Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationFri, 16 Dec 2016 09:17:01 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/16/t14818762355ewukxxrugzmeh9.htm/, Retrieved Fri, 01 Nov 2024 03:30:14 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300097, Retrieved Fri, 01 Nov 2024 03:30:14 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact105
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-16 08:17:01] [94ac3c9a028ddd47e8862e80eac9f626] [Current]
Feedback Forum

Post a new message
Dataseries X:
3830.8
3732.6
3733.5
3808.5
3860.5
3844.4
3864.5
3803.1
3756.1
3771.1
3754.4
3759.6
3783.5
3886.5
3944.4
4012.1
4089.5
4144
4166.4
4194.2
4221.8
4254.8
4309
4333.5
4390.5
4387.7
4412.6
4427.1
4460
4515.3
4559.3
4625.5
4655.3
4704.8
4734.5
4779.7
4817.6
4839
4839
4856.7
4890.8
4902.7
4882.6
4833.8
4796.7




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300097&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300097&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300097&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.4281112.83980.003405
20.164831.09340.140093
30.0774710.51390.304951
40.0412870.27390.392735
5-0.047461-0.31480.377194
60.0378970.25140.401345
70.0301390.19990.421233
8-0.148071-0.98220.165688
90.0172240.11430.454779
100.0033620.02230.491155
11-0.03242-0.2150.415361
12-0.202811-1.34530.092712
13-0.070124-0.46510.32206
14-0.133589-0.88610.190183
15-0.095473-0.63330.264909
160.0065860.04370.482676

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.428111 & 2.8398 & 0.003405 \tabularnewline
2 & 0.16483 & 1.0934 & 0.140093 \tabularnewline
3 & 0.077471 & 0.5139 & 0.304951 \tabularnewline
4 & 0.041287 & 0.2739 & 0.392735 \tabularnewline
5 & -0.047461 & -0.3148 & 0.377194 \tabularnewline
6 & 0.037897 & 0.2514 & 0.401345 \tabularnewline
7 & 0.030139 & 0.1999 & 0.421233 \tabularnewline
8 & -0.148071 & -0.9822 & 0.165688 \tabularnewline
9 & 0.017224 & 0.1143 & 0.454779 \tabularnewline
10 & 0.003362 & 0.0223 & 0.491155 \tabularnewline
11 & -0.03242 & -0.215 & 0.415361 \tabularnewline
12 & -0.202811 & -1.3453 & 0.092712 \tabularnewline
13 & -0.070124 & -0.4651 & 0.32206 \tabularnewline
14 & -0.133589 & -0.8861 & 0.190183 \tabularnewline
15 & -0.095473 & -0.6333 & 0.264909 \tabularnewline
16 & 0.006586 & 0.0437 & 0.482676 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300097&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.428111[/C][C]2.8398[/C][C]0.003405[/C][/ROW]
[ROW][C]2[/C][C]0.16483[/C][C]1.0934[/C][C]0.140093[/C][/ROW]
[ROW][C]3[/C][C]0.077471[/C][C]0.5139[/C][C]0.304951[/C][/ROW]
[ROW][C]4[/C][C]0.041287[/C][C]0.2739[/C][C]0.392735[/C][/ROW]
[ROW][C]5[/C][C]-0.047461[/C][C]-0.3148[/C][C]0.377194[/C][/ROW]
[ROW][C]6[/C][C]0.037897[/C][C]0.2514[/C][C]0.401345[/C][/ROW]
[ROW][C]7[/C][C]0.030139[/C][C]0.1999[/C][C]0.421233[/C][/ROW]
[ROW][C]8[/C][C]-0.148071[/C][C]-0.9822[/C][C]0.165688[/C][/ROW]
[ROW][C]9[/C][C]0.017224[/C][C]0.1143[/C][C]0.454779[/C][/ROW]
[ROW][C]10[/C][C]0.003362[/C][C]0.0223[/C][C]0.491155[/C][/ROW]
[ROW][C]11[/C][C]-0.03242[/C][C]-0.215[/C][C]0.415361[/C][/ROW]
[ROW][C]12[/C][C]-0.202811[/C][C]-1.3453[/C][C]0.092712[/C][/ROW]
[ROW][C]13[/C][C]-0.070124[/C][C]-0.4651[/C][C]0.32206[/C][/ROW]
[ROW][C]14[/C][C]-0.133589[/C][C]-0.8861[/C][C]0.190183[/C][/ROW]
[ROW][C]15[/C][C]-0.095473[/C][C]-0.6333[/C][C]0.264909[/C][/ROW]
[ROW][C]16[/C][C]0.006586[/C][C]0.0437[/C][C]0.482676[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300097&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300097&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.4281112.83980.003405
20.164831.09340.140093
30.0774710.51390.304951
40.0412870.27390.392735
5-0.047461-0.31480.377194
60.0378970.25140.401345
70.0301390.19990.421233
8-0.148071-0.98220.165688
90.0172240.11430.454779
100.0033620.02230.491155
11-0.03242-0.2150.415361
12-0.202811-1.34530.092712
13-0.070124-0.46510.32206
14-0.133589-0.88610.190183
15-0.095473-0.63330.264909
160.0065860.04370.482676







