6962 &  0.6077 &  0.3038 \tabularnewline
89 &  0.7559 &  0.4882 &  0.2441 \tabularnewline
90 &  0.6822 &  0.6355 &  0.3178 \tabularnewline
91 &  0.567 &  0.8661 &  0.433 \tabularnewline
92 &  0.437 &  0.8739 &  0.563 \tabularnewline
93 &  0.3026 &  0.6053 &  0.6974 \tabularnewline
94 &  0.8501 &  0.2998 &  0.1499 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300158&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]6[/C][C] 0.6168[/C][C] 0.7664[/C][C] 0.3832[/C][/ROW]
[ROW][C]7[/C][C] 0.4569[/C][C] 0.9138[/C][C] 0.5431[/C][/ROW]
[ROW][C]8[/C][C] 0.3187[/C][C] 0.6374[/C][C] 0.6813[/C][/ROW]
[ROW][C]9[/C][C] 0.2824[/C][C] 0.5647[/C][C] 0.7176[/C][/ROW]
[ROW][C]10[/C][C] 0.1917[/C][C] 0.3834[/C][C] 0.8083[/C][/ROW]
[ROW][C]11[/C][C] 0.1284[/C][C] 0.2568[/C][C] 0.8716[/C][/ROW]
[ROW][C]12[/C][C] 0.0807[/C][C] 0.1614[/C][C] 0.9193[/C][/ROW]
[ROW][C]13[/C][C] 0.04902[/C][C] 0.09805[/C][C] 0.951[/C][/ROW]
[ROW][C]14[/C][C] 0.02862[/C][C] 0.05724[/C][C] 0.9714[/C][/ROW]
[ROW][C]15[/C][C] 0.01627[/C][C] 0.03253[/C][C] 0.9837[/C][/ROW]
[ROW][C]16[/C][C] 0.008918[/C][C] 0.01784[/C][C] 0.9911[/C][/ROW]
[ROW][C]17[/C][C] 0.004694[/C][C] 0.009387[/C][C] 0.9953[/C][/ROW]
[ROW][C]18[/C][C] 0.01515[/C][C] 0.0303[/C][C] 0.9849[/C][/ROW]
[ROW][C]19[/C][C] 0.01226[/C][C] 0.02452[/C][C] 0.9877[/C][/ROW]
[ROW][C]20[/C][C] 0.01231[/C][C] 0.02463[/C][C] 0.9877[/C][/ROW]
[ROW][C]21[/C][C] 0.03615[/C][C] 0.07231[/C][C] 0.9638[/C][/ROW]
[ROW][C]22[/C][C] 0.03331[/C][C] 0.06662[/C][C] 0.9667[/C][/ROW]
[ROW][C]23[/C][C] 0.03184[/C][C] 0.06368[/C][C] 0.9682[/C][/ROW]
[ROW][C]24[/C][C] 0.02875[/C][C] 0.0575[/C][C] 0.9713[/C][/ROW]
[ROW][C]25[/C][C] 0.04523[/C][C] 0.09046[/C][C] 0.9548[/C][/ROW]
[ROW][C]26[/C][C] 0.03986[/C][C] 0.07971[/C][C] 0.9601[/C][/ROW]
[ROW][C]27[/C][C] 0.05938[/C][C] 0.1188[/C][C] 0.9406[/C][/ROW]
[ROW][C]28[/C][C] 0.04284[/C][C] 0.08568[/C][C] 0.9572[/C][/ROW]
[ROW][C]29[/C][C] 0.02986[/C][C] 0.05971[/C][C] 0.9701[/C][/ROW]
[ROW][C]30[/C][C] 0.02033[/C][C] 0.04066[/C][C] 0.9797[/C][/ROW]
[ROW][C]31[/C][C] 0.02847[/C][C] 0.05695[/C][C] 0.9715[/C][/ROW]
[ROW][C]32[/C][C] 0.02735[/C][C] 0.05471[/C][C] 0.9726[/C][/ROW]
[ROW][C]33[/C][C] 0.1068[/C][C] 0.2136[/C][C] 0.8932[/C][/ROW]
[ROW][C]34[/C][C] 0.08977[/C][C] 0.1795[/C][C] 0.9102[/C][/ROW]
[ROW][C]35[/C][C] 0.08758[/C][C] 0.1752[/C][C] 0.9124[/C][/ROW]
[ROW][C]36[/C][C] 0.07727[/C][C] 0.1545[/C][C] 0.9227[/C][/ROW]
[ROW][C]37[/C][C] 0.05915[/C][C] 0.1183[/C][C] 0.9409[/C][/ROW]
[ROW][C]38[/C][C] 0.05534[/C][C] 0.1107[/C][C] 0.9447[/C][/ROW]
[ROW][C]39[/C][C] 0.04128[/C][C] 0.08256[/C][C] 0.9587[/C][/ROW]
[ROW][C]40[/C][C] 0.03028[/C][C] 0.06055[/C][C] 0.9697[/C][/ROW]
[ROW][C]41[/C][C] 0.02184[/C][C] 0.04368[/C][C] 0.9782[/C][/ROW]
[ROW][C]42[/C][C] 0.01512[/C][C] 0.03024[/C][C] 0.9849[/C][/ROW]
