Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationThu, 15 Dec 2016 21:38:44 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/15/t1481834415h910at0fcj631cr.htm/, Retrieved Fri, 01 Nov 2024 03:38:01 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300004, Retrieved Fri, 01 Nov 2024 03:38:01 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact141
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [Multiple Regression] [2016-12-15 20:38:44] [2e2b863c9581eba851d0277c64dc678f] [Current]
Feedback Forum

Post a new message
Dataseries X:
4	5	5	4	13
5	5	5	4	16
5	5	4	4	17
3	4	4	4	11
5	5	5	4	12
5	5	5	4	16
5	4	5	5	13
4	NA	4	4	12
5	5	4	4	13
5	5	5	5	17
4	3	4	3	17
3	5	4	3	15
4	5	5	4	16
5	5	5	4	14
4	4	4	4	16
5	4	5	4	17
4	5	5	4	12
NA	NA	NA	NA	0
5	4	4	4	11
5	4	5	5	13
5	5	5	4	16
3	5	5	4	11
4	5	5	4	16
4	4	4	4	11
5	5	5	5	13
3	4	3	3	11
5	5	4	5	16
4	4	4	3	15
4	5	4	4	16
4	5	4	4	16
4	3	5	4	13
5	4	5	3	15
5	5	5	4	17
4	4	5	5	11
5	5	5	4	13
5	5	5	5	17
4	4	4	4	11
5	4	4	4	14
4	4	4	4	14
4	5	4	3	18
4	4	4	4	11
4	4	4	4	17
4	3	4	3	13
5	5	4	3	16
5	4	5	4	15
4	4	4	4	15
4	4	4	4	12
4	NA	4	1	15
4	4	4	4	13
4	4	4	3	3
5	5	5	4	17
4	4	4	4	13
4	5	4	4	13
5	5	5	4	11
4	5	4	4	14
4	5	4	4	13
4	4	4	3	11
5	4	3	4	17
4	4	4	4	16
5	4	4	3	11
4	5	4	4	17
4	5	5	4	16
4	5	5	4	16
5	5	5	3	16
5	5	5	4	15
4	4	3	3	12
4	2	4	3	17
4	5	5	4	14
4	4	4	4	14
4	4	4	3	16
4	5	5	4	11
4	5	5	4	11
2	5	4	5	10
5	5	5	4	10
4	5	4	4	13
5	5	4	3	15
5	5	5	4	16
4	5	5	5	14
5	5	5	5	15
5	5	5	4	17
4	5	5	4	12
4	4	4	4	10
4	4	4	4	12
4	3	4	4	17
5	5	5	5	13
4	5	4	3	20
4	4	4	4	17
5	5	5	5	18
5	5	5	5	11
4	5	5	4	17
5	4	2	4	14
4	3	4	3	11
4	4	4	4	17
3	4	3	4	12
4	5	5	4	17
5	5	5	5	11
5	5	5	5	16
4	5	5	4	18
5	5	5	5	18
3	4	4	3	16
5	5	5	5	4
4	5	4	4	13
5	5	5	5	15
3	4	4	3	13
4	4	4	4	11
5	5	5	5	13
5	5	5	4	12
4	5	4	5	12
4	5	4	4	11
4	5	4	4	16
5	4	5	5	12
4	4	4	3	10
5	4	5	4	11
4	3	4	4	12
4	4	4	4	14
4	4	4	4	16
5	5	5	5	16
5	5	4	4	13
5	5	5	5	16
5	5	5	3	14
4	5	4	4	15
5	4	5	5	14
4	5	5	4	12
5	5	5	4	15
5	4	3	5	13
5	5	4	4	15
4	5	4	4	16
4	4	4	4	12
5	5	5	4	11
5	5	4	4	11
4	5	4	4	11
5	5	4	4	12
4	4	4	4	18
5	5	5	5	10
4	3	4	3	11
4	5	4	4	8
3	3	2	5	18
2	3	4	4	3
4	5	4	4	15
4	5	5	4	19
4	4	4	4	17
4	5	NA	4	10
5	5	5	4	14
5	5	4	NA	12
3	5	5	4	13
4	5	4	3	17
4	5	4	4	14
5	5	4	3	19
4	5	4	4	14
5	5	5	5	12
3	4	4	3	9
5	5	5	5	16
5	5	5	4	16
3	5	5	3	15
5	5	5	4	12
4	5	4	4	11
5	5	5	4	17
5	5	5	5	10
5	4	5	5	11
5	5	5	4	18
4	5	4	3	15
5	4	5	4	18
5	4	2	5	15
4	5	4	4	11
4	5	5	4	12
4	4	5	3	10
4	5	4	4	16
4	4	4	3	10
5	5	5	3	16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300004&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300004&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300004&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
TVDC[t] = + 10.1873 + 0.994858IK1[t] + 0.667109IK2[t] -0.354349IK3[t] -0.536633IK4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDC[t] =  +  10.1873 +  0.994858IK1[t] +  0.667109IK2[t] -0.354349IK3[t] -0.536633IK4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300004&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDC[t] =  +  10.1873 +  0.994858IK1[t] +  0.667109IK2[t] -0.354349IK3[t] -0.536633IK4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300004&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300004&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDC[t] = + 10.1873 + 0.994858IK1[t] + 0.667109IK2[t] -0.354349IK3[t] -0.536633IK4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+10.19 2.159+4.7200e+00 5.148e-06 2.574e-06
IK1+0.9949 0.3799+2.6190e+00 0.009673 0.004836
IK2+0.6671 0.3986+1.6740e+00 0.09618 0.04809
IK3-0.3543 0.4029-8.7950e-01 0.3804 0.1902
IK4-0.5366 0.384-1.3980e+00 0.1642 0.0821

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +10.19 &  2.159 & +4.7200e+00 &  5.148e-06 &  2.574e-06 \tabularnewline
IK1 & +0.9949 &  0.3799 & +2.6190e+00 &  0.009673 &  0.004836 \tabularnewline
IK2 & +0.6671 &  0.3986 & +1.6740e+00 &  0.09618 &  0.04809 \tabularnewline
IK3 & -0.3543 &  0.4029 & -8.7950e-01 &  0.3804 &  0.1902 \tabularnewline
IK4 & -0.5366 &  0.384 & -1.3980e+00 &  0.1642 &  0.0821 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300004&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+10.19[/C][C] 2.159[/C][C]+4.7200e+00[/C][C] 5.148e-06[/C][C] 2.574e-06[/C][/ROW]
[ROW][C]IK1[/C][C]+0.9949[/C][C] 0.3799[/C][C]+2.6190e+00[/C][C] 0.009673[/C][C] 0.004836[/C][/ROW]
[ROW][C]IK2[/C][C]+0.6671[/C][C] 0.3986[/C][C]+1.6740e+00[/C][C] 0.09618[/C][C] 0.04809[/C][/ROW]
[ROW][C]IK3[/C][C]-0.3543[/C][C] 0.4029[/C][C]-8.7950e-01[/C][C] 0.3804[/C][C] 0.1902[/C][/ROW]
[ROW][C]IK4[/C][C]-0.5366[/C][C] 0.384[/C][C]-1.3980e+00[/C][C] 0.1642[/C][C] 0.0821[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300004&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300004&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+10.19 2.159+4.7200e+00 5.148e-06 2.574e-06
IK1+0.9949 0.3799+2.6190e+00 0.009673 0.004836
IK2+0.6671 0.3986+1.6740e+00 0.09618 0.04809
IK3-0.3543 0.4029-8.7950e-01 0.3804 0.1902
IK4-0.5366 0.384-1.3980e+00 0.1642 0.0821







Multiple Linear Regression - Regression Statistics
Multiple R 0.2596
R-squared 0.06737
Adjusted R-squared 0.04391
F-TEST (value) 2.871
F-TEST (DF numerator)4
F-TEST (DF denominator)159
p-value 0.02484
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.83
Sum Squared Residuals 1274

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.2596 \tabularnewline
R-squared &  0.06737 \tabularnewline
Adjusted R-squared &  0.04391 \tabularnewline
F-TEST (value) &  2.871 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 159 \tabularnewline
p-value &  0.02484 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  2.83 \tabularnewline
Sum Squared Residuals &  1274 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300004&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.2596[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.06737[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.04391[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 2.871[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]159[/C][/ROW]
[ROW][C]p-value[/C][C] 0.02484[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 2.83[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 1274[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300004&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300004&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.2596
R-squared 0.06737
Adjusted R-squared 0.04391
F-TEST (value) 2.871
F-TEST (DF numerator)4
F-TEST (DF denominator)159
p-value 0.02484
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.83
Sum Squared Residuals 1274







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 13.58-0.584
2 16 14.58 1.421
3 17 14.93 2.067
4 11 12.28-1.276
5 12 14.58-2.579
6 16 14.58 1.421
7 13 13.38-0.3751
8 13 14.93-1.933
9 17 14.04 2.958
10 17 13.14 3.859
11 15 13.48 1.52
12 16 13.58 2.416
13 14 14.58-0.5788
14 16 13.27 2.729
15 17 13.91 3.088
16 12 13.58-1.584
17 11 14.27-3.266
18 13 13.38-0.3751
19 16 14.58 1.421
20 11 12.59-1.589
21 16 13.58 2.416
22 11 13.27-2.271
23 13 14.04-1.042
24 11 13.17-2.167
25 16 14.4 1.603
26 15 13.81 1.192
27 16 13.94 2.062
28 16 13.94 2.062
29 13 12.25 0.7502
30 15 14.45 0.5516
31 17 14.58 2.421
