Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationFri, 16 Dec 2016 09:54:08 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t1481878479vydjmb6w3vhugso.htm/, Retrieved Fri, 01 Nov 2024 03:27:08 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300145, Retrieved Fri, 01 Nov 2024 03:27:08 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact102
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [] [2016-12-16 08:54:08] [94ac3c9a028ddd47e8862e80eac9f626] [Current]
Feedback Forum

Post a new message
Dataseries X:
3500
3600
3750
3800
4100
3900
3650
3800
4050
4250
4450
4200
4050
4050
4200
4450
4400
4450
4200
4050
4500
4650
4850
4700
4350
4500
4700
4800
4700
4600
4400
4300
4750
4800
5000
4900
4400
4650
4650
4900
4900
5000
4550
4500
5100
5000
5350
5150
4500
4600
4900
5050
5000
5350
4650
4650
5200
5300
5700
5250
4900
5200
5250
5450
5750
5450
5100
4950
5550
5800
6050
5650
5500
5600
5550
5900
5900
5850
5350
5150
5850
6000
6250
5800
5550
5700
5850
6150
6050
6050
5550
5100
5900
6050
6150
5700
5200
5400
5550
5750
5700
5650
5400
4950
5900
6050
6350
6350
5500
5800
6100
6350
6400
6850




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300145&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300145&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300145&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
135003500000
236003556.631875111591.7258439538159743.36812488841230.632624387213906
337503673.779056222788.8348292083170676.22094377721541.14338301052912
438003750.8257176979712.270324753122249.1742823020290.844432157480665
541003920.4064768068817.2462384848638179.5935231931232.1278510870741
639003950.8902218369717.5030977206772-50.89022183697180.182291885407603
736503823.0480730944415.433928952881-173.048073094437-2.00529705330388
838003778.285440639914.650926459998721.7145593601007-0.82983558717585
940503885.438502071915.8722794291372164.5614979280991.27372035873953
1042504072.1215226788218.1906935279897177.8784773211792.35015828872079
1144504284.4928211015920.8573448250322165.5071788984082.67082879344428
1242004297.7409289612920.7532078181682-97.7409289612914-0.104655529934276
1340504261.9638801197822.0077882860388-211.963880119776-0.824322957823651
1440504209.1290222392822.4061397512316-159.129022239283-1.06080119207563
1542004199.5596542584921.84663817564490.440345741506022-0.411086162481881
1644504327.359871721124.6234666110882122.6401282788961.35335460995844
1744004296.7415629723123.2616261164335103.258437027694-0.732480946453001
1844504338.5147347820823.6189112603239111.4852652179210.251858260939093
1942004359.2043954883823.5763081551002-159.204395488377-0.0402527348908888
2040504267.0409046075722.2182990244306-217.040904607569-1.59498513024345
2145004339.207321098922.7357441270534160.7926789010980.688630371097305
2246504462.4078489271423.6592748800564187.5921510728581.38432687324531
2348504583.217875466924.3310840208742266.7821245330951.33732794630475
2447004690.0252875759524.56802550867239.974712424052481.13688939609975
2543504653.6968863409524.6413810064387-303.696886340946-0.84578922800814
2645004662.8250083274624.607093355129-162.825008327457-0.213244255953903
2747004712.710716563524.8583236786264-12.71071656350370.337828018496837
2848004702.9415417889224.310499079109397.0584582110787-0.457077627027466
2947004662.3199987845323.163791122917637.6800012154719-0.86571313686205
3046004575.8342593601221.366199713351224.1657406398772-1.48511907757062
3144004538.4257949552820.5521181760037-138.425794955276-0.804628956427252
3243004554.4606899827220.501033070859-254.460689982725-0.0621461876014583
3347504616.3349984290320.8783118843272133.6650015709660.569987945563587
3448004665.594568752621.0785722438595134.4054312474050.390872610208834
3550004726.4115084164321.2736034882812273.5884915835740.546981448495076
3649004801.0384729610221.434804288174598.96152703898420.734613646267835
3744004780.9030121453621.3307156343358-380.903012145357-0.571943145719488
3846504797.7070433468621.3105672211035-147.707043346857-0.0618307386301865
3946504731.1253358360820.5992839065727-81.1253358360826-1.18604900825081
4049004725.4802136703520.2973416386264174.519786329645-0.35165222049814
4149004756.7367611902720.4434300536935143.2632388097250.147272029204958
4250004849.2573646840921.4055748488192150.7426353159070.976908846645309
4345504811.2413627634220.6873476288781-261.241362763423-0.811873038343816
4445004802.2532842262720.3840567515342-302.253284226275-0.407403160294413
4551004890.9238718911820.9447442489237209.0761281088190.939208086874171
4650004920.5433820873520.999342586885479.45661791265140.119335307761222
4753505007.939049188421.3095876959165342.06095081160.913140640900596
4851505037.9841508413121.3418040410173112.015849158690.120075651703964
4945004974.5459266805721.0226574484097-474.545926680574-1.16294496852315
5046004850.4179920113120.2865069895445-250.417992011311-1.98102598092958
5149004886.0258199429520.396688954258813.9741800570470.207733002460816
5250504904.5470476919520.3792521776789145.45295230805-0.0253253814057562
5350004905.5586313868920.172809893830994.4413686131092-0.261793913278887
5453505022.3098725639521.2318025723669327.6901274360491.31168579550269
5546505007.3177487616920.8581287360072-357.317748761686-0.494639710751246
5646505009.1544410222120.6862680029545-359.154441022215-0.260739869930773
5752005019.4825713145520.6087458841252180.517428685451-0.142252206500542
5853005127.5617610317421.1315463668892172.4382389682581.20190192493656
5957005242.10375579421.5789870290907457.8962442060031.28335733410561
6052505192.8472585511121.282958256938657.1527414488907-0.97247699834827
6149005233.5802484106321.3670503110556-333.5802484106290.266500126245121
6252005346.0154998063621.841480371948-146.0154998063611.24345844936926
6352505330.6006259024321.5969905741232-80.6006259024256-0.506685041289548
6454505328.1381290069721.4061188285925121.861870993029-0.326405998169767
6557505493.7195035057322.6887804485263256.2804964942721.95672269917909