[ROW][C]43[/C][C] 0.03963[/C][C] 0.07925[/C][C] 0.9604[/C][/ROW]
[ROW][C]44[/C][C] 0.03861[/C][C] 0.07722[/C][C] 0.9614[/C][/ROW]
[ROW][C]45[/C][C] 0.03481[/C][C] 0.06963[/C][C] 0.9652[/C][/ROW]
[ROW][C]46[/C][C] 0.03012[/C][C] 0.06025[/C][C] 0.9699[/C][/ROW]
[ROW][C]47[/C][C] 0.02163[/C][C] 0.04327[/C][C] 0.9784[/C][/ROW]
[ROW][C]48[/C][C] 0.01698[/C][C] 0.03396[/C][C] 0.983[/C][/ROW]
[ROW][C]49[/C][C] 0.01432[/C][C] 0.02863[/C][C] 0.9857[/C][/ROW]
[ROW][C]50[/C][C] 0.009988[/C][C] 0.01998[/C][C] 0.99[/C][/ROW]
[ROW][C]51[/C][C] 0.00928[/C][C] 0.01856[/C][C] 0.9907[/C][/ROW]
[ROW][C]52[/C][C] 0.1173[/C][C] 0.2346[/C][C] 0.8827[/C][/ROW]
[ROW][C]53[/C][C] 0.1091[/C][C] 0.2182[/C][C] 0.8909[/C][/ROW]
[ROW][C]54[/C][C] 0.3196[/C][C] 0.6391[/C][C] 0.6804[/C][/ROW]
[ROW][C]55[/C][C] 0.3073[/C][C] 0.6145[/C][C] 0.6927[/C][/ROW]
[ROW][C]56[/C][C] 0.3639[/C][C] 0.7279[/C][C] 0.6361[/C][/ROW]
[ROW][C]57[/C][C] 0.3444[/C][C] 0.6888[/C][C] 0.6556[/C][/ROW]
[ROW][C]58[/C][C] 0.3252[/C][C] 0.6503[/C][C] 0.6748[/C][/ROW]
[ROW][C]59[/C][C] 0.308[/C][C] 0.6159[/C][C] 0.692[/C][/ROW]
[ROW][C]60[/C][C] 0.3006[/C][C] 0.6013[/C][C] 0.6994[/C][/ROW]
[ROW][C]61[/C][C] 0.2552[/C][C] 0.5103[/C][C] 0.7448[/C][/ROW]
[ROW][C]62[/C][C] 0.3157[/C][C] 0.6315[/C][C] 0.6843[/C][/ROW]
[ROW][C]63[/C][C] 0.3337[/C][C] 0.6674[/C][C] 0.6663[/C][/ROW]
[ROW][C]64[/C][C] 0.2929[/C][C] 0.5858[/C][C] 0.7071[/C][/ROW]
[ROW][C]65[/C][C] 0.2474[/C][C] 0.4947[/C][C] 0.7526[/C][/ROW]
[ROW][C]66[/C][C] 0.2614[/C][C] 0.5228[/C][C] 0.7386[/C][/ROW]
[ROW][C]67[/C][C] 0.2252[/C][C] 0.4504[/C][C] 0.7748[/C][/ROW]
[ROW][C]68[/C][C] 0.3654[/C][C] 0.7307[/C][C] 0.6346[/C][/ROW]
[ROW][C]69[/C][C] 0.3225[/C][C] 0.6451[/C][C] 0.6775[/C][/ROW]
[ROW][C]70[/C][C] 0.2813[/C][C] 0.5625[/C][C] 0.7187[/C][/ROW]
[ROW][C]71[/C][C] 0.2454[/C][C] 0.4908[/C][C] 0.7546[/C][/ROW]
[ROW][C]72[/C][C] 0.2143[/C][C] 0.4285[/C][C] 0.7857[/C][/ROW]
[ROW][C]73[/C][C] 0.1713[/C][C] 0.3426[/C][C] 0.8287[/C][/ROW]
[ROW][C]74[/C][C] 0.153[/C][C] 0.3061[/C][C] 0.847[/C][/ROW]
[ROW][C]75[/C][C] 0.1182[/C][C] 0.2364[/C][C] 0.8818[/C][/ROW]
[ROW][C]76[/C][C] 0.08913[/C][C] 0.1783[/C][C] 0.9109[/C][/ROW]
[ROW][C]77[/C][C] 0.0683[/C][C] 0.1366[/C][C] 0.9317[/C][/ROW]
[ROW][C]78[/C][C] 0.169[/C][C] 0.3381[/C][C] 0.831[/C][/ROW]
[ROW][C]79[/C][C] 0.1826[/C][C] 0.3652[/C][C] 0.8174[/C][/ROW]
[ROW][C]80[/C][C] 0.5373[/C][C] 0.9254[/C][C] 0.4627[/C][/ROW]
[ROW][C]81[/C][C] 0.5479[/C][C] 0.9043[/C][C] 0.4521[/C][/ROW]
[ROW][C]82[/C][C] 0.4821[/C][C] 0.9641[/C][C] 0.5179[/C][/ROW]
[ROW][C]83[/C][C] 0.7891[/C][C] 0.4219[/C][C] 0.2109[/C][/ROW]
[ROW][C]84[/C][C] 0.7631[/C][C] 0.4739[/C][C] 0.2369[/C][/ROW]
[ROW][C]85[/C][C] 0.7714[/C][C] 0.4572[/C][C] 0.2286[/C][/ROW]
[ROW][C]86[/C][C] 0.7779[/C][C] 0.4442[/C][C] 0.2221[/C][/ROW]
[ROW][C]87[/C][C] 0.7225[/C][C] 0.555[/C][C] 0.2775[/C][/ROW]