32 11 12.38-1.38
33 13 14.58-1.579
34 17 14.04 2.958
35 11 13.27-2.271
36 14 14.27-0.2661
37 14 13.27 0.7288
38 18 14.47 3.525
39 11 13.27-2.271
40 17 13.27 3.729
41 13 13.14-0.1407
42 16 15.47 0.5302
43 15 13.91 1.088
44 15 13.27 1.729
45 12 13.27-1.271
46 13 13.27-0.2712
47 3 13.81-10.81
48 17 14.58 2.421
49 13 13.27-0.2712
50 13 13.94-0.9383
51 11 14.58-3.579
52 14 13.94 0.06167
53 13 13.94-0.9383
54 11 13.81-2.808
55 17 14.62 2.38
56 16 13.27 2.729
57 11 14.8-3.803
58 17 13.94 3.062
59 16 13.58 2.416
60 16 13.58 2.416
61 16 15.12 0.8845
62 15 14.58 0.4212
63 12 14.16-2.162
64 17 12.47 4.526
65 14 13.58 0.416
66 14 13.27 0.7288
67 16 13.81 2.192
68 11 13.58-2.584
69 11 13.58-2.584
70 10 11.41-1.412
71 10 14.58-4.579
72 13 13.94-0.9383
73 15 15.47-0.4698
74 16 14.58 1.421
75 14 13.05 0.9527
76 15 14.04 0.9578
77 17 14.58 2.421
78 12 13.58-1.584
79 10 13.27-3.271
80 12 13.27-1.271
81 17 12.6 4.396
82 13 14.04-1.042
83 20 14.47 5.525
84 17 13.27 3.729
85 18 14.04 3.958
86 11 14.04-3.042
87 17 13.58 3.416
88 14 14.97-0.9748
89 11 13.14-2.141
90 17 13.27 3.729
91 12 12.63-0.6307
92 17 13.58 3.416
93 11 14.04-3.042
94 16 14.04 1.958
95 18 13.58 4.416
96 18 14.04 3.958
97 16 12.81 3.187
98 4 14.04-10.04
99 13 13.94-0.9383
100 15 14.04 0.9578
101 13 12.81 0.187
102 11 13.27-2.271
103 13 14.04-1.042
104 12 14.58-2.579
105 12 13.4-1.402
106 11 13.94-2.938
107 16 13.94 2.062
108 12 13.38-1.375
109 10 13.81-3.808
110 11 13.91-2.912
111 12 12.6-0.6041
112 14 13.27 0.7288
113 16 13.27 2.729
114 16 14.04 1.958
115 13 14.93-1.933
116 16 14.04 1.958
117 14 15.12-1.115
118 15 13.94 1.062
119 14 13.38 0.6249
120 12 13.58-1.584
121 15 14.58 0.4212
122 13 14.08-1.084
123 15 14.93 0.06682
124 16 13.94 2.062
125 12 13.27-1.271
126 11 14.58-3.579
127 11 14.93-3.933
128 11 13.94-2.938
129 12 14.93-2.933
130 18 13.27 4.729
131 10 14.04-4.042
132 11 13.14-2.141
133 8 13.94-5.938
134 18 11.78 6.219
135 3 10.61-7.614
136 15 13.94 1.062
137 19 13.58 5.416
138 17 13.27 3.729
139 14 14.58-0.5788
140 13 12.59 0.4109
141 17 14.47 2.525
142 14 13.94 0.06167
143 19 15.47 3.53
144 14 13.94 0.06167
145 12 14.04-2.042
146 9 12.81-3.813
147 16 14.04 1.958
148 16 14.58 1.421
149 15 13.13 1.874
150 12 14.58-2.579
151 11 13.94-2.938
152 17 14.58 2.421
153 10 14.04-4.042
154 11 13.38-2.375
155 18 14.58 3.421
156 15 14.47 0.525
157 18 13.91 4.088
158 15 14.44 0.5619
159 11 13.94-2.938
160 12 13.58-1.584
161 10 13.45-3.454
162 16 13.94 2.062
163 10 13.81-3.808
164 16 15.12 0.8845

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  13 &  13.58 & -0.584 \tabularnewline
2 &  16 &  14.58 &  1.421 \tabularnewline
3 &  17 &  14.93 &  2.067 \tabularnewline
4 &  11 &  12.28 & -1.276 \tabularnewline
5 &  12 &  14.58 & -2.579 \tabularnewline
6 &  16 &  14.58 &  1.421 \tabularnewline
7 &  13 &  13.38 & -0.3751 \tabularnewline
8 &  13 &  14.93 & -1.933 \tabularnewline
9 &  17 &  14.04 &  2.958 \tabularnewline
10 &  17 &  13.14 &  3.859 \tabularnewline
11 &  15 &  13.48 &  1.52 \tabularnewline
12 &  16 &  13.58 &  2.416 \tabularnewline
13 &  14 &  14.58 & -0.5788 \tabularnewline
14 &  16 &  13.27 &  2.729 \tabularnewline
15 &  17 &  13.91 &  3.088 \tabularnewline
16 &  12 &  13.58 & -1.584 \tabularnewline
17 &  11 &  14.27 & -3.266 \tabularnewline
18 &  13 &  13.38 & -0.3751 \tabularnewline
19 &  16 &  14.58 &  1.421 \tabularnewline
20 &  11 &  12.59 & -1.589 \tabularnewline
21 &  16 &  13.58 &  2.416 \tabularnewline
22 &  11 &  13.27 & -2.271 \tabularnewline
23 &  13 &  14.04 & -1.042 \tabularnewline
24 &  11 &  13.17 & -2.167 \tabularnewline
25 &  16 &  14.4 &  1.603 \tabularnewline
26 &  15 &  13.81 &  1.192 \tabularnewline
27 &  16 &  13.94 &  2.062 \tabularnewline
28 &  16 &  13.94 &  2.062 \tabularnewline
29 &  13 &  12.25 &  0.7502 \tabularnewline
30 &  15 &  14.45 &  0.5516 \tabularnewline
31 &  17 &  14.58 &  2.421 \tabularnewline
32 &  11 &  12.38 & -1.38 \tabularnewline
33 &  13 &  14.58 & -1.579 \tabularnewline
34 &  17 &  14.04 &  2.958 \tabularnewline
35 &  11 &  13.27 & -2.271 \tabularnewline
36 &  14 &  14.27 & -0.2661 \tabularnewline
37 &  14 &  13.27 &  0.7288 \tabularnewline
38 &  18 &  14.47 &  3.525 \tabularnewline
39 &  11 &  13.27 & -2.271 \tabularnewline
40 &  17 &  13.27 &  3.729 \tabularnewline
41 &  13 &  13.14 & -0.1407 \tabularnewline
42 &  16 &  15.47 &  0.5302 \tabularnewline
43 &  15 &  13.91 &  1.088 \tabularnewline
44 &  15 &  13.27 &  1.729 \tabularnewline
45 &  12 &  13.27 & -1.271 \tabularnewline
46 &  13 &  13.27 & -0.2712 \tabularnewline
47 &  3 &  13.81 & -10.81 \tabularnewline
48 &  17 &  14.58 &  2.421 \tabularnewline
49 &  13 &  13.27 & -0.2712 \tabularnewline
50 &  13 &  13.94 & -0.9383 \tabularnewline
51 &  11 &  14.58 & -3.579 \tabularnewline
52 &  14 &  13.94 &  0.06167 \tabularnewline
53 &  13 &  13.94 & -0.9383 \tabularnewline
54 &  11 &  13.81 & -2.808 \tabularnewline
55 &  17 &  14.62 &  2.38 \tabularnewline
56 &  16 &  13.27 &  2.729 \tabularnewline
57 &  11 &  14.8 & -3.803 \tabularnewline
58 &  17 &  13.94 &  3.062 \tabularnewline
59 &  16 &  13.58 &  2.416 \tabularnewline
60 &  16 &  13.58 &  2.416 \tabularnewline
61 &  16 &  15.12 &  0.8845 \tabularnewline
62 &  15 &  14.58 &  0.4212 \tabularnewline
63 &  12 &  14.16 & -2.162 \tabularnewline
64 &  17 &  12.47 &  4.526 \tabularnewline
65 &  14 &  13.58 &  0.416 \tabularnewline
66 &  14 &  13.27 &  0.7288 \tabularnewline
67 &  16 &  13.81 &  2.192 \tabularnewline
68 &  11 &  13.58 & -2.584 \tabularnewline
69 &  11 &  13.58 & -2.584 \tabularnewline
70 &  10 &  11.41 & -1.412 \tabularnewline
71 &  10 &  14.58 & -4.579 \tabularnewline
72 &  13 &  13.94 & -0.9383 \tabularnewline
73 &  15 &  15.47 & -0.4698 \tabularnewline
74 &  16 &  14.58 &  1.421 \tabularnewline
75 &  14 &  13.05 &  0.9527 \tabularnewline
76 &  15 &  14.04 &  0.9578 \tabularnewline
77 &  17 &  14.58 &  2.421 \tabularnewline
78 &  12 &  13.58 & -1.584 \tabularnewline
79 &  10 &  13.27 & -3.271 \tabularnewline
80 &  12 &  13.27 & -1.271 \tabularnewline
81 &  17 &  12.6 &  4.396 \tabularnewline
82 &  13 &  14.04 & -1.042 \tabularnewline
83 &  20 &  14.47 &  5.525 \tabularnewline
84 &  17 &  13.27 &  3.729 \tabularnewline
85 &  18 &  14.04 &  3.958 \tabularnewline
86 &  11 &  14.04 & -3.042 \tabularnewline
87 &  17 &  13.58 &  3.416 \tabularnewline
88 &  14 &  14.97 & -0.9748 \tabularnewline
89 &  11 &  13.14 & -2.141 \tabularnewline
90 &  17 &  13.27 &  3.729 \tabularnewline
91 &  12 &  12.63 & -0.6307 \tabularnewline
92 &  17 &  13.58 &  3.416 \tabularnewline
93 &  11 &  14.04 & -3.042 \tabularnewline
94 &  16 &  14.04 &  1.958 \tabularnewline
95 &  18 &  13.58 &  4.416 \tabularnewline
96 &  18 &  14.04 &  3.958 \tabularnewline
97 &  16 &  12.81 &  3.187 \tabularnewline
98 &  4 &  14.04 & -10.04 \tabularnewline
99 &  13 &  13.94 & -0.9383 \tabularnewline
100 &  15 &  14.04 &  0.9578 \tabularnewline
101 &  13 &  12.81 &  0.187 \tabularnewline
102 &  11 &  13.27 & -2.271 \tabularnewline
103 &  13 &  14.04 & -1.042 \tabularnewline
104 &  12 &  14.58 & -2.579 \tabularnewline
105 &  12 &  13.4 & -1.402 \tabularnewline
106 &  11 &  13.94 & -2.938 \tabularnewline
107 &  16 &  13.94 &  2.062 \tabularnewline
108 &  12 &  13.38 & -1.375 \tabularnewline