6654505366.7982039261121.311118561056883.201796073886-2.03610430501238
6751005385.5379166242621.2883550888115-285.537916624261-0.0351189317589616
6849505375.5975370618221.0388597008438-425.597537061818-0.427723467619717
6955505408.2021379918221.1182913454191141.7978620081780.158670778695585
7058005531.6779915430321.7073316008591268.3220084569751.40514473024991
7160505576.9943915472321.8228345986048473.0056084527670.324088676210051
7256505613.1064906486121.886685541041736.89350935138980.196018043260889
7355005739.8516159318122.3665455814508-239.8516159318151.43619265158521
7456005767.9659013104322.396272297376-167.9659013104310.078535711046463
7555505727.1045394326322.0124495728364-177.104539432633-0.862155353707087
7659005767.8705126479422.1434786470215132.1294873520560.255200191305153
7759005694.3074333560921.4102796564347205.692566643906-1.30257988549393
7858505716.3127285944421.4149891668828133.6872714055590.0081117381263425
7953505693.1450799471821.0713140389686-343.145079947177-0.609189281775881
8051505662.5005799875220.7027629788987-512.500579987523-0.708105412494919
8158505713.4184766542920.894177599741136.5815233457140.414264875412559
8260005750.8347795922620.9856045198382249.1652204077360.226665483178735
8362505791.3907958748521.0816719225277458.6092041251490.268490282222298
8458005819.0581953610921.1119549321733-19.05819536109180.0903015520770363
8555505814.253083758520.9911708022259-264.2530837585-0.354955034242476
8657005826.6986692438320.9479592665122-126.698669243828-0.116846377081223
8758505915.6502883003721.3327347253635-65.650288300370.928297540169149
8861505958.6864237250521.469110318351191.3135762749530.295966196880727
8960505919.9944681405621.0627568295655130.005531859439-0.820447892427237
9060505903.7358861425420.8034856519575146.264113857465-0.509495640938885
9155505896.2469262602220.6104694439421-346.246926260217-0.386824593416033
9251005793.8738087501619.8200757062151-693.873808750156-1.68391383213628
9359005775.8015628554619.5975640190625124.198437144542-0.519364275734715
9460505796.4025739710319.6028825591759253.5974260289720.0137608286207764
9561505763.7196042104319.3494160760136386.280395789572-0.717063658770372
9657005741.666567012919.1583558523164-41.6665670129015-0.567577723304504
9752005633.7652893667718.568506060409-433.765289366765-1.7403790594917
9854005591.586560678918.2706646985047-191.586560678898-0.831135058418827
9955505598.6439261172218.2111362503489-48.6439261172248-0.153249511217587
10057505569.7519457317.9409091156138180.24805427-0.643310958491943
10157005554.3585622617.7387171838535145.641437740004-0.455265639287358
10256505516.0408161688717.3907757870375133.959183831128-0.766095780725728
10354005578.5542508032117.6673211651705-178.554250803210.617295150038359
10449505614.0189447904117.7715762676981-664.0189447904090.24372397053391
10559005687.2656222678518.0749636509094212.7343777321520.7602887463049
10660505731.3391717398818.2065460737792318.6608282601170.356465256063445
10763505817.6862695143218.5290272814653532.3137304856750.934335929239982
10863506043.9397964601719.4753794418507306.0602035398282.84749606270775
10955006029.3947073050919.3202084717458-529.394707305095-0.46607883279128
11058006006.3633182616519.119865436239-206.363318261649-0.579763321952732
11161006052.4529389327719.254822019680447.54706106723050.36892151973945
11263506106.4456919109719.4388482678618243.5543080890260.474964502823068
11364006178.9067213600919.7318769175395221.0932786399150.724952556534896
11468506441.5514588348121.0990770878235408.4485411651863.32265958402254

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 3500 & 3500 & 0 & 0 & 0 \tabularnewline
2 & 3600 & 3556.63187511159 & 1.72584395381597 & 43.3681248884123 & 0.632624387213906 \tabularnewline
3 & 3750 & 3673.77905622278 & 8.83482920831706 & 76.2209437772154 & 1.14338301052912 \tabularnewline
4 & 3800 & 3750.82571769797 & 12.2703247531222 & 49.174282302029 & 0.844432157480665 \tabularnewline
5 & 4100 & 3920.40647680688 & 17.2462384848638 & 179.593523193123 & 2.1278510870741 \tabularnewline
6 & 3900 & 3950.89022183697 & 17.5030977206772 & -50.8902218369718 & 0.182291885407603 \tabularnewline
7 & 3650 & 3823.04807309444 & 15.433928952881 & -173.048073094437 & -2.00529705330388 \tabularnewline
8 & 3800 & 3778.2854406399 & 14.6509264599987 & 21.7145593601007 & -0.82983558717585 \tabularnewline
9 & 4050 & 3885.4385020719 & 15.8722794291372 & 164.561497928099 & 1.27372035873953 \tabularnewline
10 & 4250 & 4072.12152267882 & 18.1906935279897 & 177.878477321179 & 2.35015828872079 \tabularnewline
11 & 4450 & 4284.49282110159 & 20.8573448250322 & 165.507178898408 & 2.67082879344428 \tabularnewline
12 & 4200 & 4297.74092896129 & 20.7532078181682 & -97.7409289612914 & -0.104655529934276 \tabularnewline
13 & 4050 & 4261.96388011978 & 22.0077882860388 & -211.963880119776 & -0.824322957823651 \tabularnewline
14 & 4050 & 4209.12902223928 & 22.4061397512316 & -159.129022239283 & -1.06080119207563 \tabularnewline
15 & 4200 & 4199.55965425849 & 21.8466381756449 & 0.440345741506022 & -0.411086162481881 \tabularnewline
16 & 4450 & 4327.3598717211 & 24.6234666110882 & 122.640128278896 & 1.35335460995844 \tabularnewline
17 & 4400 & 4296.74156297231 & 23.2616261164335 & 103.258437027694 & -0.732480946453001 \tabularnewline
18 & 4450 & 4338.51473478208 & 23.6189112603239 & 111.485265217921 & 0.251858260939093 \tabularnewline
19 & 4200 & 4359.20439548838 & 23.5763081551002 & -159.204395488377 & -0.0402527348908888 \tabularnewline
20 & 4050 & 4267.04090460757 & 22.2182990244306 & -217.040904607569 & -1.59498513024345 \tabularnewline
21 & 4500 & 4339.2073210989 & 22.7357441270534 & 160.792678901098 & 0.688630371097305 \tabularnewline
22 & 4650 & 4462.40784892714 & 23.6592748800564 & 187.592151072858 & 1.38432687324531 \tabularnewline
23 & 4850 & 4583.2178754669 & 24.3310840208742 & 266.782124533095 & 1.33732794630475 \tabularnewline
