Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationThu, 15 Dec 2016 21:25:45 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/15/t1481833899q9v6v8x81pcw1m4.htm/, Retrieved Fri, 01 Nov 2024 03:31:06 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=300000, Retrieved Fri, 01 Nov 2024 03:31:06 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact141
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Multiple Regression] [Multiple Regressi...] [2016-12-02 08:23:08] [a804db3ba1c9a570742098c82aa3a8e3]
- R PD    [Multiple Regression] [Multiple regression] [2016-12-15 20:25:45] [325a18647724c80085378f2a448a1737] [Current]
- R PD      [Multiple Regression] [Multiple regressi...] [2016-12-15 22:05:36] [94d92f6843fa5eeafb3432946c36ea8b]
Feedback Forum

Post a new message
Dataseries X:
4	3	3	3	13
5	4	4	3	16
4	5	5	3	17
NA	4	4	3	NA
NA	4	4	4	NA
5	3	5	3	16
5	3	5	NA	NA
NA	4	5	3	NA
NA	4	5	4	NA
5	4	5	3	17
5	4	5	3	17
4	4	4	3	15
4	4	4	4	16
4	3	4	3	14
4	4	4	4	16
5	4	5	3	17
NA	4	4	4	NA
NA	NA	NA	NA	NA
3	4	4	NA	NA
NA	4	5	4	NA
5	4	4	3	16
NA	4	4	3	NA
5	4	4	3	16
NA	4	4	3	NA
NA	4	5	4	NA
NA	3	5	3	NA
4	4	4	4	16
4	4	4	3	15
4	4	5	3	16
4	4	5	3	16
3	4	3	3	13
4	3	5	3	15
5	4	4	4	17
NA	4	5	2	NA
4	2	4	3	13
5	4	5	3	17
NA	4	4	3	NA
3	3	4	4	14
2	4	4	4	14
5	4	5	4	18
NA	4	4	3	NA
5	4	5	3	17
4	3	3	3	13
4	4	5	3	16
4	4	4	3	15
3	4	5	3	15
NA	4	5	3	NA
4	4	4	3	15
3	4	3	3	13
NA	3	NA	NA	NA
5	4	5	3	17
NA	5	5	3	NA
NA	5	4	4	NA
2	3	3	3	11
3	4	4	3	14
2	4	4	3	13
NA	4	4	3	NA
5	5	4	3	17
4	4	4	4	16
NA	4	4	3	NA
5	4	5	3	17
5	4	4	3	16
4	5	4	3	16
5	4	4	3	16
4	4	4	3	15
4	2	4	2	12
5	4	5	3	17
3	4	4	3	14
2	4	4	4	14
5	4	4	3	16
NA	4	4	3	NA
NA	4	4	3	NA
NA	4	3	3	NA
NA	3	4	3	NA
NA	5	4	4	NA
4	4	4	3	15
5	3	5	3	16
3	4	4	3	14
2	4	4	5	15
5	4	5	3	17
NA	4	5	3	NA
1	3	3	3	10
NA	4	5	3	NA
5	4	4	4	17
NA	4	5	4	NA
5	5	5	5	20
4	4	5	4	17
5	4	5	4	18
NA	4	4	3	NA
5	4	4	4	17
5	4	2	3	14
NA	4	4	3	NA
4	5	5	3	17
NA	4	5	3	NA
4	5	5	3	17
NA	4	4	3	NA
4	4	4	4	16
4	5	4	5	18
5	4	5	4	18
5	4	4	3	16
NA	4	NA	NA	NA
NA	4	5	4	NA
4	4	4	3	15
2	4	4	3	13
NA	4	4	3	NA
NA	4	5	4	NA
NA	4	4	4	NA
NA	4	5	3	NA
NA	4	4	3	NA
4	4	4	4	16
NA	4	4	4	NA
NA	4	3	3	NA
NA	4	4	3	NA
3	3	3	3	12
5	4	5	NA	NA
4	4	4	4	16
5	4	4	3	16
NA	4	5	4	NA
5	4	4	3	16
3	4	4	3	14
4	4	4	3	15
3	4	4	3	14
NA	4	4	4	NA
4	4	4	3	15
NA	4	5	4	NA
4	4	4	3	15
5	4	4	3	16
NA	4	5	3	NA
NA	4	4	3	NA
NA	4	4	3	NA
2	3	3	3	11
4	4	4	NA	NA
4	5	4	5	18
NA	3	4	3	NA
2	3	3	3	11
NA	4	4	NA	NA
4	4	5	5	18
NA	NA	3	NA	NA
4	4	4	3	15
5	5	5	4	19
4	5	5	3	17
NA	3	4	3	NA
3	4	4	3	14
4	4	4	NA	NA
3	4	3	3	13
4	5	5	3	17
2	4	4	4	14
5	5	5	4	19
4	3	4	3	14
NA	4	4	4	NA
NA	3	3	3	NA
4	4	4	4	16
5	4	4	3	16
4	4	4	3	15
2	4	3	3	12
NA	4	4	3	NA
5	4	5	3	17
NA	4	3	3	NA
NA	4	4	3	NA
5	4	5	4	18
4	4	4	3	15
5	5	5	3	18
3	4	4	4	15
NA	4	4	3	NA
4	NA	4	4	NA
NA	3	4	3	NA
4	4	4	4	16
NA	4	3	3	NA
3	4	4	5	16