[ROW][C]88[/C][C] 0.6962[/C][C] 0.6077[/C][C] 0.3038[/C][/ROW]
[ROW][C]89[/C][C] 0.7559[/C][C] 0.4882[/C][C] 0.2441[/C][/ROW]
[ROW][C]90[/C][C] 0.6822[/C][C] 0.6355[/C][C] 0.3178[/C][/ROW]
[ROW][C]91[/C][C] 0.567[/C][C] 0.8661[/C][C] 0.433[/C][/ROW]
[ROW][C]92[/C][C] 0.437[/C][C] 0.8739[/C][C] 0.563[/C][/ROW]
[ROW][C]93[/C][C] 0.3026[/C][C] 0.6053[/C][C] 0.6974[/C][/ROW]
[ROW][C]94[/C][C] 0.8501[/C][C] 0.2998[/C][C] 0.1499[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300158&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300158&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
6 0.6168 0.7664 0.3832
7 0.4569 0.9138 0.5431
8 0.3187 0.6374 0.6813
9 0.2824 0.5647 0.7176
10 0.1917 0.3834 0.8083
11 0.1284 0.2568 0.8716
12 0.0807 0.1614 0.9193
13 0.04902 0.09805 0.951
14 0.02862 0.05724 0.9714
15 0.01627 0.03253 0.9837
16 0.008918 0.01784 0.9911
17 0.004694 0.009387 0.9953
18 0.01515 0.0303 0.9849
19 0.01226 0.02452 0.9877
20 0.01231 0.02463 0.9877
21 0.03615 0.07231 0.9638
22 0.03331 0.06662 0.9667
23 0.03184 0.06368 0.9682
24 0.02875 0.0575 0.9713
25 0.04523 0.09046 0.9548
26 0.03986 0.07971 0.9601
27 0.05938 0.1188 0.9406
28 0.04284 0.08568 0.9572
29 0.02986 0.05971 0.9701
30 0.02033 0.04066 0.9797
31 0.02847 0.05695 0.9715
32 0.02735 0.05471 0.9726
33 0.1068 0.2136 0.8932
34 0.08977 0.1795 0.9102
35 0.08758 0.1752 0.9124
36 0.07727 0.1545 0.9227
37 0.05915 0.1183 0.9409
38 0.05534 0.1107 0.9447
39 0.04128 0.08256 0.9587
40 0.03028 0.06055 0.9697
41 0.02184 0.04368 0.9782
42 0.01512 0.03024 0.9849
43 0.03963 0.07925 0.9604
44 0.03861 0.07722 0.9614
45 0.03481 0.06963 0.9652
46 0.03012 0.06025 0.9699
47 0.02163 0.04327 0.9784
48 0.01698 0.03396 0.983
49 0.01432 0.02863 0.9857
50 0.009988 0.01998 0.99
51 0.00928 0.01856 0.9907
52 0.1173 0.2346 0.8827
53 0.1091 0.2182 0.8909
54 0.3196 0.6391 0.6804
55 0.3073 0.6145 0.6927
56 0.3639 0.7279 0.6361
57 0.3444 0.6888 0.6556
58 0.3252 0.6503 0.6748
59 0.308 0.6159 0.692
60 0.3006 0.6013 0.6994
61 0.2552 0.5103 0.7448
62 0.3157 0.6315 0.6843
63 0.3337 0.6674 0.6663
64 0.2929 0.5858 0.7071
65 0.2474 0.4947 0.7526
66 0.2614 0.5228 0.7386
67 0.2252 0.4504 0.7748
68 0.3654 0.7307 0.6346
69 0.3225 0.6451 0.6775
70 0.2813 0.5625 0.7187
71 0.2454 0.4908 0.7546
72 0.2143 0.4285 0.7857
73 0.1713 0.3426 0.8287
74 0.153 0.3061 0.847
75 0.1182 0.2364 0.8818
76 0.08913 0.1783 0.9109
77 0.0683 0.1366 0.9317
78 0.169 0.3381 0.831
79 0.1826 0.3652 0.8174
80 0.5373 0.9254 0.4627
81 0.5479 0.9043 0.4521
82 0.4821 0.9641 0.5179
83 0.7891 0.4219 0.2109
84 0.7631 0.4739 0.2369
85 0.7714 0.4572 0.2286
86 0.7779 0.4442 0.2221
87 0.7225 0.555 0.2775
88 0.6962 0.6077 0.3038
89 0.7559 0.4882 0.2441
90 0.6822 0.6355 0.3178
91 0.567 0.8661 0.433
92 0.437 0.8739 0.563
93 0.3026 0.6053 0.6974
94 0.8501 0.2998 0.1499