24 & 4700 & 4690.02528757595 & 24.5680255086723 & 9.97471242405248 & 1.13688939609975 \tabularnewline
25 & 4350 & 4653.69688634095 & 24.6413810064387 & -303.696886340946 & -0.84578922800814 \tabularnewline
26 & 4500 & 4662.82500832746 & 24.607093355129 & -162.825008327457 & -0.213244255953903 \tabularnewline
27 & 4700 & 4712.7107165635 & 24.8583236786264 & -12.7107165635037 & 0.337828018496837 \tabularnewline
28 & 4800 & 4702.94154178892 & 24.3104990791093 & 97.0584582110787 & -0.457077627027466 \tabularnewline
29 & 4700 & 4662.31999878453 & 23.1637911229176 & 37.6800012154719 & -0.86571313686205 \tabularnewline
30 & 4600 & 4575.83425936012 & 21.3661997133512 & 24.1657406398772 & -1.48511907757062 \tabularnewline
31 & 4400 & 4538.42579495528 & 20.5521181760037 & -138.425794955276 & -0.804628956427252 \tabularnewline
32 & 4300 & 4554.46068998272 & 20.501033070859 & -254.460689982725 & -0.0621461876014583 \tabularnewline
33 & 4750 & 4616.33499842903 & 20.8783118843272 & 133.665001570966 & 0.569987945563587 \tabularnewline
34 & 4800 & 4665.5945687526 & 21.0785722438595 & 134.405431247405 & 0.390872610208834 \tabularnewline
35 & 5000 & 4726.41150841643 & 21.2736034882812 & 273.588491583574 & 0.546981448495076 \tabularnewline
36 & 4900 & 4801.03847296102 & 21.4348042881745 & 98.9615270389842 & 0.734613646267835 \tabularnewline
37 & 4400 & 4780.90301214536 & 21.3307156343358 & -380.903012145357 & -0.571943145719488 \tabularnewline
38 & 4650 & 4797.70704334686 & 21.3105672211035 & -147.707043346857 & -0.0618307386301865 \tabularnewline
39 & 4650 & 4731.12533583608 & 20.5992839065727 & -81.1253358360826 & -1.18604900825081 \tabularnewline
40 & 4900 & 4725.48021367035 & 20.2973416386264 & 174.519786329645 & -0.35165222049814 \tabularnewline
41 & 4900 & 4756.73676119027 & 20.4434300536935 & 143.263238809725 & 0.147272029204958 \tabularnewline
42 & 5000 & 4849.25736468409 & 21.4055748488192 & 150.742635315907 & 0.976908846645309 \tabularnewline
43 & 4550 & 4811.24136276342 & 20.6873476288781 & -261.241362763423 & -0.811873038343816 \tabularnewline
44 & 4500 & 4802.25328422627 & 20.3840567515342 & -302.253284226275 & -0.407403160294413 \tabularnewline
45 & 5100 & 4890.92387189118 & 20.9447442489237 & 209.076128108819 & 0.939208086874171 \tabularnewline
46 & 5000 & 4920.54338208735 & 20.9993425868854 & 79.4566179126514 & 0.119335307761222 \tabularnewline
47 & 5350 & 5007.9390491884 & 21.3095876959165 & 342.0609508116 & 0.913140640900596 \tabularnewline
48 & 5150 & 5037.98415084131 & 21.3418040410173 & 112.01584915869 & 0.120075651703964 \tabularnewline
49 & 4500 & 4974.54592668057 & 21.0226574484097 & -474.545926680574 & -1.16294496852315 \tabularnewline
50 & 4600 & 4850.41799201131 & 20.2865069895445 & -250.417992011311 & -1.98102598092958 \tabularnewline
51 & 4900 & 4886.02581994295 & 20.3966889542588 & 13.974180057047 & 0.207733002460816 \tabularnewline
52 & 5050 & 4904.54704769195 & 20.3792521776789 & 145.45295230805 & -0.0253253814057562 \tabularnewline
53 & 5000 & 4905.55863138689 & 20.1728098938309 & 94.4413686131092 & -0.261793913278887 \tabularnewline
54 & 5350 & 5022.30987256395 & 21.2318025723669 & 327.690127436049 & 1.31168579550269 \tabularnewline
55 & 4650 & 5007.31774876169 & 20.8581287360072 & -357.317748761686 & -0.494639710751246 \tabularnewline
56 & 4650 & 5009.15444102221 & 20.6862680029545 & -359.154441022215 & -0.260739869930773 \tabularnewline
57 & 5200 & 5019.48257131455 & 20.6087458841252 & 180.517428685451 & -0.142252206500542 \tabularnewline
58 & 5300 & 5127.56176103174 & 21.1315463668892 & 172.438238968258 & 1.20190192493656 \tabularnewline
59 & 5700 & 5242.103755794 & 21.5789870290907 & 457.896244206003 & 1.28335733410561 \tabularnewline
60 & 5250 & 5192.84725855111 & 21.2829582569386 & 57.1527414488907 & -0.97247699834827 \tabularnewline
61 & 4900 & 5233.58024841063 & 21.3670503110556 & -333.580248410629 & 0.266500126245121 \tabularnewline
62 & 5200 & 5346.01549980636 & 21.841480371948 & -146.015499806361 & 1.24345844936926 \tabularnewline
63 & 5250 & 5330.60062590243 & 21.5969905741232 & -80.6006259024256 & -0.506685041289548 \tabularnewline
64 & 5450 & 5328.13812900697 & 21.4061188285925 & 121.861870993029 & -0.326405998169767 \tabularnewline
65 & 5750 & 5493.71950350573 & 22.6887804485263 & 256.280496494272 & 1.95672269917909 \tabularnewline
66 & 5450 & 5366.79820392611 & 21.3111185610568 & 83.201796073886 & -2.03610430501238 \tabularnewline
67 & 5100 & 5385.53791662426 & 21.2883550888115 & -285.537916624261 & -0.0351189317589616 \tabularnewline
68 & 4950 & 5375.59753706182 & 21.0388597008438 & -425.597537061818 & -0.427723467619717 \tabularnewline
69 & 5550 & 5408.20213799182 & 21.1182913454191 & 141.797862008178 & 0.158670778695585 \tabularnewline
70 & 5800 & 5531.67799154303 & 21.7073316008591 & 268.322008456975 & 1.40514473024991 \tabularnewline
71 & 6050 & 5576.99439154723 & 21.8228345986048 & 473.005608452767 & 0.324088676210051 \tabularnewline
72 & 5650 & 5613.10649064861 & 21.8866855410417 & 36.8935093513898 & 0.196018043260889 \tabularnewline
73 & 5500 & 5739.85161593181 & 22.3665455814508 & -239.851615931815 & 1.43619265158521 \tabularnewline
74 & 5600 & 5767.96590131043 & 22.396272297376 & -167.965901310431 & 0.078535711046463 \tabularnewline
75 & 5550 & 5727.10453943263 & 22.0124495728364 & -177.104539432633 & -0.862155353707087 \tabularnewline
76 & 5900 & 5767.87051264794 & 22.1434786470215 & 132.129487352056 & 0.255200191305153 \tabularnewline
77 & 5900 & 5694.30743335609 & 21.4102796564347 & 205.692566643906 & -1.30257988549393 \tabularnewline
78 & 5850 & 5716.31272859444 & 21.4149891668828 & 133.687271405559 & 0.0081117381263425 \tabularnewline
79 & 5350 & 5693.14507994718 & 21.0713140389686 & -343.145079947177 & -0.609189281775881 \tabularnewline
80 & 5150 & 5662.50057998752 & 20.7027629788987 & -512.500579987523 & -0.708105412494919 \tabularnewline
81 & 5850 & 5713.41847665429 & 20.894177599741 & 136.581523345714 & 0.414264875412559 \tabularnewline