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time7 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300000&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]7 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300000&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300000&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time7 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
ITHSUM[t] = + 3.36057e-14 + 1TVDC1[t] + 1TVDC2[t] + 1TVDC3[t] + 1TVDC4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
ITHSUM[t] =  +  3.36057e-14 +  1TVDC1[t] +  1TVDC2[t] +  1TVDC3[t] +  1TVDC4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300000&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]ITHSUM[t] =  +  3.36057e-14 +  1TVDC1[t] +  1TVDC2[t] +  1TVDC3[t] +  1TVDC4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300000&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300000&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
ITHSUM[t] = + 3.36057e-14 + 1TVDC1[t] + 1TVDC2[t] + 1TVDC3[t] + 1TVDC4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+3.361e-14 7.699e-15+4.3650e+00 3.155e-05 1.578e-05
TVDC1+1 1.011e-15+9.8910e+14 0 0
TVDC2+1 1.666e-15+6.0040e+14 0 0
TVDC3+1 1.573e-15+6.3560e+14 0 0
TVDC4+1 1.5e-15+6.6670e+14 0 0

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +3.361e-14 &  7.699e-15 & +4.3650e+00 &  3.155e-05 &  1.578e-05 \tabularnewline
TVDC1 & +1 &  1.011e-15 & +9.8910e+14 &  0 &  0 \tabularnewline
TVDC2 & +1 &  1.666e-15 & +6.0040e+14 &  0 &  0 \tabularnewline
TVDC3 & +1 &  1.573e-15 & +6.3560e+14 &  0 &  0 \tabularnewline
TVDC4 & +1 &  1.5e-15 & +6.6670e+14 &  0 &  0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300000&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+3.361e-14[/C][C] 7.699e-15[/C][C]+4.3650e+00[/C][C] 3.155e-05[/C][C] 1.578e-05[/C][/ROW]
[ROW][C]TVDC1[/C][C]+1[/C][C] 1.011e-15[/C][C]+9.8910e+14[/C][C] 0[/C][C] 0[/C][/ROW]
[ROW][C]TVDC2[/C][C]+1[/C][C] 1.666e-15[/C][C]+6.0040e+14[/C][C] 0[/C][C] 0[/C][/ROW]
[ROW][C]TVDC3[/C][C]+1[/C][C] 1.573e-15[/C][C]+6.3560e+14[/C][C] 0[/C][C] 0[/C][/ROW]
[ROW][C]TVDC4[/C][C]+1[/C][C] 1.5e-15[/C][C]+6.6670e+14[/C][C] 0[/C][C] 0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300000&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300000&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+3.361e-14 7.699e-15+4.3650e+00 3.155e-05 1.578e-05
TVDC1+1 1.011e-15+9.8910e+14 0 0
TVDC2+1 1.666e-15+6.0040e+14 0 0
TVDC3+1 1.573e-15+6.3560e+14 0 0
TVDC4+1 1.5e-15+6.6670e+14 0 0







Multiple Linear Regression - Regression Statistics
Multiple R 1
R-squared 1
Adjusted R-squared 1
F-TEST (value) 1.196e+30
F-TEST (DF numerator)4
F-TEST (DF denominator)98
p-value 0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 8.648e-15
Sum Squared Residuals 7.33e-27

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  1 \tabularnewline