109 &  10 &  13.81 & -3.808 \tabularnewline
110 &  11 &  13.91 & -2.912 \tabularnewline
111 &  12 &  12.6 & -0.6041 \tabularnewline
112 &  14 &  13.27 &  0.7288 \tabularnewline
113 &  16 &  13.27 &  2.729 \tabularnewline
114 &  16 &  14.04 &  1.958 \tabularnewline
115 &  13 &  14.93 & -1.933 \tabularnewline
116 &  16 &  14.04 &  1.958 \tabularnewline
117 &  14 &  15.12 & -1.115 \tabularnewline
118 &  15 &  13.94 &  1.062 \tabularnewline
119 &  14 &  13.38 &  0.6249 \tabularnewline
120 &  12 &  13.58 & -1.584 \tabularnewline
121 &  15 &  14.58 &  0.4212 \tabularnewline
122 &  13 &  14.08 & -1.084 \tabularnewline
123 &  15 &  14.93 &  0.06682 \tabularnewline
124 &  16 &  13.94 &  2.062 \tabularnewline
125 &  12 &  13.27 & -1.271 \tabularnewline
126 &  11 &  14.58 & -3.579 \tabularnewline
127 &  11 &  14.93 & -3.933 \tabularnewline
128 &  11 &  13.94 & -2.938 \tabularnewline
129 &  12 &  14.93 & -2.933 \tabularnewline
130 &  18 &  13.27 &  4.729 \tabularnewline
131 &  10 &  14.04 & -4.042 \tabularnewline
132 &  11 &  13.14 & -2.141 \tabularnewline
133 &  8 &  13.94 & -5.938 \tabularnewline
134 &  18 &  11.78 &  6.219 \tabularnewline
135 &  3 &  10.61 & -7.614 \tabularnewline
136 &  15 &  13.94 &  1.062 \tabularnewline
137 &  19 &  13.58 &  5.416 \tabularnewline
138 &  17 &  13.27 &  3.729 \tabularnewline
139 &  14 &  14.58 & -0.5788 \tabularnewline
140 &  13 &  12.59 &  0.4109 \tabularnewline
141 &  17 &  14.47 &  2.525 \tabularnewline
142 &  14 &  13.94 &  0.06167 \tabularnewline
143 &  19 &  15.47 &  3.53 \tabularnewline
144 &  14 &  13.94 &  0.06167 \tabularnewline
145 &  12 &  14.04 & -2.042 \tabularnewline
146 &  9 &  12.81 & -3.813 \tabularnewline
147 &  16 &  14.04 &  1.958 \tabularnewline
148 &  16 &  14.58 &  1.421 \tabularnewline
149 &  15 &  13.13 &  1.874 \tabularnewline
150 &  12 &  14.58 & -2.579 \tabularnewline
151 &  11 &  13.94 & -2.938 \tabularnewline
152 &  17 &  14.58 &  2.421 \tabularnewline
153 &  10 &  14.04 & -4.042 \tabularnewline
154 &  11 &  13.38 & -2.375 \tabularnewline
155 &  18 &  14.58 &  3.421 \tabularnewline
156 &  15 &  14.47 &  0.525 \tabularnewline
157 &  18 &  13.91 &  4.088 \tabularnewline
158 &  15 &  14.44 &  0.5619 \tabularnewline
159 &  11 &  13.94 & -2.938 \tabularnewline
160 &  12 &  13.58 & -1.584 \tabularnewline
161 &  10 &  13.45 & -3.454 \tabularnewline
162 &  16 &  13.94 &  2.062 \tabularnewline
163 &  10 &  13.81 & -3.808 \tabularnewline
164 &  16 &  15.12 &  0.8845 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300004&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 13[/C][C] 13.58[/C][C]-0.584[/C][/ROW]
[ROW][C]2[/C][C] 16[/C][C] 14.58[/C][C] 1.421[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 14.93[/C][C] 2.067[/C][/ROW]
[ROW][C]4[/C][C] 11[/C][C] 12.28[/C][C]-1.276[/C][/ROW]
[ROW][C]5[/C][C] 12[/C][C] 14.58[/C][C]-2.579[/C][/ROW]
[ROW][C]6[/C][C] 16[/C][C] 14.58[/C][C] 1.421[/C][/ROW]
[ROW][C]7[/C][C] 13[/C][C] 13.38[/C][C]-0.3751[/C][/ROW]
[ROW][C]8[/C][C] 13[/C][C] 14.93[/C][C]-1.933[/C][/ROW]
[ROW][C]9[/C][C] 17[/C][C] 14.04[/C][C] 2.958[/C][/ROW]
[ROW][C]10[/C][C] 17[/C][C] 13.14[/C][C] 3.859[/C][/ROW]
[ROW][C]11[/C][C] 15[/C][C] 13.48[/C][C] 1.52[/C][/ROW]
[ROW][C]12[/C][C] 16[/C][C] 13.58[/C][C] 2.416[/C][/ROW]
[ROW][C]13[/C][C] 14[/C][C] 14.58[/C][C]-0.5788[/C][/ROW]
[ROW][C]14[/C][C] 16[/C][C] 13.27[/C][C] 2.729[/C][/ROW]
[ROW][C]15[/C][C] 17[/C][C] 13.91[/C][C] 3.088[/C][/ROW]
[ROW][C]16[/C][C] 12[/C][C] 13.58[/C][C]-1.584[/C][/ROW]
[ROW][C]17[/C][C] 11[/C][C] 14.27[/C][C]-3.266[/C][/ROW]
[ROW][C]18[/C][C] 13[/C][C] 13.38[/C][C]-0.3751[/C][/ROW]
[ROW][C]19[/C][C] 16[/C][C] 14.58[/C][C] 1.421[/C][/ROW]
[ROW][C]20[/C][C] 11[/C][C] 12.59[/C][C]-1.589[/C][/ROW]
[ROW][C]21[/C][C] 16[/C][C] 13.58[/C][C] 2.416[/C][/ROW]
[ROW][C]22[/C][C] 11[/C][C] 13.27[/C][C]-2.271[/C][/ROW]
[ROW][C]23[/C][C] 13[/C][C] 14.04[/C][C]-1.042[/C][/ROW]
[ROW][C]24[/C][C] 11[/C][C] 13.17[/C][C]-2.167[/C][/ROW]
[ROW][C]25[/C][C] 16[/C][C] 14.4[/C][C] 1.603[/C][/ROW]
[ROW][C]26[/C][C] 15[/C][C] 13.81[/C][C] 1.192[/C][/ROW]
[ROW][C]27[/C][C] 16[/C][C] 13.94[/C][C] 2.062[/C][/ROW]
[ROW][C]28[/C][C] 16[/C][C] 13.94[/C][C] 2.062[/C][/ROW]
[ROW][C]29[/C][C] 13[/C][C] 12.25[/C][C] 0.7502[/C][/ROW]
[ROW][C]30[/C][C] 15[/C][C] 14.45[/C][C] 0.5516[/C][/ROW]
[ROW][C]31[/C][C] 17[/C][C] 14.58[/C][C] 2.421[/C][/ROW]
[ROW][C]32[/C][C] 11[/C][C] 12.38[/C][C]-1.38[/C][/ROW]
[ROW][C]33[/C][C] 13[/C][C] 14.58[/C][C]-1.579[/C][/ROW]
[ROW][C]34[/C][C] 17[/C][C] 14.04[/C][C] 2.958[/C][/ROW]
[ROW][C]35[/C][C] 11[/C][C] 13.27[/C][C]-2.271[/C][/ROW]
[ROW][C]36[/C][C] 14[/C][C] 14.27[/C][C]-0.2661[/C][/ROW]
[ROW][C]37[/C][C] 14[/C][C] 13.27[/C][C] 0.7288[/C][/ROW]
[ROW][C]38[/C][C] 18[/C][C] 14.47[/C][C] 3.525[/C][/ROW]
[ROW][C]39[/C][C] 11[/C][C] 13.27[/C][C]-2.271[/C][/ROW]
[ROW][C]40[/C][C] 17[/C][C] 13.27[/C][C] 3.729[/C][/ROW]
[ROW][C]41[/C][C] 13[/C][C] 13.14[/C][C]-0.1407[/C][/ROW]
[ROW][C]42[/C][C] 16[/C][C] 15.47[/C][C] 0.5302[/C][/ROW]
[ROW][C]43[/C][C] 15[/C][C] 13.91[/C][C] 1.088[/C][/ROW]
[ROW][C]44[/C][C] 15[/C][C] 13.27[/C][C] 1.729[/C][/ROW]
[ROW][C]45[/C][C] 12[/C][C] 13.27[/C][C]-1.271[/C][/ROW]
[ROW][C]46[/C][C] 13[/C][C] 13.27[/C][C]-0.2712[/C][/ROW]
[ROW][C]47[/C][C] 3[/C][C] 13.81[/C][C]-10.81[/C][/ROW]
[ROW][C]48[/C][C] 17[/C][C] 14.58[/C][C] 2.421[/C][/ROW]
[ROW][C]49[/C][C] 13[/C][C] 13.27[/C][C]-0.2712[/C][/ROW]
[ROW][C]50[/C][C] 13[/C][C] 13.94[/C][C]-0.9383[/C][/ROW]
[ROW][C]51[/C][C] 11[/C][C] 14.58[/C][C]-3.579[/C][/ROW]
[ROW][C]52[/C][C] 14[/C][C] 13.94[/C][C] 0.06167[/C][/ROW]
[ROW][C]53[/C][C] 13[/C][C] 13.94[/C][C]-0.9383[/C][/ROW]
[ROW][C]54[/C][C] 11[/C][C] 13.81[/C][C]-2.808[/C][/ROW]
[ROW][C]55[/C][C] 17[/C][C] 14.62[/C][C] 2.38[/C][/ROW]
[ROW][C]56[/C][C] 16[/C][C] 13.27[/C][C] 2.729[/C][/ROW]
[ROW][C]57[/C][C] 11[/C][C] 14.8[/C][C]-3.803[/C][/ROW]
[ROW][C]58[/C][C] 17[/C][C] 13.94[/C][C] 3.062[/C][/ROW]
[ROW][C]59[/C][C] 16[/C][C] 13.58[/C][C] 2.416[/C][/ROW]
[ROW][C]60[/C][C] 16[/C][C] 13.58[/C][C] 2.416[/C][/ROW]
[ROW][C]61[/C][C] 16[/C][C] 15.12[/C][C] 0.8845[/C][/ROW]
[ROW][C]62[/C][C] 15[/C][C] 14.58[/C][C] 0.4212[/C][/ROW]
[ROW][C]63[/C][C] 12[/C][C] 14.16[/C][C]-2.162[/C][/ROW]
[ROW][C]64[/C][C] 17[/C][C] 12.47[/C][C] 4.526[/C][/ROW]
[ROW][C]65[/C][C] 14[/C][C] 13.58[/C][C] 0.416[/C][/ROW]
[ROW][C]66[/C][C] 14[/C][C] 13.27[/C][C] 0.7288[/C][/ROW]
[ROW][C]67[/C][C] 16[/C][C] 13.81[/C][C] 2.192[/C][/ROW]
[ROW][C]68[/C][C] 11[/C][C] 13.58[/C][C]-2.584[/C][/ROW]
[ROW][C]69[/C][C] 11[/C][C] 13.58[/C][C]-2.584[/C][/ROW]
[ROW][C]70[/C][C] 10[/C][C] 11.41[/C][C]-1.412[/C][/ROW]
[ROW][C]71[/C][C] 10[/C][C] 14.58[/C][C]-4.579[/C][/ROW]
[ROW][C]72[/C][C] 13[/C][C] 13.94[/C][C]-0.9383[/C][/ROW]
[ROW][C]73[/C][C] 15[/C][C] 15.47[/C][C]-0.4698[/C][/ROW]
[ROW][C]74[/C][C] 16[/C][C] 14.58[/C][C] 1.421[/C][/ROW]
[ROW][C]75[/C][C] 14[/C][C] 13.05[/C][C] 0.9527[/C][/ROW]
[ROW][C]76[/C][C] 15[/C][C] 14.04[/C][C] 0.9578[/C][/ROW]
[ROW][C]77[/C][C] 17[/C][C] 14.58[/C][C] 2.421[/C][/ROW]
[ROW][C]78[/C][C] 12[/C][C] 13.58[/C][C]-1.584[/C][/ROW]
[ROW][C]79[/C][C] 10[/C][C] 13.27[/C][C]-3.271[/C][/ROW]
[ROW][C]80[/C][C] 12[/C][C] 13.27[/C][C]-1.271[/C][/ROW]