82 & 6000 & 5750.83477959226 & 20.9856045198382 & 249.165220407736 & 0.226665483178735 \tabularnewline
83 & 6250 & 5791.39079587485 & 21.0816719225277 & 458.609204125149 & 0.268490282222298 \tabularnewline
84 & 5800 & 5819.05819536109 & 21.1119549321733 & -19.0581953610918 & 0.0903015520770363 \tabularnewline
85 & 5550 & 5814.2530837585 & 20.9911708022259 & -264.2530837585 & -0.354955034242476 \tabularnewline
86 & 5700 & 5826.69866924383 & 20.9479592665122 & -126.698669243828 & -0.116846377081223 \tabularnewline
87 & 5850 & 5915.65028830037 & 21.3327347253635 & -65.65028830037 & 0.928297540169149 \tabularnewline
88 & 6150 & 5958.68642372505 & 21.469110318351 & 191.313576274953 & 0.295966196880727 \tabularnewline
89 & 6050 & 5919.99446814056 & 21.0627568295655 & 130.005531859439 & -0.820447892427237 \tabularnewline
90 & 6050 & 5903.73588614254 & 20.8034856519575 & 146.264113857465 & -0.509495640938885 \tabularnewline
91 & 5550 & 5896.24692626022 & 20.6104694439421 & -346.246926260217 & -0.386824593416033 \tabularnewline
92 & 5100 & 5793.87380875016 & 19.8200757062151 & -693.873808750156 & -1.68391383213628 \tabularnewline
93 & 5900 & 5775.80156285546 & 19.5975640190625 & 124.198437144542 & -0.519364275734715 \tabularnewline
94 & 6050 & 5796.40257397103 & 19.6028825591759 & 253.597426028972 & 0.0137608286207764 \tabularnewline
95 & 6150 & 5763.71960421043 & 19.3494160760136 & 386.280395789572 & -0.717063658770372 \tabularnewline
96 & 5700 & 5741.6665670129 & 19.1583558523164 & -41.6665670129015 & -0.567577723304504 \tabularnewline
97 & 5200 & 5633.76528936677 & 18.568506060409 & -433.765289366765 & -1.7403790594917 \tabularnewline
98 & 5400 & 5591.5865606789 & 18.2706646985047 & -191.586560678898 & -0.831135058418827 \tabularnewline
99 & 5550 & 5598.64392611722 & 18.2111362503489 & -48.6439261172248 & -0.153249511217587 \tabularnewline
100 & 5750 & 5569.75194573 & 17.9409091156138 & 180.24805427 & -0.643310958491943 \tabularnewline
101 & 5700 & 5554.35856226 & 17.7387171838535 & 145.641437740004 & -0.455265639287358 \tabularnewline
102 & 5650 & 5516.04081616887 & 17.3907757870375 & 133.959183831128 & -0.766095780725728 \tabularnewline
103 & 5400 & 5578.55425080321 & 17.6673211651705 & -178.55425080321 & 0.617295150038359 \tabularnewline
104 & 4950 & 5614.01894479041 & 17.7715762676981 & -664.018944790409 & 0.24372397053391 \tabularnewline
105 & 5900 & 5687.26562226785 & 18.0749636509094 & 212.734377732152 & 0.7602887463049 \tabularnewline
106 & 6050 & 5731.33917173988 & 18.2065460737792 & 318.660828260117 & 0.356465256063445 \tabularnewline
107 & 6350 & 5817.68626951432 & 18.5290272814653 & 532.313730485675 & 0.934335929239982 \tabularnewline
108 & 6350 & 6043.93979646017 & 19.4753794418507 & 306.060203539828 & 2.84749606270775 \tabularnewline
109 & 5500 & 6029.39470730509 & 19.3202084717458 & -529.394707305095 & -0.46607883279128 \tabularnewline
110 & 5800 & 6006.36331826165 & 19.119865436239 & -206.363318261649 & -0.579763321952732 \tabularnewline
111 & 6100 & 6052.45293893277 & 19.2548220196804 & 47.5470610672305 & 0.36892151973945 \tabularnewline
112 & 6350 & 6106.44569191097 & 19.4388482678618 & 243.554308089026 & 0.474964502823068 \tabularnewline
113 & 6400 & 6178.90672136009 & 19.7318769175395 & 221.093278639915 & 0.724952556534896 \tabularnewline
114 & 6850 & 6441.55145883481 & 21.0990770878235 & 408.448541165186 & 3.32265958402254 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300145&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]3500[/C][C]3500[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]3600[/C][C]3556.63187511159[/C][C]1.72584395381597[/C][C]43.3681248884123[/C][C]0.632624387213906[/C][/ROW]
[ROW][C]3[/C][C]3750[/C][C]3673.77905622278[/C][C]8.83482920831706[/C][C]76.2209437772154[/C][C]1.14338301052912[/C][/ROW]
[ROW][C]4[/C][C]3800[/C][C]3750.82571769797[/C][C]12.2703247531222[/C][C]49.174282302029[/C][C]0.844432157480665[/C][/ROW]
[ROW][C]5[/C][C]4100[/C][C]3920.40647680688[/C][C]17.2462384848638[/C][C]179.593523193123[/C][C]2.1278510870741[/C][/ROW]
[ROW][C]6[/C][C]3900[/C][C]3950.89022183697[/C][C]17.5030977206772[/C][C]-50.8902218369718[/C][C]0.182291885407603[/C][/ROW]
[ROW][C]7[/C][C]3650[/C][C]3823.04807309444[/C][C]15.433928952881[/C][C]-173.048073094437[/C][C]-2.00529705330388[/C][/ROW]
[ROW][C]8[/C][C]3800[/C][C]3778.2854406399[/C][C]14.6509264599987[/C][C]21.7145593601007[/C][C]-0.82983558717585[/C][/ROW]
[ROW][C]9[/C][C]4050[/C][C]3885.4385020719[/C][C]15.8722794291372[/C][C]164.561497928099[/C][C]1.27372035873953[/C][/ROW]
[ROW][C]10[/C][C]4250[/C][C]4072.12152267882[/C][C]18.1906935279897[/C][C]177.878477321179[/C][C]2.35015828872079[/C][/ROW]
[ROW][C]11[/C][C]4450[/C][C]4284.49282110159[/C][C]20.8573448250322[/C][C]165.507178898408[/C][C]2.67082879344428[/C][/ROW]
[ROW][C]12[/C][C]4200[/C][C]4297.74092896129[/C][C]20.7532078181682[/C][C]-97.7409289612914[/C][C]-0.104655529934276[/C][/ROW]
[ROW][C]13[/C][C]4050[/C][C]4261.96388011978[/C][C]22.0077882860388[/C][C]-211.963880119776[/C][C]-0.824322957823651[/C][/ROW]
[ROW][C]14[/C][C]4050[/C][C]4209.12902223928[/C][C]22.4061397512316[/C][C]-159.129022239283[/C][C]-1.06080119207563[/C][/ROW]
[ROW][C]15[/C][C]4200[/C][C]4199.55965425849[/C][C]21.8466381756449[/C][C]0.440345741506022[/C][C]-0.411086162481881[/C][/ROW]
[ROW][C]16[/C][C]4450[/C][C]4327.3598717211[/C][C]24.6234666110882[/C][C]122.640128278896[/C][C]1.35335460995844[/C][/ROW]
[ROW][C]17[/C][C]4400[/C][C]4296.74156297231[/C][C]23.2616261164335[/C][C]103.258437027694[/C][C]-0.732480946453001[/C][/ROW]
[ROW][C]18[/C][C]4450[/C][C]4338.51473478208[/C][C]23.6189112603239[/C][C]111.485265217921[/C][C]0.251858260939093[/C][/ROW]
[ROW][C]19[/C][C]4200[/C][C]4359.20439548838[/C][C]23.5763081551002[/C][C]-159.204395488377[/C][C]-0.0402527348908888[/C][/ROW]
[ROW][C]20[/C][C]4050[/C][C]4267.04090460757[/C][C]22.2182990244306[/C][C]-217.040904607569[/C][C]-1.59498513024345[/C][/ROW]