R-squared &  1 \tabularnewline
Adjusted R-squared &  1 \tabularnewline
F-TEST (value) &  1.196e+30 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 98 \tabularnewline
p-value &  0 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  8.648e-15 \tabularnewline
Sum Squared Residuals &  7.33e-27 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300000&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 1[/C][/ROW]
[ROW][C]R-squared[/C][C] 1[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 1[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.196e+30[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]98[/C][/ROW]
[ROW][C]p-value[/C][C] 0[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 8.648e-15[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 7.33e-27[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300000&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300000&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 1
R-squared 1
Adjusted R-squared 1
F-TEST (value) 1.196e+30
F-TEST (DF numerator)4
F-TEST (DF denominator)98
p-value 0
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 8.648e-15
Sum Squared Residuals 7.33e-27







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 13 8.16e-14
2 16 16-6.623e-15
3 17 17-8.382e-15
4 16 16 1.553e-17
5 17 17-4.639e-15
6 17 17 7.256e-16
7 15 15-8.485e-16
8 16 16-1.38e-15
9 14 14-3.344e-15
10 16 16-1.38e-15
11 17 17 7.256e-16
12 16 16-2.22e-15
13 16 16-2.22e-15
14 16 16-1.38e-15
15 15 15-8.485e-16
16 16 16 1.875e-15
17 16 16 1.875e-15
18 13 13-2.478e-15
19 15 15-5.235e-16
20 17 17-2.752e-15
21 13 13-5.841e-15
22 17 17 7.256e-16
23 14 14-2.602e-15
24 14 14 9.192e-16
25 18 18 8.29e-17
26 17 17 7.256e-16
27 13 13-6.047e-15
28 16 16 1.875e-15
29 15 15-8.485e-16
30 15 15 3.358e-15
31 15 15-8.485e-16
32 13 13-2.478e-15
33 17 17 7.256e-16
34 11 11-3.977e-15
35 14 14 4.677e-16
36 13 13 1.395e-15
37 17 17 3.174e-16
38 16 16-1.38e-15
39 17 17 7.256e-16
40 16 16-2.22e-15
41 16 16 1.356e-15
42 16 16-2.22e-15
43 15 15-8.485e-16
44 12 12-5.392e-15
45 17 17 7.256e-16
46 14 14 4.677e-16
47 14 14 9.192e-16
48 16 16-2.22e-15
49 15 15-8.485e-16
50 16 16-1.507e-15
51 14 14 4.677e-16
52 15 15 6.651e-16
53 17 17 7.256e-16
54 10 10-2.994e-15
55 17 17-2.752e-15
56 20 20 2.311e-15
57 17 17 1.455e-15
58 18 18 8.29e-17
59 17 17-2.752e-15
60 14 14-7.626e-15
61 17 17 4.302e-15
62 17 17 4.302e-15
63 16 16-1.38e-15
64 18 18 1.817e-16
65 18 18 8.29e-17
66 16 16-2.22e-15
67 15 15-8.485e-16
68 13 13 1.395e-15
69 16 16-1.38e-15
70 12 12-5.071e-15
71 16 16-1.38e-15
72 16 16-2.22e-15
73 16 16-2.22e-15
74 14 14 4.677e-16
75 15 15-8.485e-16
76 14 14 4.677e-16
77 15 15-8.485e-16
78 15 15-8.485e-16
79 16 16-2.22e-15
80 11 11-3.977e-15
81 18 18 1.817e-16
82 11 11-3.977e-15
83 18 18 9.785e-16
84 15 15-8.485e-16
85 19 19 2.676e-15