[ROW][C]81[/C][C] 17[/C][C] 12.6[/C][C] 4.396[/C][/ROW]
[ROW][C]82[/C][C] 13[/C][C] 14.04[/C][C]-1.042[/C][/ROW]
[ROW][C]83[/C][C] 20[/C][C] 14.47[/C][C] 5.525[/C][/ROW]
[ROW][C]84[/C][C] 17[/C][C] 13.27[/C][C] 3.729[/C][/ROW]
[ROW][C]85[/C][C] 18[/C][C] 14.04[/C][C] 3.958[/C][/ROW]
[ROW][C]86[/C][C] 11[/C][C] 14.04[/C][C]-3.042[/C][/ROW]
[ROW][C]87[/C][C] 17[/C][C] 13.58[/C][C] 3.416[/C][/ROW]
[ROW][C]88[/C][C] 14[/C][C] 14.97[/C][C]-0.9748[/C][/ROW]
[ROW][C]89[/C][C] 11[/C][C] 13.14[/C][C]-2.141[/C][/ROW]
[ROW][C]90[/C][C] 17[/C][C] 13.27[/C][C] 3.729[/C][/ROW]
[ROW][C]91[/C][C] 12[/C][C] 12.63[/C][C]-0.6307[/C][/ROW]
[ROW][C]92[/C][C] 17[/C][C] 13.58[/C][C] 3.416[/C][/ROW]
[ROW][C]93[/C][C] 11[/C][C] 14.04[/C][C]-3.042[/C][/ROW]
[ROW][C]94[/C][C] 16[/C][C] 14.04[/C][C] 1.958[/C][/ROW]
[ROW][C]95[/C][C] 18[/C][C] 13.58[/C][C] 4.416[/C][/ROW]
[ROW][C]96[/C][C] 18[/C][C] 14.04[/C][C] 3.958[/C][/ROW]
[ROW][C]97[/C][C] 16[/C][C] 12.81[/C][C] 3.187[/C][/ROW]
[ROW][C]98[/C][C] 4[/C][C] 14.04[/C][C]-10.04[/C][/ROW]
[ROW][C]99[/C][C] 13[/C][C] 13.94[/C][C]-0.9383[/C][/ROW]
[ROW][C]100[/C][C] 15[/C][C] 14.04[/C][C] 0.9578[/C][/ROW]
[ROW][C]101[/C][C] 13[/C][C] 12.81[/C][C] 0.187[/C][/ROW]
[ROW][C]102[/C][C] 11[/C][C] 13.27[/C][C]-2.271[/C][/ROW]
[ROW][C]103[/C][C] 13[/C][C] 14.04[/C][C]-1.042[/C][/ROW]
[ROW][C]104[/C][C] 12[/C][C] 14.58[/C][C]-2.579[/C][/ROW]
[ROW][C]105[/C][C] 12[/C][C] 13.4[/C][C]-1.402[/C][/ROW]
[ROW][C]106[/C][C] 11[/C][C] 13.94[/C][C]-2.938[/C][/ROW]
[ROW][C]107[/C][C] 16[/C][C] 13.94[/C][C] 2.062[/C][/ROW]
[ROW][C]108[/C][C] 12[/C][C] 13.38[/C][C]-1.375[/C][/ROW]
[ROW][C]109[/C][C] 10[/C][C] 13.81[/C][C]-3.808[/C][/ROW]
[ROW][C]110[/C][C] 11[/C][C] 13.91[/C][C]-2.912[/C][/ROW]
[ROW][C]111[/C][C] 12[/C][C] 12.6[/C][C]-0.6041[/C][/ROW]
[ROW][C]112[/C][C] 14[/C][C] 13.27[/C][C] 0.7288[/C][/ROW]
[ROW][C]113[/C][C] 16[/C][C] 13.27[/C][C] 2.729[/C][/ROW]
[ROW][C]114[/C][C] 16[/C][C] 14.04[/C][C] 1.958[/C][/ROW]
[ROW][C]115[/C][C] 13[/C][C] 14.93[/C][C]-1.933[/C][/ROW]
[ROW][C]116[/C][C] 16[/C][C] 14.04[/C][C] 1.958[/C][/ROW]
[ROW][C]117[/C][C] 14[/C][C] 15.12[/C][C]-1.115[/C][/ROW]
[ROW][C]118[/C][C] 15[/C][C] 13.94[/C][C] 1.062[/C][/ROW]
[ROW][C]119[/C][C] 14[/C][C] 13.38[/C][C] 0.6249[/C][/ROW]
[ROW][C]120[/C][C] 12[/C][C] 13.58[/C][C]-1.584[/C][/ROW]
[ROW][C]121[/C][C] 15[/C][C] 14.58[/C][C] 0.4212[/C][/ROW]
[ROW][C]122[/C][C] 13[/C][C] 14.08[/C][C]-1.084[/C][/ROW]
[ROW][C]123[/C][C] 15[/C][C] 14.93[/C][C] 0.06682[/C][/ROW]
[ROW][C]124[/C][C] 16[/C][C] 13.94[/C][C] 2.062[/C][/ROW]
[ROW][C]125[/C][C] 12[/C][C] 13.27[/C][C]-1.271[/C][/ROW]
[ROW][C]126[/C][C] 11[/C][C] 14.58[/C][C]-3.579[/C][/ROW]
[ROW][C]127[/C][C] 11[/C][C] 14.93[/C][C]-3.933[/C][/ROW]
[ROW][C]128[/C][C] 11[/C][C] 13.94[/C][C]-2.938[/C][/ROW]
[ROW][C]129[/C][C] 12[/C][C] 14.93[/C][C]-2.933[/C][/ROW]
[ROW][C]130[/C][C] 18[/C][C] 13.27[/C][C] 4.729[/C][/ROW]
[ROW][C]131[/C][C] 10[/C][C] 14.04[/C][C]-4.042[/C][/ROW]
[ROW][C]132[/C][C] 11[/C][C] 13.14[/C][C]-2.141[/C][/ROW]
[ROW][C]133[/C][C] 8[/C][C] 13.94[/C][C]-5.938[/C][/ROW]
[ROW][C]134[/C][C] 18[/C][C] 11.78[/C][C] 6.219[/C][/ROW]
[ROW][C]135[/C][C] 3[/C][C] 10.61[/C][C]-7.614[/C][/ROW]
[ROW][C]136[/C][C] 15[/C][C] 13.94[/C][C] 1.062[/C][/ROW]
[ROW][C]137[/C][C] 19[/C][C] 13.58[/C][C] 5.416[/C][/ROW]
[ROW][C]138[/C][C] 17[/C][C] 13.27[/C][C] 3.729[/C][/ROW]
[ROW][C]139[/C][C] 14[/C][C] 14.58[/C][C]-0.5788[/C][/ROW]
[ROW][C]140[/C][C] 13[/C][C] 12.59[/C][C] 0.4109[/C][/ROW]
[ROW][C]141[/C][C] 17[/C][C] 14.47[/C][C] 2.525[/C][/ROW]
[ROW][C]142[/C][C] 14[/C][C] 13.94[/C][C] 0.06167[/C][/ROW]
[ROW][C]143[/C][C] 19[/C][C] 15.47[/C][C] 3.53[/C][/ROW]
[ROW][C]144[/C][C] 14[/C][C] 13.94[/C][C] 0.06167[/C][/ROW]
[ROW][C]145[/C][C] 12[/C][C] 14.04[/C][C]-2.042[/C][/ROW]
[ROW][C]146[/C][C] 9[/C][C] 12.81[/C][C]-3.813[/C][/ROW]
[ROW][C]147[/C][C] 16[/C][C] 14.04[/C][C] 1.958[/C][/ROW]
[ROW][C]148[/C][C] 16[/C][C] 14.58[/C][C] 1.421[/C][/ROW]
[ROW][C]149[/C][C] 15[/C][C] 13.13[/C][C] 1.874[/C][/ROW]
[ROW][C]150[/C][C] 12[/C][C] 14.58[/C][C]-2.579[/C][/ROW]
[ROW][C]151[/C][C] 11[/C][C] 13.94[/C][C]-2.938[/C][/ROW]
[ROW][C]152[/C][C] 17[/C][C] 14.58[/C][C] 2.421[/C][/ROW]
[ROW][C]153[/C][C] 10[/C][C] 14.04[/C][C]-4.042[/C][/ROW]
[ROW][C]154[/C][C] 11[/C][C] 13.38[/C][C]-2.375[/C][/ROW]
[ROW][C]155[/C][C] 18[/C][C] 14.58[/C][C] 3.421[/C][/ROW]
[ROW][C]156[/C][C] 15[/C][C] 14.47[/C][C] 0.525[/C][/ROW]
[ROW][C]157[/C][C] 18[/C][C] 13.91[/C][C] 4.088[/C][/ROW]
[ROW][C]158[/C][C] 15[/C][C] 14.44[/C][C] 0.5619[/C][/ROW]
[ROW][C]159[/C][C] 11[/C][C] 13.94[/C][C]-2.938[/C][/ROW]
[ROW][C]160[/C][C] 12[/C][C] 13.58[/C][C]-1.584[/C][/ROW]
[ROW][C]161[/C][C] 10[/C][C] 13.45[/C][C]-3.454[/C][/ROW]
[ROW][C]162[/C][C] 16[/C][C] 13.94[/C][C] 2.062[/C][/ROW]
[ROW][C]163[/C][C] 10[/C][C] 13.81[/C][C]-3.808[/C][/ROW]
[ROW][C]164[/C][C] 16[/C][C] 15.12[/C][C] 0.8845[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300004&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300004&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 13.58-0.584
2 16 14.58 1.421
3 17 14.93 2.067
4 11 12.28-1.276
5 12 14.58-2.579
6 16 14.58 1.421
7 13 13.38-0.3751
8 13 14.93-1.933
9 17 14.04 2.958
10 17 13.14 3.859
11 15 13.48 1.52
12 16 13.58 2.416
13 14 14.58-0.5788
14 16 13.27 2.729
15 17 13.91 3.088
16 12 13.58-1.584
17 11 14.27-3.266
18 13 13.38-0.3751
19 16 14.58 1.421
20 11 12.59-1.589
21 16 13.58 2.416
22 11 13.27-2.271
23 13 14.04-1.042
24 11 13.17-2.167
25 16 14.4 1.603
26 15 13.81 1.192
27 16 13.94 2.062
28 16 13.94 2.062
29 13 12.25 0.7502
30 15 14.45 0.5516
31 17 14.58 2.421
32 11 12.38-1.38
33 13 14.58-1.579
34 17 14.04 2.958
35 11 13.27-2.271
36 14 14.27-0.2661
37 14 13.27 0.7288
38 18 14.47 3.525
39 11 13.27-2.271
40 17 13.27 3.729
41 13 13.14-0.1407
42 16 15.47 0.5302
43 15 13.91 1.088
44 15 13.27 1.729
45 12 13.27-1.271
46 13 13.27-0.2712
47 3 13.81-10.81
48 17 14.58 2.421
49 13 13.27-0.2712
50 13 13.94-0.9383
51 11 14.58-3.579
52 14 13.94 0.06167
53 13 13.94-0.9383
54 11 13.81-2.808
55 17 14.62 2.38
56 16 13.27 2.729
57 11 14.8-3.803
58 17 13.94 3.062
59 16 13.58 2.416
60 16 13.58 2.416
61 16 15.12 0.8845
62 15 14.58 0.4212
63 12 14.16-2.162
64 17 12.47 4.526
65 14 13.58 0.416
66 14 13.27 0.7288
67 16 13.81 2.192
68 11 13.58-2.584
69 11 13.58-2.584
70 10 11.41-1.412
71 10 14.58-4.579
72 13 13.94-0.9383
73 15 15.47-0.4698
74 16 14.58 1.421
75 14 13.05 0.9527
76 15 14.04 0.9578
77 17 14.58 2.421
78 12 13.58-1.584
79 10 13.27-3.271
80 12 13.27-1.271
81 17 12.6 4.396
82 13 14.04-1.042
83 20 14.47 5.525
84 17 13.27 3.729
85 18 14.04 3.958
86 11 14.04-3.042
87 17 13.58 3.416
88 14 14.97-0.9748
89 11 13.14-2.141
90 17 13.27 3.729
91 12 12.63-0.6307
92 17 13.58 3.416
93 11 14.04-3.042
94 16 14.04 1.958
95 18 13.58 4.416
96 18 14.04 3.958
97 16 12.81 3.187
98 4 14.04-10.04
99 13 13.94-0.9383
100 15 14.04 0.9578
101 13 12.81 0.187
102 11 13.27-2.271
103 13 14.04-1.042
104 12 14.58-2.579
105 12 13.4-1.402
106 11 13.94-2.938
107 16 13.94 2.062
108 12 13.38-1.375
109 10 13.81-3.808
110 11 13.91-2.912
111 12 12.6-0.6041
112 14 13.27 0.7288
113 16 13.27 2.729
114 16 14.04 1.958
115 13 14.93-1.933
116 16 14.04 1.958
117 14 15.12-1.115
118 15 13.94 1.062
119 14 13.38 0.6249