[ROW][C]21[/C][C]4500[/C][C]4339.2073210989[/C][C]22.7357441270534[/C][C]160.792678901098[/C][C]0.688630371097305[/C][/ROW]
[ROW][C]22[/C][C]4650[/C][C]4462.40784892714[/C][C]23.6592748800564[/C][C]187.592151072858[/C][C]1.38432687324531[/C][/ROW]
[ROW][C]23[/C][C]4850[/C][C]4583.2178754669[/C][C]24.3310840208742[/C][C]266.782124533095[/C][C]1.33732794630475[/C][/ROW]
[ROW][C]24[/C][C]4700[/C][C]4690.02528757595[/C][C]24.5680255086723[/C][C]9.97471242405248[/C][C]1.13688939609975[/C][/ROW]
[ROW][C]25[/C][C]4350[/C][C]4653.69688634095[/C][C]24.6413810064387[/C][C]-303.696886340946[/C][C]-0.84578922800814[/C][/ROW]
[ROW][C]26[/C][C]4500[/C][C]4662.82500832746[/C][C]24.607093355129[/C][C]-162.825008327457[/C][C]-0.213244255953903[/C][/ROW]
[ROW][C]27[/C][C]4700[/C][C]4712.7107165635[/C][C]24.8583236786264[/C][C]-12.7107165635037[/C][C]0.337828018496837[/C][/ROW]
[ROW][C]28[/C][C]4800[/C][C]4702.94154178892[/C][C]24.3104990791093[/C][C]97.0584582110787[/C][C]-0.457077627027466[/C][/ROW]
[ROW][C]29[/C][C]4700[/C][C]4662.31999878453[/C][C]23.1637911229176[/C][C]37.6800012154719[/C][C]-0.86571313686205[/C][/ROW]
[ROW][C]30[/C][C]4600[/C][C]4575.83425936012[/C][C]21.3661997133512[/C][C]24.1657406398772[/C][C]-1.48511907757062[/C][/ROW]
[ROW][C]31[/C][C]4400[/C][C]4538.42579495528[/C][C]20.5521181760037[/C][C]-138.425794955276[/C][C]-0.804628956427252[/C][/ROW]
[ROW][C]32[/C][C]4300[/C][C]4554.46068998272[/C][C]20.501033070859[/C][C]-254.460689982725[/C][C]-0.0621461876014583[/C][/ROW]
[ROW][C]33[/C][C]4750[/C][C]4616.33499842903[/C][C]20.8783118843272[/C][C]133.665001570966[/C][C]0.569987945563587[/C][/ROW]
[ROW][C]34[/C][C]4800[/C][C]4665.5945687526[/C][C]21.0785722438595[/C][C]134.405431247405[/C][C]0.390872610208834[/C][/ROW]
[ROW][C]35[/C][C]5000[/C][C]4726.41150841643[/C][C]21.2736034882812[/C][C]273.588491583574[/C][C]0.546981448495076[/C][/ROW]
[ROW][C]36[/C][C]4900[/C][C]4801.03847296102[/C][C]21.4348042881745[/C][C]98.9615270389842[/C][C]0.734613646267835[/C][/ROW]
[ROW][C]37[/C][C]4400[/C][C]4780.90301214536[/C][C]21.3307156343358[/C][C]-380.903012145357[/C][C]-0.571943145719488[/C][/ROW]
[ROW][C]38[/C][C]4650[/C][C]4797.70704334686[/C][C]21.3105672211035[/C][C]-147.707043346857[/C][C]-0.0618307386301865[/C][/ROW]
[ROW][C]39[/C][C]4650[/C][C]4731.12533583608[/C][C]20.5992839065727[/C][C]-81.1253358360826[/C][C]-1.18604900825081[/C][/ROW]
[ROW][C]40[/C][C]4900[/C][C]4725.48021367035[/C][C]20.2973416386264[/C][C]174.519786329645[/C][C]-0.35165222049814[/C][/ROW]
[ROW][C]41[/C][C]4900[/C][C]4756.73676119027[/C][C]20.4434300536935[/C][C]143.263238809725[/C][C]0.147272029204958[/C][/ROW]
[ROW][C]42[/C][C]5000[/C][C]4849.25736468409[/C][C]21.4055748488192[/C][C]150.742635315907[/C][C]0.976908846645309[/C][/ROW]
[ROW][C]43[/C][C]4550[/C][C]4811.24136276342[/C][C]20.6873476288781[/C][C]-261.241362763423[/C][C]-0.811873038343816[/C][/ROW]
[ROW][C]44[/C][C]4500[/C][C]4802.25328422627[/C][C]20.3840567515342[/C][C]-302.253284226275[/C][C]-0.407403160294413[/C][/ROW]
[ROW][C]45[/C][C]5100[/C][C]4890.92387189118[/C][C]20.9447442489237[/C][C]209.076128108819[/C][C]0.939208086874171[/C][/ROW]
[ROW][C]46[/C][C]5000[/C][C]4920.54338208735[/C][C]20.9993425868854[/C][C]79.4566179126514[/C][C]0.119335307761222[/C][/ROW]
[ROW][C]47[/C][C]5350[/C][C]5007.9390491884[/C][C]21.3095876959165[/C][C]342.0609508116[/C][C]0.913140640900596[/C][/ROW]
[ROW][C]48[/C][C]5150[/C][C]5037.98415084131[/C][C]21.3418040410173[/C][C]112.01584915869[/C][C]0.120075651703964[/C][/ROW]
[ROW][C]49[/C][C]4500[/C][C]4974.54592668057[/C][C]21.0226574484097[/C][C]-474.545926680574[/C][C]-1.16294496852315[/C][/ROW]
[ROW][C]50[/C][C]4600[/C][C]4850.41799201131[/C][C]20.2865069895445[/C][C]-250.417992011311[/C][C]-1.98102598092958[/C][/ROW]
[ROW][C]51[/C][C]4900[/C][C]4886.02581994295[/C][C]20.3966889542588[/C][C]13.974180057047[/C][C]0.207733002460816[/C][/ROW]
[ROW][C]52[/C][C]5050[/C][C]4904.54704769195[/C][C]20.3792521776789[/C][C]145.45295230805[/C][C]-0.0253253814057562[/C][/ROW]
[ROW][C]53[/C][C]5000[/C][C]4905.55863138689[/C][C]20.1728098938309[/C][C]94.4413686131092[/C][C]-0.261793913278887[/C][/ROW]
[ROW][C]54[/C][C]5350[/C][C]5022.30987256395[/C][C]21.2318025723669[/C][C]327.690127436049[/C][C]1.31168579550269[/C][/ROW]
[ROW][C]55[/C][C]4650[/C][C]5007.31774876169[/C][C]20.8581287360072[/C][C]-357.317748761686[/C][C]-0.494639710751246[/C][/ROW]
[ROW][C]56[/C][C]4650[/C][C]5009.15444102221[/C][C]20.6862680029545[/C][C]-359.154441022215[/C][C]-0.260739869930773[/C][/ROW]
[ROW][C]57[/C][C]5200[/C][C]5019.48257131455[/C][C]20.6087458841252[/C][C]180.517428685451[/C][C]-0.142252206500542[/C][/ROW]
[ROW][C]58[/C][C]5300[/C][C]5127.56176103174[/C][C]21.1315463668892[/C][C]172.438238968258[/C][C]1.20190192493656[/C][/ROW]
[ROW][C]59[/C][C]5700[/C][C]5242.103755794[/C][C]21.5789870290907[/C][C]457.896244206003[/C][C]1.28335733410561[/C][/ROW]
[ROW][C]60[/C][C]5250[/C][C]5192.84725855111[/C][C]21.2829582569386[/C][C]57.1527414488907[/C][C]-0.97247699834827[/C][/ROW]
[ROW][C]61[/C][C]4900[/C][C]5233.58024841063[/C][C]21.3670503110556[/C][C]-333.580248410629[/C][C]0.266500126245121[/C][/ROW]
[ROW][C]62[/C][C]5200[/C][C]5346.01549980636[/C][C]21.841480371948[/C][C]-146.015499806361[/C][C]1.24345844936926[/C][/ROW]
[ROW][C]63[/C][C]5250[/C][C]5330.60062590243[/C][C]21.5969905741232[/C][C]-80.6006259024256[/C][C]-0.506685041289548[/C][/ROW]
[ROW][C]64[/C][C]5450[/C][C]5328.13812900697[/C][C]21.4061188285925[/C][C]121.861870993029[/C][C]-0.326405998169767[/C][/ROW]
[ROW][C]65[/C][C]5750[/C][C]5493.71950350573[/C][C]22.6887804485263[/C][C]256.280496494272[/C][C]1.95672269917909[/C][/ROW]
[ROW][C]66[/C][C]5450[/C][C]5366.79820392611[/C][C]21.3111185610568[/C][C]83.201796073886[/C][C]-2.03610430501238[/C][/ROW]
[ROW][C]67[/C][C]5100[/C][C]5385.53791662426[/C][C]21.2883550888115[/C][C]-285.537916624261[/C][C]-0.0351189317589616[/C][/ROW]