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.4281112.83980.003405
2-0.02259-0.14980.440786
30.0183540.12170.451826
40.005550.03680.485399
5-0.083565-0.55430.291087
60.1082350.7180.238291
7-0.021434-0.14220.443795
8-0.201832-1.33880.093756
90.206361.36880.088999
10-0.09231-0.61230.271741
11-0.014569-0.09660.461727
12-0.213326-1.4150.082047
130.0906490.60130.275363
14-0.098845-0.65570.257726
150.011190.07420.470583
160.0274030.18180.428299

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.428111 & 2.8398 & 0.003405 \tabularnewline
2 & -0.02259 & -0.1498 & 0.440786 \tabularnewline
3 & 0.018354 & 0.1217 & 0.451826 \tabularnewline
4 & 0.00555 & 0.0368 & 0.485399 \tabularnewline
5 & -0.083565 & -0.5543 & 0.291087 \tabularnewline
6 & 0.108235 & 0.718 & 0.238291 \tabularnewline
7 & -0.021434 & -0.1422 & 0.443795 \tabularnewline
8 & -0.201832 & -1.3388 & 0.093756 \tabularnewline
9 & 0.20636 & 1.3688 & 0.088999 \tabularnewline
10 & -0.09231 & -0.6123 & 0.271741 \tabularnewline
11 & -0.014569 & -0.0966 & 0.461727 \tabularnewline
12 & -0.213326 & -1.415 & 0.082047 \tabularnewline
13 & 0.090649 & 0.6013 & 0.275363 \tabularnewline
14 & -0.098845 & -0.6557 & 0.257726 \tabularnewline
15 & 0.01119 & 0.0742 & 0.470583 \tabularnewline
16 & 0.027403 & 0.1818 & 0.428299 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300097&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.428111[/C][C]2.8398[/C][C]0.003405[/C][/ROW]
[ROW][C]2[/C][C]-0.02259[/C][C]-0.1498[/C][C]0.440786[/C][/ROW]
[ROW][C]3[/C][C]0.018354[/C][C]0.1217[/C][C]0.451826[/C][/ROW]
[ROW][C]4[/C][C]0.00555[/C][C]0.0368[/C][C]0.485399[/C][/ROW]
[ROW][C]5[/C][C]-0.083565[/C][C]-0.5543[/C][C]0.291087[/C][/ROW]
[ROW][C]6[/C][C]0.108235[/C][C]0.718[/C][C]0.238291[/C][/ROW]
[ROW][C]7[/C][C]-0.021434[/C][C]-0.1422[/C][C]0.443795[/C][/ROW]
[ROW][C]8[/C][C]-0.201832[/C][C]-1.3388[/C][C]0.093756[/C][/ROW]
[ROW][C]9[/C][C]0.20636[/C][C]1.3688[/C][C]0.088999[/C][/ROW]
[ROW][C]10[/C][C]-0.09231[/C][C]-0.6123[/C][C]0.271741[/C][/ROW]
[ROW][C]11[/C][C]-0.014569[/C][C]-0.0966[/C][C]0.461727[/C][/ROW]
[ROW][C]12[/C][C]-0.213326[/C][C]-1.415[/C][C]0.082047[/C][/ROW]
[ROW][C]13[/C][C]0.090649[/C][C]0.6013[/C][C]0.275363[/C][/ROW]
[ROW][C]14[/C][C]-0.098845[/C][C]-0.6557[/C][C]0.257726[/C][/ROW]
[ROW][C]15[/C][C]0.01119[/C][C]0.0742[/C][C]0.470583[/C][/ROW]
[ROW][C]16[/C][C]0.027403[/C][C]0.1818[/C][C]0.428299[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300097&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300097&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.4281112.83980.003405
2-0.02259-0.14980.440786
30.0183540.12170.451826
40.005550.03680.485399
5-0.083565-0.55430.291087
60.1082350.7180.238291
7-0.021434-0.14220.443795
8-0.201832-1.33880.093756
90.206361.36880.088999
10-0.09231-0.61230.271741
11-0.014569-0.09660.461727
12-0.213326-1.4150.082047
130.0906490.60130.275363
14-0.098845-0.65570.257726
150.011190.07420.470583
160.0274030.18180.428299



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')