120 12 13.58-1.584
121 15 14.58 0.4212
122 13 14.08-1.084
123 15 14.93 0.06682
124 16 13.94 2.062
125 12 13.27-1.271
126 11 14.58-3.579
127 11 14.93-3.933
128 11 13.94-2.938
129 12 14.93-2.933
130 18 13.27 4.729
131 10 14.04-4.042
132 11 13.14-2.141
133 8 13.94-5.938
134 18 11.78 6.219
135 3 10.61-7.614
136 15 13.94 1.062
137 19 13.58 5.416
138 17 13.27 3.729
139 14 14.58-0.5788
140 13 12.59 0.4109
141 17 14.47 2.525
142 14 13.94 0.06167
143 19 15.47 3.53
144 14 13.94 0.06167
145 12 14.04-2.042
146 9 12.81-3.813
147 16 14.04 1.958
148 16 14.58 1.421
149 15 13.13 1.874
150 12 14.58-2.579
151 11 13.94-2.938
152 17 14.58 2.421
153 10 14.04-4.042
154 11 13.38-2.375
155 18 14.58 3.421
156 15 14.47 0.525
157 18 13.91 4.088
158 15 14.44 0.5619
159 11 13.94-2.938
160 12 13.58-1.584
161 10 13.45-3.454
162 16 13.94 2.062
163 10 13.81-3.808
164 16 15.12 0.8845







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.476 0.9519 0.524
9 0.3372 0.6745 0.6628
10 0.459 0.9179 0.541
11 0.3881 0.7763 0.6119
12 0.3374 0.6747 0.6626
13 0.2629 0.5259 0.7371
14 0.2152 0.4304 0.7848
15 0.1673 0.3345 0.8327
16 0.1402 0.2804 0.8598
17 0.2519 0.5038 0.7481
18 0.191 0.382 0.809
19 0.1428 0.2856 0.8572
20 0.1196 0.2392 0.8804
21 0.1059 0.2117 0.8941
22 0.1011 0.2021 0.8989
23 0.07119 0.1424 0.9288
24 0.05711 0.1142 0.9429
25 0.06745 0.1349 0.9325
26 0.04735 0.0947 0.9526
27 0.0451 0.09019 0.9549
28 0.03995 0.0799 0.96
29 0.02728 0.05457 0.9727
30 0.01927 0.03854 0.9807
31 0.01539 0.03078 0.9846
32 0.01109 0.02218 0.9889
33 0.01068 0.02136 0.9893
34 0.01167 0.02334 0.9883
35 0.01105 0.0221 0.9889
36 0.00741 0.01482 0.9926
37 0.004988 0.009976 0.995
38 0.005613 0.01123 0.9944
39 0.005144 0.01029 0.9949
40 0.008563 0.01713 0.9914
41 0.005815 0.01163 0.9942
42 0.003983 0.007967 0.996
43 0.00265 0.005301 0.9973
44 0.002057 0.004115 0.9979
45 0.001502 0.003004 0.9985
46 0.0009503 0.001901 0.999
47 0.1828 0.3656 0.8172
48 0.1649 0.3297 0.8351
49 0.1347 0.2694 0.8653
50 0.1124 0.2249 0.8876
51 0.1448 0.2897 0.8552
52 0.1178 0.2355 0.8822
53 0.09739 0.1948 0.9026
54 0.09413 0.1883 0.9059
55 0.08934 0.1787 0.9107
56 0.08951 0.179 0.9105
57 0.1045 0.2089 0.8955
58 0.1056 0.2113 0.8944
59 0.09741 0.1948 0.9026
60 0.08906 0.1781 0.9109
61 0.07277 0.1456 0.9272
62 0.05772 0.1154 0.9423
63 0.05017 0.1003 0.9498
64 0.0859 0.1718 0.9141
65 0.06895 0.1379 0.931
66 0.05521 0.1104 0.9448
67 0.05129 0.1026 0.9487
68 0.0518 0.1036 0.9482
69 0.05135 0.1027 0.9486
70 0.04293 0.08586 0.9571
71 0.06668 0.1334 0.9333
72 0.05424 0.1085 0.9458
73 0.04274 0.08548 0.9573
74 0.03519 0.07039 0.9648
75 0.02763 0.05527 0.9724
76 0.02153 0.04307 0.9785
77 0.01977 0.03955 0.9802
78 0.01635 0.0327 0.9837
79 0.01829 0.03658 0.9817
80 0.01455 0.02911 0.9854
81 0.02184 0.04369 0.9782
82 0.01764 0.03528 0.9824
83 0.03929 0.07858 0.9607
84 0.0471 0.09419 0.9529
85 0.05724 0.1145 0.9428
86 0.06085 0.1217 0.9392
87 0.06696 0.1339 0.933
88 0.05463 0.1093 0.9454
89 0.04881 0.09763 0.9512
90 0.05834 0.1167 0.9417
91 0.04664 0.09329 0.9534
92 0.05199 0.104 0.948
93 0.05399 0.108 0.946
94 0.04811 0.09621 0.9519
95 0.06806 0.1361 0.9319
96 0.08708 0.1742 0.9129
97 0.09407 0.1881 0.9059
98 0.4837 0.9675 0.5163
99 0.4417 0.8833 0.5583
100 0.4032 0.8063 0.5968
101 0.3628 0.7256 0.6372
102 0.3414 0.6829 0.6586
103 0.3033 0.6065 0.6967
104 0.2919 0.5838 0.7081
105 0.2613 0.5225 0.7387
106 0.2622 0.5244 0.7378
107 0.2437 0.4875 0.7563
108 0.2129 0.4258 0.7871
109 0.2317 0.4633 0.7683
110 0.2263 0.4525 0.7737
111 0.192 0.384 0.808
112 0.1633 0.3267 0.8367
113 0.1643 0.3286 0.8357
114 0.1505 0.301 0.8495
115 0.136 0.272 0.864
116 0.1253 0.2505 0.8747
117 0.1044 0.2087 0.8956
118 0.0864 0.1728 0.9136
119 0.07173 0.1435 0.9283
120 0.05857 0.1171 0.9414
121 0.04571 0.09142 0.9543
122 0.0364 0.07279 0.9636
123 0.02727 0.05455 0.9727
124 0.02356 0.04713 0.9764
125 0.0178 0.03559 0.9822
126 0.01927 0.03854 0.9807
127 0.02663 0.05326 0.9734
128 0.02629 0.05258 0.9737
129 0.0306 0.06119 0.9694
130 0.05174 0.1035 0.9483
131 0.06349 0.127 0.9365
132 0.05177 0.1035 0.9482
133 0.1309 0.2618 0.8691
134 0.4465 0.8931 0.5535
135 0.5163 0.9675 0.4837
136 0.4582 0.9165 0.5418
137 0.6471 0.7058 0.3529
138 0.7889 0.4222 0.2111
139 0.7488 0.5023 0.2512
140 0.7515 0.497 0.2485
141 0.7194 0.5613 0.2806
142 0.6574 0.6851 0.3426
143 0.6074 0.7851 0.3926
144 0.5374 0.9253 0.4626
145 0.4931 0.9863 0.5069
146 0.4315 0.8629 0.5685
147 0.3972 0.7944 0.6028
148 0.3242 0.6483 0.6758
149 0.4483 0.8965 0.5517
150 0.5072 0.9857 0.4928
151 0.4296 0.8592 0.5704
152 0.3418 0.6837 0.6582
153 0.5523 0.8954 0.4477
154 0.6242 0.7516 0.3758
155 0.4822 0.9644 0.5178
156 0.5029 0.9941 0.4971

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.476 &  0.9519 &  0.524 \tabularnewline
9 &  0.3372 &  0.6745 &  0.6628 \tabularnewline
10 &  0.459 &  0.9179 &  0.541 \tabularnewline
11 &  0.3881 &  0.7763 &  0.6119 \tabularnewline
12 &  0.3374 &  0.6747 &  0.6626 \tabularnewline
13 &  0.2629 &  0.5259 &  0.7371 \tabularnewline
14 &  0.2152 &  0.4304 &  0.7848 \tabularnewline
15 &  0.1673 &  0.3345 &  0.8327 \tabularnewline
16 &  0.1402 &  0.2804 &  0.8598 \tabularnewline
17 &  0.2519 &  0.5038 &  0.7481 \tabularnewline
18 &  0.191 &  0.382 &  0.809 \tabularnewline
19 &  0.1428 &  0.2856 &  0.8572 \tabularnewline
20 &  0.1196 &  0.2392 &  0.8804 \tabularnewline
21 &  0.1059 &  0.2117 &  0.8941 \tabularnewline
22 &  0.1011 &  0.2021 &  0.8989 \tabularnewline
23 &  0.07119 &  0.1424 &  0.9288 \tabularnewline
24 &  0.05711 &  0.1142 &  0.9429 \tabularnewline
25 &  0.06745 &  0.1349 &  0.9325 \tabularnewline
26 &  0.04735 &  0.0947 &  0.9526 \tabularnewline
27 &  0.0451 &  0.09019 &  0.9549 \tabularnewline
28 &  0.03995 &  0.0799 &  0.96 \tabularnewline
29 &  0.02728 &  0.05457 &  0.9727 \tabularnewline
30 &  0.01927 &  0.03854 &  0.9807 \tabularnewline
31 &  0.01539 &  0.03078 &  0.9846 \tabularnewline
32 &  0.01109 &  0.02218 &  0.9889 \tabularnewline
33 &  0.01068 &  0.02136 &  0.9893 \tabularnewline
34 &  0.01167 &  0.02334 &  0.9883 \tabularnewline
35 &  0.01105 &  0.0221 &  0.9889 \tabularnewline
36 &  0.00741 &  0.01482 &  0.9926 \tabularnewline
37 &  0.004988 &  0.009976 &  0.995 \tabularnewline
38 &  0.005613 &  0.01123 &  0.9944 \tabularnewline
39 &  0.005144 &  0.01029 &  0.9949 \tabularnewline
40 &  0.008563 &  0.01713 &  0.9914 \tabularnewline
41 &  0.005815 &  0.01163 &  0.9942 \tabularnewline
42 &  0.003983 &  0.007967 &  0.996 \tabularnewline
43 &  0.00265 &  0.005301 &  0.9973 \tabularnewline
44 &  0.002057 &  0.004115 &  0.9979 \tabularnewline
45 &  0.001502 &  0.003004 &  0.9985 \tabularnewline
46 &  0.0009503 &  0.001901 &  0.999 \tabularnewline
47 &  0.1828 &  0.3656 &  0.8172 \tabularnewline
48 &  0.1649 &  0.3297 &  0.8351 \tabularnewline
49 &  0.1347 &  0.2694 &  0.8653 \tabularnewline
50 &  0.1124 &  0.2249 &  0.8876 \tabularnewline
51 &  0.1448 &  0.2897 &  0.8552 \tabularnewline
52 &  0.1178 &  0.2355 &  0.8822 \tabularnewline
53 &  0.09739 &  0.1948 &  0.9026 \tabularnewline
54 &  0.09413 &  0.1883 &  0.9059 \tabularnewline
55 &  0.08934 &  0.1787 &  0.9107 \tabularnewline
56 &  0.08951 &  0.179 &  0.9105 \tabularnewline