[ROW][C]68[/C][C]4950[/C][C]5375.59753706182[/C][C]21.0388597008438[/C][C]-425.597537061818[/C][C]-0.427723467619717[/C][/ROW]
[ROW][C]69[/C][C]5550[/C][C]5408.20213799182[/C][C]21.1182913454191[/C][C]141.797862008178[/C][C]0.158670778695585[/C][/ROW]
[ROW][C]70[/C][C]5800[/C][C]5531.67799154303[/C][C]21.7073316008591[/C][C]268.322008456975[/C][C]1.40514473024991[/C][/ROW]
[ROW][C]71[/C][C]6050[/C][C]5576.99439154723[/C][C]21.8228345986048[/C][C]473.005608452767[/C][C]0.324088676210051[/C][/ROW]
[ROW][C]72[/C][C]5650[/C][C]5613.10649064861[/C][C]21.8866855410417[/C][C]36.8935093513898[/C][C]0.196018043260889[/C][/ROW]
[ROW][C]73[/C][C]5500[/C][C]5739.85161593181[/C][C]22.3665455814508[/C][C]-239.851615931815[/C][C]1.43619265158521[/C][/ROW]
[ROW][C]74[/C][C]5600[/C][C]5767.96590131043[/C][C]22.396272297376[/C][C]-167.965901310431[/C][C]0.078535711046463[/C][/ROW]
[ROW][C]75[/C][C]5550[/C][C]5727.10453943263[/C][C]22.0124495728364[/C][C]-177.104539432633[/C][C]-0.862155353707087[/C][/ROW]
[ROW][C]76[/C][C]5900[/C][C]5767.87051264794[/C][C]22.1434786470215[/C][C]132.129487352056[/C][C]0.255200191305153[/C][/ROW]
[ROW][C]77[/C][C]5900[/C][C]5694.30743335609[/C][C]21.4102796564347[/C][C]205.692566643906[/C][C]-1.30257988549393[/C][/ROW]
[ROW][C]78[/C][C]5850[/C][C]5716.31272859444[/C][C]21.4149891668828[/C][C]133.687271405559[/C][C]0.0081117381263425[/C][/ROW]
[ROW][C]79[/C][C]5350[/C][C]5693.14507994718[/C][C]21.0713140389686[/C][C]-343.145079947177[/C][C]-0.609189281775881[/C][/ROW]
[ROW][C]80[/C][C]5150[/C][C]5662.50057998752[/C][C]20.7027629788987[/C][C]-512.500579987523[/C][C]-0.708105412494919[/C][/ROW]
[ROW][C]81[/C][C]5850[/C][C]5713.41847665429[/C][C]20.894177599741[/C][C]136.581523345714[/C][C]0.414264875412559[/C][/ROW]
[ROW][C]82[/C][C]6000[/C][C]5750.83477959226[/C][C]20.9856045198382[/C][C]249.165220407736[/C][C]0.226665483178735[/C][/ROW]
[ROW][C]83[/C][C]6250[/C][C]5791.39079587485[/C][C]21.0816719225277[/C][C]458.609204125149[/C][C]0.268490282222298[/C][/ROW]
[ROW][C]84[/C][C]5800[/C][C]5819.05819536109[/C][C]21.1119549321733[/C][C]-19.0581953610918[/C][C]0.0903015520770363[/C][/ROW]
[ROW][C]85[/C][C]5550[/C][C]5814.2530837585[/C][C]20.9911708022259[/C][C]-264.2530837585[/C][C]-0.354955034242476[/C][/ROW]
[ROW][C]86[/C][C]5700[/C][C]5826.69866924383[/C][C]20.9479592665122[/C][C]-126.698669243828[/C][C]-0.116846377081223[/C][/ROW]
[ROW][C]87[/C][C]5850[/C][C]5915.65028830037[/C][C]21.3327347253635[/C][C]-65.65028830037[/C][C]0.928297540169149[/C][/ROW]
[ROW][C]88[/C][C]6150[/C][C]5958.68642372505[/C][C]21.469110318351[/C][C]191.313576274953[/C][C]0.295966196880727[/C][/ROW]
[ROW][C]89[/C][C]6050[/C][C]5919.99446814056[/C][C]21.0627568295655[/C][C]130.005531859439[/C][C]-0.820447892427237[/C][/ROW]
[ROW][C]90[/C][C]6050[/C][C]5903.73588614254[/C][C]20.8034856519575[/C][C]146.264113857465[/C][C]-0.509495640938885[/C][/ROW]
[ROW][C]91[/C][C]5550[/C][C]5896.24692626022[/C][C]20.6104694439421[/C][C]-346.246926260217[/C][C]-0.386824593416033[/C][/ROW]
[ROW][C]92[/C][C]5100[/C][C]5793.87380875016[/C][C]19.8200757062151[/C][C]-693.873808750156[/C][C]-1.68391383213628[/C][/ROW]
[ROW][C]93[/C][C]5900[/C][C]5775.80156285546[/C][C]19.5975640190625[/C][C]124.198437144542[/C][C]-0.519364275734715[/C][/ROW]
[ROW][C]94[/C][C]6050[/C][C]5796.40257397103[/C][C]19.6028825591759[/C][C]253.597426028972[/C][C]0.0137608286207764[/C][/ROW]
[ROW][C]95[/C][C]6150[/C][C]5763.71960421043[/C][C]19.3494160760136[/C][C]386.280395789572[/C][C]-0.717063658770372[/C][/ROW]
[ROW][C]96[/C][C]5700[/C][C]5741.6665670129[/C][C]19.1583558523164[/C][C]-41.6665670129015[/C][C]-0.567577723304504[/C][/ROW]
[ROW][C]97[/C][C]5200[/C][C]5633.76528936677[/C][C]18.568506060409[/C][C]-433.765289366765[/C][C]-1.7403790594917[/C][/ROW]
[ROW][C]98[/C][C]5400[/C][C]5591.5865606789[/C][C]18.2706646985047[/C][C]-191.586560678898[/C][C]-0.831135058418827[/C][/ROW]
[ROW][C]99[/C][C]5550[/C][C]5598.64392611722[/C][C]18.2111362503489[/C][C]-48.6439261172248[/C][C]-0.153249511217587[/C][/ROW]
[ROW][C]100[/C][C]5750[/C][C]5569.75194573[/C][C]17.9409091156138[/C][C]180.24805427[/C][C]-0.643310958491943[/C][/ROW]
[ROW][C]101[/C][C]5700[/C][C]5554.35856226[/C][C]17.7387171838535[/C][C]145.641437740004[/C][C]-0.455265639287358[/C][/ROW]
[ROW][C]102[/C][C]5650[/C][C]5516.04081616887[/C][C]17.3907757870375[/C][C]133.959183831128[/C][C]-0.766095780725728[/C][/ROW]
[ROW][C]103[/C][C]5400[/C][C]5578.55425080321[/C][C]17.6673211651705[/C][C]-178.55425080321[/C][C]0.617295150038359[/C][/ROW]
[ROW][C]104[/C][C]4950[/C][C]5614.01894479041[/C][C]17.7715762676981[/C][C]-664.018944790409[/C][C]0.24372397053391[/C][/ROW]
[ROW][C]105[/C][C]5900[/C][C]5687.26562226785[/C][C]18.0749636509094[/C][C]212.734377732152[/C][C]0.7602887463049[/C][/ROW]
[ROW][C]106[/C][C]6050[/C][C]5731.33917173988[/C][C]18.2065460737792[/C][C]318.660828260117[/C][C]0.356465256063445[/C][/ROW]
[ROW][C]107[/C][C]6350[/C][C]5817.68626951432[/C][C]18.5290272814653[/C][C]532.313730485675[/C][C]0.934335929239982[/C][/ROW]
[ROW][C]108[/C][C]6350[/C][C]6043.93979646017[/C][C]19.4753794418507[/C][C]306.060203539828[/C][C]2.84749606270775[/C][/ROW]
[ROW][C]109[/C][C]5500[/C][C]6029.39470730509[/C][C]19.3202084717458[/C][C]-529.394707305095[/C][C]-0.46607883279128[/C][/ROW]
[ROW][C]110[/C][C]5800[/C][C]6006.36331826165[/C][C]19.119865436239[/C][C]-206.363318261649[/C][C]-0.579763321952732[/C][/ROW]
[ROW][C]111[/C][C]6100[/C][C]6052.45293893277[/C][C]19.2548220196804[/C][C]47.5470610672305[/C][C]0.36892151973945[/C][/ROW]
[ROW][C]112[/C][C]6350[/C][C]6106.44569191097[/C][C]19.4388482678618[/C][C]243.554308089026[/C][C]0.474964502823068[/C][/ROW]
[ROW][C]113[/C][C]6400[/C][C]6178.90672136009[/C][C]19.7318769175395[/C][C]221.093278639915[/C][C]0.724952556534896[/C][/ROW]
[ROW][C]114[/C][C]6850[/C][C]6441.55145883481[/C][C]21.0990770878235[/C][C]408.448541165186[/C][C]3.32265958402254[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300145&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300145&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