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1 0.01124NOK
5% type I error level140.157303NOK
10% type I error level320.359551NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 1 &  0.01124 & NOK \tabularnewline
5% type I error level & 14 & 0.157303 & NOK \tabularnewline
10% type I error level & 32 & 0.359551 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300158&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]1[/C][C] 0.01124[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]14[/C][C]0.157303[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]32[/C][C]0.359551[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300158&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300158&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level1 0.01124NOK
5% type I error level140.157303NOK
10% type I error level320.359551NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.50361, df1 = 2, df2 = 95, p-value = 0.6059
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.90072, df1 = 4, df2 = 93, p-value = 0.4669
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.7864, df1 = 2, df2 = 95, p-value = 0.1732

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.50361, df1 = 2, df2 = 95, p-value = 0.6059
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.90072, df1 = 4, df2 = 93, p-value = 0.4669
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.7864, df1 = 2, df2 = 95, p-value = 0.1732
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300158&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.50361, df1 = 2, df2 = 95, p-value = 0.6059
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.90072, df1 = 4, df2 = 93, p-value = 0.4669
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.7864, df1 = 2, df2 = 95, p-value = 0.1732
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300158&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300158&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.50361, df1 = 2, df2 = 95, p-value = 0.6059
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.90072, df1 = 4, df2 = 93, p-value = 0.4669
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.7864, df1 = 2, df2 = 95, p-value = 0.1732







Variance Inflation Factors (Multicollinearity)
> vif
 privacy geslacht 
 1.07436  1.07436 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
 privacy geslacht 
 1.07436  1.07436 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300158&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
 privacy geslacht 
 1.07436  1.07436 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300158&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300158&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
 privacy geslacht 
 1.07436  1.07436 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '1'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')