57 &  0.1045 &  0.2089 &  0.8955 \tabularnewline
58 &  0.1056 &  0.2113 &  0.8944 \tabularnewline
59 &  0.09741 &  0.1948 &  0.9026 \tabularnewline
60 &  0.08906 &  0.1781 &  0.9109 \tabularnewline
61 &  0.07277 &  0.1456 &  0.9272 \tabularnewline
62 &  0.05772 &  0.1154 &  0.9423 \tabularnewline
63 &  0.05017 &  0.1003 &  0.9498 \tabularnewline
64 &  0.0859 &  0.1718 &  0.9141 \tabularnewline
65 &  0.06895 &  0.1379 &  0.931 \tabularnewline
66 &  0.05521 &  0.1104 &  0.9448 \tabularnewline
67 &  0.05129 &  0.1026 &  0.9487 \tabularnewline
68 &  0.0518 &  0.1036 &  0.9482 \tabularnewline
69 &  0.05135 &  0.1027 &  0.9486 \tabularnewline
70 &  0.04293 &  0.08586 &  0.9571 \tabularnewline
71 &  0.06668 &  0.1334 &  0.9333 \tabularnewline
72 &  0.05424 &  0.1085 &  0.9458 \tabularnewline
73 &  0.04274 &  0.08548 &  0.9573 \tabularnewline
74 &  0.03519 &  0.07039 &  0.9648 \tabularnewline
75 &  0.02763 &  0.05527 &  0.9724 \tabularnewline
76 &  0.02153 &  0.04307 &  0.9785 \tabularnewline
77 &  0.01977 &  0.03955 &  0.9802 \tabularnewline
78 &  0.01635 &  0.0327 &  0.9837 \tabularnewline
79 &  0.01829 &  0.03658 &  0.9817 \tabularnewline
80 &  0.01455 &  0.02911 &  0.9854 \tabularnewline
81 &  0.02184 &  0.04369 &  0.9782 \tabularnewline
82 &  0.01764 &  0.03528 &  0.9824 \tabularnewline
83 &  0.03929 &  0.07858 &  0.9607 \tabularnewline
84 &  0.0471 &  0.09419 &  0.9529 \tabularnewline
85 &  0.05724 &  0.1145 &  0.9428 \tabularnewline
86 &  0.06085 &  0.1217 &  0.9392 \tabularnewline
87 &  0.06696 &  0.1339 &  0.933 \tabularnewline
88 &  0.05463 &  0.1093 &  0.9454 \tabularnewline
89 &  0.04881 &  0.09763 &  0.9512 \tabularnewline
90 &  0.05834 &  0.1167 &  0.9417 \tabularnewline
91 &  0.04664 &  0.09329 &  0.9534 \tabularnewline
92 &  0.05199 &  0.104 &  0.948 \tabularnewline
93 &  0.05399 &  0.108 &  0.946 \tabularnewline
94 &  0.04811 &  0.09621 &  0.9519 \tabularnewline
95 &  0.06806 &  0.1361 &  0.9319 \tabularnewline
96 &  0.08708 &  0.1742 &  0.9129 \tabularnewline
97 &  0.09407 &  0.1881 &  0.9059 \tabularnewline
98 &  0.4837 &  0.9675 &  0.5163 \tabularnewline
99 &  0.4417 &  0.8833 &  0.5583 \tabularnewline
100 &  0.4032 &  0.8063 &  0.5968 \tabularnewline
101 &  0.3628 &  0.7256 &  0.6372 \tabularnewline
102 &  0.3414 &  0.6829 &  0.6586 \tabularnewline
103 &  0.3033 &  0.6065 &  0.6967 \tabularnewline
104 &  0.2919 &  0.5838 &  0.7081 \tabularnewline
105 &  0.2613 &  0.5225 &  0.7387 \tabularnewline
106 &  0.2622 &  0.5244 &  0.7378 \tabularnewline
107 &  0.2437 &  0.4875 &  0.7563 \tabularnewline
108 &  0.2129 &  0.4258 &  0.7871 \tabularnewline
109 &  0.2317 &  0.4633 &  0.7683 \tabularnewline
110 &  0.2263 &  0.4525 &  0.7737 \tabularnewline
111 &  0.192 &  0.384 &  0.808 \tabularnewline
112 &  0.1633 &  0.3267 &  0.8367 \tabularnewline
113 &  0.1643 &  0.3286 &  0.8357 \tabularnewline
114 &  0.1505 &  0.301 &  0.8495 \tabularnewline
115 &  0.136 &  0.272 &  0.864 \tabularnewline
116 &  0.1253 &  0.2505 &  0.8747 \tabularnewline
117 &  0.1044 &  0.2087 &  0.8956 \tabularnewline
118 &  0.0864 &  0.1728 &  0.9136 \tabularnewline
119 &  0.07173 &  0.1435 &  0.9283 \tabularnewline
120 &  0.05857 &  0.1171 &  0.9414 \tabularnewline
121 &  0.04571 &  0.09142 &  0.9543 \tabularnewline
122 &  0.0364 &  0.07279 &  0.9636 \tabularnewline
123 &  0.02727 &  0.05455 &  0.9727 \tabularnewline
124 &  0.02356 &  0.04713 &  0.9764 \tabularnewline
125 &  0.0178 &  0.03559 &  0.9822 \tabularnewline
126 &  0.01927 &  0.03854 &  0.9807 \tabularnewline
127 &  0.02663 &  0.05326 &  0.9734 \tabularnewline
128 &  0.02629 &  0.05258 &  0.9737 \tabularnewline
129 &  0.0306 &  0.06119 &  0.9694 \tabularnewline
130 &  0.05174 &  0.1035 &  0.9483 \tabularnewline
131 &  0.06349 &  0.127 &  0.9365 \tabularnewline
132 &  0.05177 &  0.1035 &  0.9482 \tabularnewline
133 &  0.1309 &  0.2618 &  0.8691 \tabularnewline
134 &  0.4465 &  0.8931 &  0.5535 \tabularnewline
135 &  0.5163 &  0.9675 &  0.4837 \tabularnewline
136 &  0.4582 &  0.9165 &  0.5418 \tabularnewline
137 &  0.6471 &  0.7058 &  0.3529 \tabularnewline
138 &  0.7889 &  0.4222 &  0.2111 \tabularnewline
139 &  0.7488 &  0.5023 &  0.2512 \tabularnewline
140 &  0.7515 &  0.497 &  0.2485 \tabularnewline
141 &  0.7194 &  0.5613 &  0.2806 \tabularnewline
142 &  0.6574 &  0.6851 &  0.3426 \tabularnewline
143 &  0.6074 &  0.7851 &  0.3926 \tabularnewline
144 &  0.5374 &  0.9253 &  0.4626 \tabularnewline
145 &  0.4931 &  0.9863 &  0.5069 \tabularnewline
146 &  0.4315 &  0.8629 &  0.5685 \tabularnewline
147 &  0.3972 &  0.7944 &  0.6028 \tabularnewline
148 &  0.3242 &  0.6483 &  0.6758 \tabularnewline
149 &  0.4483 &  0.8965 &  0.5517 \tabularnewline
150 &  0.5072 &  0.9857 &  0.4928 \tabularnewline
151 &  0.4296 &  0.8592 &  0.5704 \tabularnewline
152 &  0.3418 &  0.6837 &  0.6582 \tabularnewline
153 &  0.5523 &  0.8954 &  0.4477 \tabularnewline
154 &  0.6242 &  0.7516 &  0.3758 \tabularnewline
155 &  0.4822 &  0.9644 &  0.5178 \tabularnewline
156 &  0.5029 &  0.9941 &  0.4971 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300004&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.476[/C][C] 0.9519[/C][C] 0.524[/C][/ROW]
[ROW][C]9[/C][C] 0.3372[/C][C] 0.6745[/C][C] 0.6628[/C][/ROW]
[ROW][C]10[/C][C] 0.459[/C][C] 0.9179[/C][C] 0.541[/C][/ROW]
[ROW][C]11[/C][C] 0.3881[/C][C] 0.7763[/C][C] 0.6119[/C][/ROW]
[ROW][C]12[/C][C] 0.3374[/C][C] 0.6747[/C][C] 0.6626[/C][/ROW]
[ROW][C]13[/C][C] 0.2629[/C][C] 0.5259[/C][C] 0.7371[/C][/ROW]
[ROW][C]14[/C][C] 0.2152[/C][C] 0.4304[/C][C] 0.7848[/C][/ROW]
[ROW][C]15[/C][C] 0.1673[/C][C] 0.3345[/C][C] 0.8327[/C][/ROW]
[ROW][C]16[/C][C] 0.1402[/C][C] 0.2804[/C][C] 0.8598[/C][/ROW]
[ROW][C]17[/C][C] 0.2519[/C][C] 0.5038[/C][C] 0.7481[/C][/ROW]
[ROW][C]18[/C][C] 0.191[/C][C] 0.382[/C][C] 0.809[/C][/ROW]
[ROW][C]19[/C][C] 0.1428[/C][C] 0.2856[/C][C] 0.8572[/C][/ROW]
[ROW][C]20[/C][C] 0.1196[/C][C] 0.2392[/C][C] 0.8804[/C][/ROW]
[ROW][C]21[/C][C] 0.1059[/C][C] 0.2117[/C][C] 0.8941[/C][/ROW]
[ROW][C]22[/C][C] 0.1011[/C][C] 0.2021[/C][C] 0.8989[/C][/ROW]
[ROW][C]23[/C][C] 0.07119[/C][C] 0.1424[/C][C] 0.9288[/C][/ROW]
[ROW][C]24[/C][C] 0.05711[/C][C] 0.1142[/C][C] 0.9429[/C][/ROW]
[ROW][C]25[/C][C] 0.06745[/C][C] 0.1349[/C][C] 0.9325[/C][/ROW]
[ROW][C]26[/C][C] 0.04735[/C][C] 0.0947[/C][C] 0.9526[/C][/ROW]
[ROW][C]27[/C][C] 0.0451[/C][C] 0.09019[/C][C] 0.9549[/C][/ROW]
[ROW][C]28[/C][C] 0.03995[/C][C] 0.0799[/C][C] 0.96[/C][/ROW]
[ROW][C]29[/C][C] 0.02728[/C][C] 0.05457[/C][C] 0.9727[/C][/ROW]
[ROW][C]30[/C][C] 0.01927[/C][C] 0.03854[/C][C] 0.9807[/C][/ROW]
[ROW][C]31[/C][C] 0.01539[/C][C] 0.03078[/C][C] 0.9846[/C][/ROW]
[ROW][C]32[/C][C] 0.01109[/C][C] 0.02218[/C][C] 0.9889[/C][/ROW]
[ROW][C]33[/C][C] 0.01068[/C][C] 0.02136[/C][C] 0.9893[/C][/ROW]
[ROW][C]34[/C][C] 0.01167[/C][C] 0.02334[/C][C] 0.9883[/C][/ROW]
[ROW][C]35[/C][C] 0.01105[/C][C] 0.0221[/C][C] 0.9889[/C][/ROW]
[ROW][C]36[/C][C] 0.00741[/C][C] 0.01482[/C][C] 0.9926[/C][/ROW]
[ROW][C]37[/C][C] 0.004988[/C][C] 0.009976[/C][C] 0.995[/C][/ROW]
[ROW][C]38[/C][C] 0.005613[/C][C] 0.01123[/C][C] 0.9944[/C][/ROW]
[ROW][C]39[/C][C] 0.005144[/C][C] 0.01029[/C][C] 0.9949[/C][/ROW]
[ROW][C]40[/C][C] 0.008563[/C][C] 0.01713[/C][C] 0.9914[/C][/ROW]