135003500000
236003556.631875111591.7258439538159743.36812488841230.632624387213906
337503673.779056222788.8348292083170676.22094377721541.14338301052912
438003750.8257176979712.270324753122249.1742823020290.844432157480665
541003920.4064768068817.2462384848638179.5935231931232.1278510870741
639003950.8902218369717.5030977206772-50.89022183697180.182291885407603
736503823.0480730944415.433928952881-173.048073094437-2.00529705330388
838003778.285440639914.650926459998721.7145593601007-0.82983558717585
940503885.438502071915.8722794291372164.5614979280991.27372035873953
1042504072.1215226788218.1906935279897177.8784773211792.35015828872079
1144504284.4928211015920.8573448250322165.5071788984082.67082879344428
1242004297.7409289612920.7532078181682-97.7409289612914-0.104655529934276
1340504261.9638801197822.0077882860388-211.963880119776-0.824322957823651
1440504209.1290222392822.4061397512316-159.129022239283-1.06080119207563
1542004199.5596542584921.84663817564490.440345741506022-0.411086162481881
1644504327.359871721124.6234666110882122.6401282788961.35335460995844
1744004296.7415629723123.2616261164335103.258437027694-0.732480946453001
1844504338.5147347820823.6189112603239111.4852652179210.251858260939093
1942004359.2043954883823.5763081551002-159.204395488377-0.0402527348908888
2040504267.0409046075722.2182990244306-217.040904607569-1.59498513024345
2145004339.207321098922.7357441270534160.7926789010980.688630371097305
2246504462.4078489271423.6592748800564187.5921510728581.38432687324531
2348504583.217875466924.3310840208742266.7821245330951.33732794630475
2447004690.0252875759524.56802550867239.974712424052481.13688939609975
2543504653.6968863409524.6413810064387-303.696886340946-0.84578922800814
2645004662.8250083274624.607093355129-162.825008327457-0.213244255953903
2747004712.710716563524.8583236786264-12.71071656350370.337828018496837
2848004702.9415417889224.310499079109397.0584582110787-0.457077627027466
2947004662.3199987845323.163791122917637.6800012154719-0.86571313686205
3046004575.8342593601221.366199713351224.1657406398772-1.48511907757062
3144004538.4257949552820.5521181760037-138.425794955276-0.804628956427252
3243004554.4606899827220.501033070859-254.460689982725-0.0621461876014583
3347504616.3349984290320.8783118843272133.6650015709660.569987945563587
3448004665.594568752621.0785722438595134.4054312474050.390872610208834
3550004726.4115084164321.2736034882812273.5884915835740.546981448495076
3649004801.0384729610221.434804288174598.96152703898420.734613646267835
3744004780.9030121453621.3307156343358-380.903012145357-0.571943145719488
3846504797.7070433468621.3105672211035-147.707043346857-0.0618307386301865
3946504731.1253358360820.5992839065727-81.1253358360826-1.18604900825081
4049004725.4802136703520.2973416386264174.519786329645-0.35165222049814
4149004756.7367611902720.4434300536935143.2632388097250.147272029204958
4250004849.2573646840921.4055748488192150.7426353159070.976908846645309
4345504811.2413627634220.6873476288781-261.241362763423-0.811873038343816
4445004802.2532842262720.3840567515342-302.253284226275-0.407403160294413
4551004890.9238718911820.9447442489237209.0761281088190.939208086874171
4650004920.5433820873520.999342586885479.45661791265140.119335307761222
4753505007.939049188421.3095876959165342.06095081160.913140640900596
4851505037.9841508413121.3418040410173112.015849158690.120075651703964
4945004974.5459266805721.0226574484097-474.545926680574-1.16294496852315
5046004850.4179920113120.2865069895445-250.417992011311-1.98102598092958
5149004886.0258199429520.396688954258813.9741800570470.207733002460816
5250504904.5470476919520.3792521776789145.45295230805-0.0253253814057562
5350004905.5586313868920.172809893830994.4413686131092-0.261793913278887
5453505022.3098725639521.2318025723669327.6901274360491.31168579550269
5546505007.3177487616920.8581287360072-357.317748761686-0.494639710751246
5646505009.1544410222120.6862680029545-359.154441022215-0.260739869930773
5752005019.4825713145520.6087458841252180.517428685451-0.142252206500542
5853005127.5617610317421.1315463668892172.4382389682581.20190192493656
5957005242.10375579421.5789870290907457.8962442060031.28335733410561
6052505192.8472585511121.282958256938657.1527414488907-0.97247699834827
6149005233.5802484106321.3670503110556-333.5802484106290.266500126245121
6252005346.0154998063621.841480371948-146.0154998063611.24345844936926
6352505330.6006259024321.5969905741232-80.6006259024256-0.506685041289548
6454505328.1381290069721.4061188285925121.861870993029-0.326405998169767
6557505493.7195035057322.6887804485263256.2804964942721.95672269917909
6654505366.7982039261121.311118561056883.201796073886-2.03610430501238
6751005385.5379166242621.2883550888115-285.537916624261-0.0351189317589616
6849505375.5975370618221.0388597008438-425.597537061818-0.427723467619717
6955505408.2021379918221.1182913454191141.7978620081780.158670778695585
7058005531.6779915430321.7073316008591268.3220084569751.40514473024991
7160505576.9943915472321.8228345986048473.0056084527670.324088676210051
7256505613.1064906486121.886685541041736.89350935138980.196018043260889
7355005739.8516159318122.3665455814508-239.8516159318151.43619265158521
7456005767.9659013104322.396272297376-167.9659013104310.078535711046463
7555505727.1045394326322.0124495728364-177.104539432633-0.862155353707087
7659005767.8705126479422.1434786470215132.1294873520560.255200191305153
7759005694.3074333560921.4102796564347205.692566643906-1.30257988549393
7858505716.3127285944421.4149891668828133.6872714055590.0081117381263425
7953505693.1450799471821.0713140389686-343.145079947177-0.609189281775881
8051505662.5005799875220.7027629788987-512.500579987523-0.708105412494919
8158505713.4184766542920.894177599741136.5815233457140.414264875412559
8260005750.8347795922620.9856045198382249.1652204077360.226665483178735