86 17 17 4.302e-15
87 14 14 4.677e-16
88 13 13-2.478e-15
89 17 17 4.302e-15
90 14 14 9.192e-16
91 19 19 2.676e-15
92 14 14-3.344e-15
93 16 16-1.38e-15
94 16 16-2.22e-15
95 15 15-8.485e-16
96 12 12-1.495e-15
97 17 17 7.256e-16
98 18 18 8.29e-17
99 15 15-8.485e-16
100 18 18 3.263e-15
101 15 15-1.195e-16
102 16 16-1.38e-15
103 16 16-2.626e-16

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  13 &  13 &  8.16e-14 \tabularnewline
2 &  16 &  16 & -6.623e-15 \tabularnewline
3 &  17 &  17 & -8.382e-15 \tabularnewline
4 &  16 &  16 &  1.553e-17 \tabularnewline
5 &  17 &  17 & -4.639e-15 \tabularnewline
6 &  17 &  17 &  7.256e-16 \tabularnewline
7 &  15 &  15 & -8.485e-16 \tabularnewline
8 &  16 &  16 & -1.38e-15 \tabularnewline
9 &  14 &  14 & -3.344e-15 \tabularnewline
10 &  16 &  16 & -1.38e-15 \tabularnewline
11 &  17 &  17 &  7.256e-16 \tabularnewline
12 &  16 &  16 & -2.22e-15 \tabularnewline
13 &  16 &  16 & -2.22e-15 \tabularnewline
14 &  16 &  16 & -1.38e-15 \tabularnewline
15 &  15 &  15 & -8.485e-16 \tabularnewline
16 &  16 &  16 &  1.875e-15 \tabularnewline
17 &  16 &  16 &  1.875e-15 \tabularnewline
18 &  13 &  13 & -2.478e-15 \tabularnewline
19 &  15 &  15 & -5.235e-16 \tabularnewline
20 &  17 &  17 & -2.752e-15 \tabularnewline
21 &  13 &  13 & -5.841e-15 \tabularnewline
22 &  17 &  17 &  7.256e-16 \tabularnewline
23 &  14 &  14 & -2.602e-15 \tabularnewline
24 &  14 &  14 &  9.192e-16 \tabularnewline
25 &  18 &  18 &  8.29e-17 \tabularnewline
26 &  17 &  17 &  7.256e-16 \tabularnewline
27 &  13 &  13 & -6.047e-15 \tabularnewline
28 &  16 &  16 &  1.875e-15 \tabularnewline
29 &  15 &  15 & -8.485e-16 \tabularnewline
30 &  15 &  15 &  3.358e-15 \tabularnewline
31 &  15 &  15 & -8.485e-16 \tabularnewline
32 &  13 &  13 & -2.478e-15 \tabularnewline
33 &  17 &  17 &  7.256e-16 \tabularnewline
34 &  11 &  11 & -3.977e-15 \tabularnewline
35 &  14 &  14 &  4.677e-16 \tabularnewline
36 &  13 &  13 &  1.395e-15 \tabularnewline
37 &  17 &  17 &  3.174e-16 \tabularnewline
38 &  16 &  16 & -1.38e-15 \tabularnewline
39 &  17 &  17 &  7.256e-16 \tabularnewline
40 &  16 &  16 & -2.22e-15 \tabularnewline
41 &  16 &  16 &  1.356e-15 \tabularnewline
42 &  16 &  16 & -2.22e-15 \tabularnewline
43 &  15 &  15 & -8.485e-16 \tabularnewline
44 &  12 &  12 & -5.392e-15 \tabularnewline
45 &  17 &  17 &  7.256e-16 \tabularnewline
46 &  14 &  14 &  4.677e-16 \tabularnewline
47 &  14 &  14 &  9.192e-16 \tabularnewline
48 &  16 &  16 & -2.22e-15 \tabularnewline
49 &  15 &  15 & -8.485e-16 \tabularnewline
50 &  16 &  16 & -1.507e-15 \tabularnewline
51 &  14 &  14 &  4.677e-16 \tabularnewline
52 &  15 &  15 &  6.651e-16 \tabularnewline
53 &  17 &  17 &  7.256e-16 \tabularnewline
54 &  10 &  10 & -2.994e-15 \tabularnewline
55 &  17 &  17 & -2.752e-15 \tabularnewline
56 &  20 &  20 &  2.311e-15 \tabularnewline