[ROW][C]41[/C][C] 0.005815[/C][C] 0.01163[/C][C] 0.9942[/C][/ROW]
[ROW][C]42[/C][C] 0.003983[/C][C] 0.007967[/C][C] 0.996[/C][/ROW]
[ROW][C]43[/C][C] 0.00265[/C][C] 0.005301[/C][C] 0.9973[/C][/ROW]
[ROW][C]44[/C][C] 0.002057[/C][C] 0.004115[/C][C] 0.9979[/C][/ROW]
[ROW][C]45[/C][C] 0.001502[/C][C] 0.003004[/C][C] 0.9985[/C][/ROW]
[ROW][C]46[/C][C] 0.0009503[/C][C] 0.001901[/C][C] 0.999[/C][/ROW]
[ROW][C]47[/C][C] 0.1828[/C][C] 0.3656[/C][C] 0.8172[/C][/ROW]
[ROW][C]48[/C][C] 0.1649[/C][C] 0.3297[/C][C] 0.8351[/C][/ROW]
[ROW][C]49[/C][C] 0.1347[/C][C] 0.2694[/C][C] 0.8653[/C][/ROW]
[ROW][C]50[/C][C] 0.1124[/C][C] 0.2249[/C][C] 0.8876[/C][/ROW]
[ROW][C]51[/C][C] 0.1448[/C][C] 0.2897[/C][C] 0.8552[/C][/ROW]
[ROW][C]52[/C][C] 0.1178[/C][C] 0.2355[/C][C] 0.8822[/C][/ROW]
[ROW][C]53[/C][C] 0.09739[/C][C] 0.1948[/C][C] 0.9026[/C][/ROW]
[ROW][C]54[/C][C] 0.09413[/C][C] 0.1883[/C][C] 0.9059[/C][/ROW]
[ROW][C]55[/C][C] 0.08934[/C][C] 0.1787[/C][C] 0.9107[/C][/ROW]
[ROW][C]56[/C][C] 0.08951[/C][C] 0.179[/C][C] 0.9105[/C][/ROW]
[ROW][C]57[/C][C] 0.1045[/C][C] 0.2089[/C][C] 0.8955[/C][/ROW]
[ROW][C]58[/C][C] 0.1056[/C][C] 0.2113[/C][C] 0.8944[/C][/ROW]
[ROW][C]59[/C][C] 0.09741[/C][C] 0.1948[/C][C] 0.9026[/C][/ROW]
[ROW][C]60[/C][C] 0.08906[/C][C] 0.1781[/C][C] 0.9109[/C][/ROW]
[ROW][C]61[/C][C] 0.07277[/C][C] 0.1456[/C][C] 0.9272[/C][/ROW]
[ROW][C]62[/C][C] 0.05772[/C][C] 0.1154[/C][C] 0.9423[/C][/ROW]
[ROW][C]63[/C][C] 0.05017[/C][C] 0.1003[/C][C] 0.9498[/C][/ROW]
[ROW][C]64[/C][C] 0.0859[/C][C] 0.1718[/C][C] 0.9141[/C][/ROW]
[ROW][C]65[/C][C] 0.06895[/C][C] 0.1379[/C][C] 0.931[/C][/ROW]
[ROW][C]66[/C][C] 0.05521[/C][C] 0.1104[/C][C] 0.9448[/C][/ROW]
[ROW][C]67[/C][C] 0.05129[/C][C] 0.1026[/C][C] 0.9487[/C][/ROW]
[ROW][C]68[/C][C] 0.0518[/C][C] 0.1036[/C][C] 0.9482[/C][/ROW]
[ROW][C]69[/C][C] 0.05135[/C][C] 0.1027[/C][C] 0.9486[/C][/ROW]
[ROW][C]70[/C][C] 0.04293[/C][C] 0.08586[/C][C] 0.9571[/C][/ROW]
[ROW][C]71[/C][C] 0.06668[/C][C] 0.1334[/C][C] 0.9333[/C][/ROW]
[ROW][C]72[/C][C] 0.05424[/C][C] 0.1085[/C][C] 0.9458[/C][/ROW]
[ROW][C]73[/C][C] 0.04274[/C][C] 0.08548[/C][C] 0.9573[/C][/ROW]
[ROW][C]74[/C][C] 0.03519[/C][C] 0.07039[/C][C] 0.9648[/C][/ROW]
[ROW][C]75[/C][C] 0.02763[/C][C] 0.05527[/C][C] 0.9724[/C][/ROW]
[ROW][C]76[/C][C] 0.02153[/C][C] 0.04307[/C][C] 0.9785[/C][/ROW]
[ROW][C]77[/C][C] 0.01977[/C][C] 0.03955[/C][C] 0.9802[/C][/ROW]
[ROW][C]78[/C][C] 0.01635[/C][C] 0.0327[/C][C] 0.9837[/C][/ROW]
[ROW][C]79[/C][C] 0.01829[/C][C] 0.03658[/C][C] 0.9817[/C][/ROW]
[ROW][C]80[/C][C] 0.01455[/C][C] 0.02911[/C][C] 0.9854[/C][/ROW]
[ROW][C]81[/C][C] 0.02184[/C][C] 0.04369[/C][C] 0.9782[/C][/ROW]
[ROW][C]82[/C][C] 0.01764[/C][C] 0.03528[/C][C] 0.9824[/C][/ROW]
[ROW][C]83[/C][C] 0.03929[/C][C] 0.07858[/C][C] 0.9607[/C][/ROW]
[ROW][C]84[/C][C] 0.0471[/C][C] 0.09419[/C][C] 0.9529[/C][/ROW]
[ROW][C]85[/C][C] 0.05724[/C][C] 0.1145[/C][C] 0.9428[/C][/ROW]
[ROW][C]86[/C][C] 0.06085[/C][C] 0.1217[/C][C] 0.9392[/C][/ROW]
[ROW][C]87[/C][C] 0.06696[/C][C] 0.1339[/C][C] 0.933[/C][/ROW]
[ROW][C]88[/C][C] 0.05463[/C][C] 0.1093[/C][C] 0.9454[/C][/ROW]
[ROW][C]89[/C][C] 0.04881[/C][C] 0.09763[/C][C] 0.9512[/C][/ROW]
[ROW][C]90[/C][C] 0.05834[/C][C] 0.1167[/C][C] 0.9417[/C][/ROW]
[ROW][C]91[/C][C] 0.04664[/C][C] 0.09329[/C][C] 0.9534[/C][/ROW]
[ROW][C]92[/C][C] 0.05199[/C][C] 0.104[/C][C] 0.948[/C][/ROW]
[ROW][C]93[/C][C] 0.05399[/C][C] 0.108[/C][C] 0.946[/C][/ROW]
[ROW][C]94[/C][C] 0.04811[/C][C] 0.09621[/C][C] 0.9519[/C][/ROW]
[ROW][C]95[/C][C] 0.06806[/C][C] 0.1361[/C][C] 0.9319[/C][/ROW]
[ROW][C]96[/C][C] 0.08708[/C][C] 0.1742[/C][C] 0.9129[/C][/ROW]
[ROW][C]97[/C][C] 0.09407[/C][C] 0.1881[/C][C] 0.9059[/C][/ROW]
[ROW][C]98[/C][C] 0.4837[/C][C] 0.9675[/C][C] 0.5163[/C][/ROW]
[ROW][C]99[/C][C] 0.4417[/C][C] 0.8833[/C][C] 0.5583[/C][/ROW]
[ROW][C]100[/C][C] 0.4032[/C][C] 0.8063[/C][C] 0.5968[/C][/ROW]
[ROW][C]101[/C][C] 0.3628[/C][C] 0.7256[/C][C] 0.6372[/C][/ROW]
[ROW][C]102[/C][C] 0.3414[/C][C] 0.6829[/C][C] 0.6586[/C][/ROW]
[ROW][C]103[/C][C] 0.3033[/C][C] 0.6065[/C][C] 0.6967[/C][/ROW]
[ROW][C]104[/C][C] 0.2919[/C][C] 0.5838[/C][C] 0.7081[/C][/ROW]
[ROW][C]105[/C][C] 0.2613[/C][C] 0.5225[/C][C] 0.7387[/C][/ROW]
[ROW][C]106[/C][C] 0.2622[/C][C] 0.5244[/C][C] 0.7378[/C][/ROW]
[ROW][C]107[/C][C] 0.2437[/C][C] 0.4875[/C][C] 0.7563[/C][/ROW]
[ROW][C]108[/C][C] 0.2129[/C][C] 0.4258[/C][C] 0.7871[/C][/ROW]
[ROW][C]109[/C][C] 0.2317[/C][C] 0.4633[/C][C] 0.7683[/C][/ROW]
[ROW][C]110[/C][C] 0.2263[/C][C] 0.4525[/C][C] 0.7737[/C][/ROW]
[ROW][C]111[/C][C] 0.192[/C][C] 0.384[/C][C] 0.808[/C][/ROW]
[ROW][C]112[/C][C] 0.1633[/C][C] 0.3267[/C][C] 0.8367[/C][/ROW]
[ROW][C]113[/C][C] 0.1643[/C][C] 0.3286[/C][C] 0.8357[/C][/ROW]
[ROW][C]114[/C][C] 0.1505[/C][C] 0.301[/C][C] 0.8495[/C][/ROW]
[ROW][C]115[/C][C] 0.136[/C][C] 0.272[/C][C] 0.864[/C][/ROW]
[ROW][C]116[/C][C] 0.1253[/C][C] 0.2505[/C][C] 0.8747[/C][/ROW]
[ROW][C]117[/C][C] 0.1044[/C][C] 0.2087[/C][C] 0.8956[/C][/ROW]
[ROW][C]118[/C][C] 0.0864[/C][C] 0.1728[/C][C] 0.9136[/C][/ROW]
[ROW][C]119[/C][C] 0.07173[/C][C] 0.1435[/C][C] 0.9283[/C][/ROW]
[ROW][C]120[/C][C] 0.05857[/C][C] 0.1171[/C][C] 0.9414[/C][/ROW]
[ROW][C]121[/C][C] 0.04571[/C][C] 0.09142[/C][C] 0.9543[/C][/ROW]
[ROW][C]122[/C][C] 0.0364[/C][C] 0.07279[/C][C] 0.9636[/C][/ROW]
[ROW][C]123[/C][C] 0.02727[/C][C] 0.05455[/C][C] 0.9727[/C][/ROW]
[ROW][C]124[/C][C] 0.02356[/C][C] 0.04713[/C][C] 0.9764[/C][/ROW]
[ROW][C]125[/C][C] 0.0178[/C][C] 0.03559[/C][C] 0.9822[/C][/ROW]
[ROW][C]126[/C][C] 0.01927[/C][C] 0.03854[/C][C] 0.9807[/C][/ROW]
[ROW][C]127[/C][C] 0.02663[/C][C] 0.05326[/C][C] 0.9734[/C][/ROW]
[ROW][C]128[/C][C] 0.02629[/C][C] 0.05258[/C][C] 0.9737[/C][/ROW]
[ROW][C]129[/C][C] 0.0306[/C][C] 0.06119[/C][C] 0.9694[/C][/ROW]
[ROW][C]130[/C][C] 0.05174[/C][C] 0.1035[/C][C] 0.9483[/C][/ROW]
[ROW][C]131[/C][C] 0.06349[/C][C] 0.127[/C][C] 0.9365[/C][/ROW]
[ROW][C]132[/C][C] 0.05177[/C][C] 0.1035[/C][C] 0.9482[/C][/ROW]
[ROW][C]133[/C][C] 0.1309[/C][C] 0.2618[/C][C] 0.8691[/C][/ROW]
[ROW][C]134[/C][C] 0.4465[/C][C] 0.8931[/C][C] 0.5535[/C][/ROW]
[ROW][C]135[/C][C] 0.5163[/C][C] 0.9675[/C][C] 0.4837[/C][/ROW]
[ROW][C]136[/C][C] 0.4582[/C][C] 0.9165[/C][C] 0.5418[/C][/ROW]
[ROW][C]137[/C][C] 0.6471[/C][C] 0.7058[/C][C] 0.3529[/C][/ROW]
[ROW][C]138[/C][C] 0.7889[/C][C] 0.4222[/C][C] 0.2111[/C][/ROW]
[ROW][C]139[/C][C] 0.7488[/C][C] 0.5023[/C][C] 0.2512[/C][/ROW]
[ROW][C]140[/C][C] 0.7515[/C][C] 0.497[/C][C] 0.2485[/C][/ROW]
[ROW][C]141[/C][C] 0.7194[/C][C] 0.5613[/C][C] 0.2806[/C][/ROW]
[ROW][C]142[/C][C] 0.6574[/C][C] 0.6851[/C][C] 0.3426[/C][/ROW]
[ROW][C]143[/C][C] 0.6074[/C][C] 0.7851[/C][C] 0.3926[/C][/ROW]
[ROW][C]144[/C][C] 0.5374[/C][C] 0.9253[/C][C] 0.4626[/C][/ROW]
[ROW][C]145[/C][C] 0.4931[/C][C] 0.9863[/C][C] 0.5069[/C][/ROW]
[ROW][C]146[/C][C] 0.4315[/C][C] 0.8629[/C][C] 0.5685[/C][/ROW]
[ROW][C]147[/C][C] 0.3972[/C][C] 0.7944[/C][C] 0.6028[/C][/ROW]
[ROW][C]148[/C][C] 0.3242[/C][C] 0.6483[/C][C] 0.6758[/C][/ROW]
[ROW][C]149[/C][C] 0.4483[/C][C] 0.8965[/C][C] 0.5517[/C][/ROW]
[ROW][C]150[/C][C] 0.5072[/C][C] 0.9857[/C][C] 0.4928[/C][/ROW]
[ROW][C]151[/C][C] 0.4296[/C][C] 0.8592[/C][C] 0.5704[/C][/ROW]
[ROW][C]152[/C][C] 0.3418[/C][C] 0.6837[/C][C] 0.6582[/C][/ROW]