8362505791.3907958748521.0816719225277458.6092041251490.268490282222298
8458005819.0581953610921.1119549321733-19.05819536109180.0903015520770363
8555505814.253083758520.9911708022259-264.2530837585-0.354955034242476
8657005826.6986692438320.9479592665122-126.698669243828-0.116846377081223
8758505915.6502883003721.3327347253635-65.650288300370.928297540169149
8861505958.6864237250521.469110318351191.3135762749530.295966196880727
8960505919.9944681405621.0627568295655130.005531859439-0.820447892427237
9060505903.7358861425420.8034856519575146.264113857465-0.509495640938885
9155505896.2469262602220.6104694439421-346.246926260217-0.386824593416033
9251005793.8738087501619.8200757062151-693.873808750156-1.68391383213628
9359005775.8015628554619.5975640190625124.198437144542-0.519364275734715
9460505796.4025739710319.6028825591759253.5974260289720.0137608286207764
9561505763.7196042104319.3494160760136386.280395789572-0.717063658770372
9657005741.666567012919.1583558523164-41.6665670129015-0.567577723304504
9752005633.7652893667718.568506060409-433.765289366765-1.7403790594917
9854005591.586560678918.2706646985047-191.586560678898-0.831135058418827
9955505598.6439261172218.2111362503489-48.6439261172248-0.153249511217587
10057505569.7519457317.9409091156138180.24805427-0.643310958491943
10157005554.3585622617.7387171838535145.641437740004-0.455265639287358
10256505516.0408161688717.3907757870375133.959183831128-0.766095780725728
10354005578.5542508032117.6673211651705-178.554250803210.617295150038359
10449505614.0189447904117.7715762676981-664.0189447904090.24372397053391
10559005687.2656222678518.0749636509094212.7343777321520.7602887463049
10660505731.3391717398818.2065460737792318.6608282601170.356465256063445
10763505817.6862695143218.5290272814653532.3137304856750.934335929239982
10863506043.9397964601719.4753794418507306.0602035398282.84749606270775
10955006029.3947073050919.3202084717458-529.394707305095-0.46607883279128
11058006006.3633182616519.119865436239-206.363318261649-0.579763321952732
11161006052.4529389327719.254822019680447.54706106723050.36892151973945
11263506106.4456919109719.4388482678618243.5543080890260.474964502823068
11364006178.9067213600919.7318769175395221.0932786399150.724952556534896
11468506441.5514588348121.0990770878235408.4485411651863.32265958402254







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
16121.93911383726442.89534267824-320.956228841049
25758.631708509246468.29045388473-709.658745375491
36653.740943479186493.68556509121160.055378387968
46762.325207032466519.08067629769243.244530734772
56976.259247492676544.47578750417431.783459988495
66873.039980060066569.87089871066303.169081349406
76110.128991196866595.26600991714-485.137018720283
86399.865409337926620.66112112362-220.795711785701
96636.709474126136646.0562323301-9.34675820397214
106828.04371763296671.45134353659156.592374096311
116782.430481677376696.8464547430785.5840269342979
127087.70717738486722.24156594955365.465611435246

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 6121.9391138372 & 6442.89534267824 & -320.956228841049 \tabularnewline
2 & 5758.63170850924 & 6468.29045388473 & -709.658745375491 \tabularnewline
3 & 6653.74094347918 & 6493.68556509121 & 160.055378387968 \tabularnewline
4 & 6762.32520703246 & 6519.08067629769 & 243.244530734772 \tabularnewline
5 & 6976.25924749267 & 6544.47578750417 & 431.783459988495 \tabularnewline
6 & 6873.03998006006 & 6569.87089871066 & 303.169081349406 \tabularnewline
7 & 6110.12899119686 & 6595.26600991714 & -485.137018720283 \tabularnewline
8 & 6399.86540933792 & 6620.66112112362 & -220.795711785701 \tabularnewline
9 & 6636.70947412613 & 6646.0562323301 & -9.34675820397214 \tabularnewline
10 & 6828.0437176329 & 6671.45134353659 & 156.592374096311 \tabularnewline
11 & 6782.43048167737 & 6696.84645474307 & 85.5840269342979 \tabularnewline
12 & 7087.7071773848 & 6722.24156594955 & 365.465611435246 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300145&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]6121.9391138372[/C][C]6442.89534267824[/C][C]-320.956228841049[/C][/ROW]
[ROW][C]2[/C][C]5758.63170850924[/C][C]6468.29045388473[/C][C]-709.658745375491[/C][/ROW]
[ROW][C]3[/C][C]6653.74094347918[/C][C]6493.68556509121[/C][C]160.055378387968[/C][/ROW]
[ROW][C]4[/C][C]6762.32520703246[/C][C]6519.08067629769[/C][C]243.244530734772[/C][/ROW]
[ROW][C]5[/C][C]6976.25924749267[/C][C]6544.47578750417[/C][C]431.783459988495[/C][/ROW]
[ROW][C]6[/C][C]6873.03998006006[/C][C]6569.87089871066[/C][C]303.169081349406[/C][/ROW]
[ROW][C]7[/C][C]6110.12899119686[/C][C]6595.26600991714[/C][C]-485.137018720283[/C][/ROW]
[ROW][C]8[/C][C]6399.86540933792[/C][C]6620.66112112362[/C][C]-220.795711785701[/C][/ROW]
[ROW][C]9[/C][C]6636.70947412613[/C][C]6646.0562323301[/C][C]-9.34675820397214[/C][/ROW]
[ROW][C]10[/C][C]6828.0437176329[/C][C]6671.45134353659[/C][C]156.592374096311[/C][/ROW]
[ROW][C]11[/C][C]6782.43048167737[/C][C]6696.84645474307[/C][C]85.5840269342979[/C][/ROW]
[ROW][C]12[/C][C]7087.7071773848[/C][C]6722.24156594955[/C][C]365.465611435246[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300145&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300145&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
16121.93911383726442.89534267824-320.956228841049
25758.631708509246468.29045388473-709.658745375491
36653.740943479186493.68556509121160.055378387968
46762.325207032466519.08067629769243.244530734772
56976.259247492676544.47578750417431.783459988495
66873.039980060066569.87089871066303.169081349406
76110.128991196866595.26600991714-485.137018720283
86399.865409337926620.66112112362-220.795711785701
96636.709474126136646.0562323301-9.34675820397214
106828.04371763296671.45134353659156.592374096311
116782.430481677376696.8464547430785.5840269342979
127087.70717738486722.24156594955365.465611435246



Parameters (Session):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')