57 &  17 &  17 &  1.455e-15 \tabularnewline
58 &  18 &  18 &  8.29e-17 \tabularnewline
59 &  17 &  17 & -2.752e-15 \tabularnewline
60 &  14 &  14 & -7.626e-15 \tabularnewline
61 &  17 &  17 &  4.302e-15 \tabularnewline
62 &  17 &  17 &  4.302e-15 \tabularnewline
63 &  16 &  16 & -1.38e-15 \tabularnewline
64 &  18 &  18 &  1.817e-16 \tabularnewline
65 &  18 &  18 &  8.29e-17 \tabularnewline
66 &  16 &  16 & -2.22e-15 \tabularnewline
67 &  15 &  15 & -8.485e-16 \tabularnewline
68 &  13 &  13 &  1.395e-15 \tabularnewline
69 &  16 &  16 & -1.38e-15 \tabularnewline
70 &  12 &  12 & -5.071e-15 \tabularnewline
71 &  16 &  16 & -1.38e-15 \tabularnewline
72 &  16 &  16 & -2.22e-15 \tabularnewline
73 &  16 &  16 & -2.22e-15 \tabularnewline
74 &  14 &  14 &  4.677e-16 \tabularnewline
75 &  15 &  15 & -8.485e-16 \tabularnewline
76 &  14 &  14 &  4.677e-16 \tabularnewline
77 &  15 &  15 & -8.485e-16 \tabularnewline
78 &  15 &  15 & -8.485e-16 \tabularnewline
79 &  16 &  16 & -2.22e-15 \tabularnewline
80 &  11 &  11 & -3.977e-15 \tabularnewline
81 &  18 &  18 &  1.817e-16 \tabularnewline
82 &  11 &  11 & -3.977e-15 \tabularnewline
83 &  18 &  18 &  9.785e-16 \tabularnewline
84 &  15 &  15 & -8.485e-16 \tabularnewline
85 &  19 &  19 &  2.676e-15 \tabularnewline
86 &  17 &  17 &  4.302e-15 \tabularnewline
87 &  14 &  14 &  4.677e-16 \tabularnewline
88 &  13 &  13 & -2.478e-15 \tabularnewline
89 &  17 &  17 &  4.302e-15 \tabularnewline
90 &  14 &  14 &  9.192e-16 \tabularnewline
91 &  19 &  19 &  2.676e-15 \tabularnewline
92 &  14 &  14 & -3.344e-15 \tabularnewline
93 &  16 &  16 & -1.38e-15 \tabularnewline
94 &  16 &  16 & -2.22e-15 \tabularnewline
95 &  15 &  15 & -8.485e-16 \tabularnewline
96 &  12 &  12 & -1.495e-15 \tabularnewline
97 &  17 &  17 &  7.256e-16 \tabularnewline
98 &  18 &  18 &  8.29e-17 \tabularnewline
99 &  15 &  15 & -8.485e-16 \tabularnewline
100 &  18 &  18 &  3.263e-15 \tabularnewline
101 &  15 &  15 & -1.195e-16 \tabularnewline
102 &  16 &  16 & -1.38e-15 \tabularnewline
103 &  16 &  16 & -2.626e-16 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300000&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 13[/C][C] 13[/C][C] 8.16e-14[/C][/ROW]
[ROW][C]2[/C][C] 16[/C][C] 16[/C][C]-6.623e-15[/C][/ROW]
[ROW][C]3[/C][C] 17[/C][C] 17[/C][C]-8.382e-15[/C][/ROW]
[ROW][C]4[/C][C] 16[/C][C] 16[/C][C] 1.553e-17[/C][/ROW]
[ROW][C]5[/C][C] 17[/C][C] 17[/C][C]-4.639e-15[/C][/ROW]
[ROW][C]6[/C][C] 17[/C][C] 17[/C][C] 7.256e-16[/C][/ROW]
[ROW][C]7[/C][C] 15[/C][C] 15[/C][C]-8.485e-16[/C][/ROW]
[ROW][C]8[/C][C] 16[/C][C] 16[/C][C]-1.38e-15[/C][/ROW]
[ROW][C]9[/C][C] 14[/C][C] 14[/C][C]-3.344e-15[/C][/ROW]
[ROW][C]10[/C][C] 16[/C][C] 16[/C][C]-1.38e-15[/C][/ROW]
[ROW][C]11[/C][C] 17[/C][C] 17[/C][C] 7.256e-16[/C][/ROW]
[ROW][C]12[/C][C] 16[/C][C] 16[/C][C]-2.22e-15[/C][/ROW]