[ROW][C]153[/C][C] 0.5523[/C][C] 0.8954[/C][C] 0.4477[/C][/ROW]
[ROW][C]154[/C][C] 0.6242[/C][C] 0.7516[/C][C] 0.3758[/C][/ROW]
[ROW][C]155[/C][C] 0.4822[/C][C] 0.9644[/C][C] 0.5178[/C][/ROW]
[ROW][C]156[/C][C] 0.5029[/C][C] 0.9941[/C][C] 0.4971[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300004&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300004&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.476 0.9519 0.524
9 0.3372 0.6745 0.6628
10 0.459 0.9179 0.541
11 0.3881 0.7763 0.6119
12 0.3374 0.6747 0.6626
13 0.2629 0.5259 0.7371
14 0.2152 0.4304 0.7848
15 0.1673 0.3345 0.8327
16 0.1402 0.2804 0.8598
17 0.2519 0.5038 0.7481
18 0.191 0.382 0.809
19 0.1428 0.2856 0.8572
20 0.1196 0.2392 0.8804
21 0.1059 0.2117 0.8941
22 0.1011 0.2021 0.8989
23 0.07119 0.1424 0.9288
24 0.05711 0.1142 0.9429
25 0.06745 0.1349 0.9325
26 0.04735 0.0947 0.9526
27 0.0451 0.09019 0.9549
28 0.03995 0.0799 0.96
29 0.02728 0.05457 0.9727
30 0.01927 0.03854 0.9807
31 0.01539 0.03078 0.9846
32 0.01109 0.02218 0.9889
33 0.01068 0.02136 0.9893
34 0.01167 0.02334 0.9883
35 0.01105 0.0221 0.9889
36 0.00741 0.01482 0.9926
37 0.004988 0.009976 0.995
38 0.005613 0.01123 0.9944
39 0.005144 0.01029 0.9949
40 0.008563 0.01713 0.9914
41 0.005815 0.01163 0.9942
42 0.003983 0.007967 0.996
43 0.00265 0.005301 0.9973
44 0.002057 0.004115 0.9979
45 0.001502 0.003004 0.9985
46 0.0009503 0.001901 0.999
47 0.1828 0.3656 0.8172
48 0.1649 0.3297 0.8351
49 0.1347 0.2694 0.8653
50 0.1124 0.2249 0.8876
51 0.1448 0.2897 0.8552
52 0.1178 0.2355 0.8822
53 0.09739 0.1948 0.9026
54 0.09413 0.1883 0.9059
55 0.08934 0.1787 0.9107
56 0.08951 0.179 0.9105
57 0.1045 0.2089 0.8955
58 0.1056 0.2113 0.8944
59 0.09741 0.1948 0.9026
60 0.08906 0.1781 0.9109
61 0.07277 0.1456 0.9272
62 0.05772 0.1154 0.9423
63 0.05017 0.1003 0.9498
64 0.0859 0.1718 0.9141
65 0.06895 0.1379 0.931
66 0.05521 0.1104 0.9448
67 0.05129 0.1026 0.9487
68 0.0518 0.1036 0.9482
69 0.05135 0.1027 0.9486
70 0.04293 0.08586 0.9571
71 0.06668 0.1334 0.9333
72 0.05424 0.1085 0.9458
73 0.04274 0.08548 0.9573
74 0.03519 0.07039 0.9648
75 0.02763 0.05527 0.9724
76 0.02153 0.04307 0.9785
77 0.01977 0.03955 0.9802
78 0.01635 0.0327 0.9837
79 0.01829 0.03658 0.9817
80 0.01455 0.02911 0.9854
81 0.02184 0.04369 0.9782
82 0.01764 0.03528 0.9824
83 0.03929 0.07858 0.9607
84 0.0471 0.09419 0.9529
85 0.05724 0.1145 0.9428
86 0.06085 0.1217 0.9392
87 0.06696 0.1339 0.933
88 0.05463 0.1093 0.9454
89 0.04881 0.09763 0.9512
90 0.05834 0.1167 0.9417
91 0.04664 0.09329 0.9534
92 0.05199 0.104 0.948
93 0.05399 0.108 0.946
94 0.04811 0.09621 0.9519
95 0.06806 0.1361 0.9319
96 0.08708 0.1742 0.9129
97 0.09407 0.1881 0.9059
98 0.4837 0.9675 0.5163
99 0.4417 0.8833 0.5583
100 0.4032 0.8063 0.5968
101 0.3628 0.7256 0.6372
102 0.3414 0.6829 0.6586
103 0.3033 0.6065 0.6967
104 0.2919 0.5838 0.7081
105 0.2613 0.5225 0.7387
106 0.2622 0.5244 0.7378
107 0.2437 0.4875 0.7563
108 0.2129 0.4258 0.7871
109 0.2317 0.4633 0.7683
110 0.2263 0.4525 0.7737
111 0.192 0.384 0.808
112 0.1633 0.3267 0.8367
113 0.1643 0.3286 0.8357
114 0.1505 0.301 0.8495
115 0.136 0.272 0.864
116 0.1253 0.2505 0.8747
117 0.1044 0.2087 0.8956
118 0.0864 0.1728 0.9136
119 0.07173 0.1435 0.9283
120 0.05857 0.1171 0.9414
121 0.04571 0.09142 0.9543
122 0.0364 0.07279 0.9636
123 0.02727 0.05455 0.9727
124 0.02356 0.04713 0.9764
125 0.0178 0.03559 0.9822
126 0.01927 0.03854 0.9807
127 0.02663 0.05326 0.9734
128 0.02629 0.05258 0.9737
129 0.0306 0.06119 0.9694
130 0.05174 0.1035 0.9483
131 0.06349 0.127 0.9365
132 0.05177 0.1035 0.9482
133 0.1309 0.2618 0.8691
134 0.4465 0.8931 0.5535
135 0.5163 0.9675 0.4837
136 0.4582 0.9165 0.5418
137 0.6471 0.7058 0.3529
138 0.7889 0.4222 0.2111
139 0.7488 0.5023 0.2512
140 0.7515 0.497 0.2485
141 0.7194 0.5613 0.2806
142 0.6574 0.6851 0.3426
143 0.6074 0.7851 0.3926
144 0.5374 0.9253 0.4626
145 0.4931 0.9863 0.5069
146 0.4315 0.8629 0.5685
147 0.3972 0.7944 0.6028
148 0.3242 0.6483 0.6758
149 0.4483 0.8965 0.5517
150 0.5072 0.9857 0.4928
151 0.4296 0.8592 0.5704
152 0.3418 0.6837 0.6582
153 0.5523 0.8954 0.4477
154 0.6242 0.7516 0.3758
155 0.4822 0.9644 0.5178
156 0.5029 0.9941 0.4971







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level6 0.04027NOK
5% type I error level270.181208NOK
10% type I error level460.308725NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 6 &  0.04027 & NOK \tabularnewline
5% type I error level & 27 & 0.181208 & NOK \tabularnewline
10% type I error level & 46 & 0.308725 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300004&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]6[/C][C] 0.04027[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]27[/C][C]0.181208[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]46[/C][C]0.308725[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300004&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300004&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level6 0.04027NOK
5% type I error level270.181208NOK
10% type I error level460.308725NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 4.2229, df1 = 2, df2 = 157, p-value = 0.01635
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.7317, df1 = 8, df2 = 151, p-value = 0.09534
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.49847, df1 = 2, df2 = 157, p-value = 0.6084

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 4.2229, df1 = 2, df2 = 157, p-value = 0.01635
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.7317, df1 = 8, df2 = 151, p-value = 0.09534
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.49847, df1 = 2, df2 = 157, p-value = 0.6084
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300004&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 4.2229, df1 = 2, df2 = 157, p-value = 0.01635
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.7317, df1 = 8, df2 = 151, p-value = 0.09534
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.49847, df1 = 2, df2 = 157, p-value = 0.6084
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300004&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300004&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 4.2229, df1 = 2, df2 = 157, p-value = 0.01635
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.7317, df1 = 8, df2 = 151, p-value = 0.09534
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.49847, df1 = 2, df2 = 157, p-value = 0.6084







Variance Inflation Factors (Multicollinearity)
> vif
     IK1      IK2      IK3      IK4 
1.270755 1.283208 1.362280 1.159302 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     IK1      IK2      IK3      IK4 
1.270755 1.283208 1.362280 1.159302 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300004&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     IK1      IK2      IK3      IK4 
1.270755 1.283208 1.362280 1.159302 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300004&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300004&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     IK1      IK2      IK3      IK4 
1.270755 1.283208 1.362280 1.159302 



Parameters (Session):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')