[ROW][C]13[/C][C] 16[/C][C] 16[/C][C]-2.22e-15[/C][/ROW]
[ROW][C]14[/C][C] 16[/C][C] 16[/C][C]-1.38e-15[/C][/ROW]
[ROW][C]15[/C][C] 15[/C][C] 15[/C][C]-8.485e-16[/C][/ROW]
[ROW][C]16[/C][C] 16[/C][C] 16[/C][C] 1.875e-15[/C][/ROW]
[ROW][C]17[/C][C] 16[/C][C] 16[/C][C] 1.875e-15[/C][/ROW]
[ROW][C]18[/C][C] 13[/C][C] 13[/C][C]-2.478e-15[/C][/ROW]
[ROW][C]19[/C][C] 15[/C][C] 15[/C][C]-5.235e-16[/C][/ROW]
[ROW][C]20[/C][C] 17[/C][C] 17[/C][C]-2.752e-15[/C][/ROW]
[ROW][C]21[/C][C] 13[/C][C] 13[/C][C]-5.841e-15[/C][/ROW]
[ROW][C]22[/C][C] 17[/C][C] 17[/C][C] 7.256e-16[/C][/ROW]
[ROW][C]23[/C][C] 14[/C][C] 14[/C][C]-2.602e-15[/C][/ROW]
[ROW][C]24[/C][C] 14[/C][C] 14[/C][C] 9.192e-16[/C][/ROW]
[ROW][C]25[/C][C] 18[/C][C] 18[/C][C] 8.29e-17[/C][/ROW]
[ROW][C]26[/C][C] 17[/C][C] 17[/C][C] 7.256e-16[/C][/ROW]
[ROW][C]27[/C][C] 13[/C][C] 13[/C][C]-6.047e-15[/C][/ROW]
[ROW][C]28[/C][C] 16[/C][C] 16[/C][C] 1.875e-15[/C][/ROW]
[ROW][C]29[/C][C] 15[/C][C] 15[/C][C]-8.485e-16[/C][/ROW]
[ROW][C]30[/C][C] 15[/C][C] 15[/C][C] 3.358e-15[/C][/ROW]
[ROW][C]31[/C][C] 15[/C][C] 15[/C][C]-8.485e-16[/C][/ROW]
[ROW][C]32[/C][C] 13[/C][C] 13[/C][C]-2.478e-15[/C][/ROW]
[ROW][C]33[/C][C] 17[/C][C] 17[/C][C] 7.256e-16[/C][/ROW]
[ROW][C]34[/C][C] 11[/C][C] 11[/C][C]-3.977e-15[/C][/ROW]
[ROW][C]35[/C][C] 14[/C][C] 14[/C][C] 4.677e-16[/C][/ROW]
[ROW][C]36[/C][C] 13[/C][C] 13[/C][C] 1.395e-15[/C][/ROW]
[ROW][C]37[/C][C] 17[/C][C] 17[/C][C] 3.174e-16[/C][/ROW]
[ROW][C]38[/C][C] 16[/C][C] 16[/C][C]-1.38e-15[/C][/ROW]
[ROW][C]39[/C][C] 17[/C][C] 17[/C][C] 7.256e-16[/C][/ROW]
[ROW][C]40[/C][C] 16[/C][C] 16[/C][C]-2.22e-15[/C][/ROW]
[ROW][C]41[/C][C] 16[/C][C] 16[/C][C] 1.356e-15[/C][/ROW]
[ROW][C]42[/C][C] 16[/C][C] 16[/C][C]-2.22e-15[/C][/ROW]
[ROW][C]43[/C][C] 15[/C][C] 15[/C][C]-8.485e-16[/C][/ROW]
[ROW][C]44[/C][C] 12[/C][C] 12[/C][C]-5.392e-15[/C][/ROW]
[ROW][C]45[/C][C] 17[/C][C] 17[/C][C] 7.256e-16[/C][/ROW]
[ROW][C]46[/C][C] 14[/C][C] 14[/C][C] 4.677e-16[/C][/ROW]
[ROW][C]47[/C][C] 14[/C][C] 14[/C][C] 9.192e-16[/C][/ROW]
[ROW][C]48[/C][C] 16[/C][C] 16[/C][C]-2.22e-15[/C][/ROW]
[ROW][C]49[/C][C] 15[/C][C] 15[/C][C]-8.485e-16[/C][/ROW]
[ROW][C]50[/C][C] 16[/C][C] 16[/C][C]-1.507e-15[/C][/ROW]
[ROW][C]51[/C][C] 14[/C][C] 14[/C][C] 4.677e-16[/C][/ROW]
[ROW][C]52[/C][C] 15[/C][C] 15[/C][C] 6.651e-16[/C][/ROW]
[ROW][C]53[/C][C] 17[/C][C] 17[/C][C] 7.256e-16[/C][/ROW]
[ROW][C]54[/C][C] 10[/C][C] 10[/C][C]-2.994e-15[/C][/ROW]
[ROW][C]55[/C][C] 17[/C][C] 17[/C][C]-2.752e-15[/C][/ROW]
[ROW][C]56[/C][C] 20[/C][C] 20[/C][C] 2.311e-15[/C][/ROW]
[ROW][C]57[/C][C] 17[/C][C] 17[/C][C] 1.455e-15[/C][/ROW]
[ROW][C]58[/C][C] 18[/C][C] 18[/C][C] 8.29e-17[/C][/ROW]
[ROW][C]59[/C][C] 17[/C][C] 17[/C][C]-2.752e-15[/C][/ROW]
[ROW][C]60[/C][C] 14[/C][C] 14[/C][C]-7.626e-15[/C][/ROW]
[ROW][C]61[/C][C] 17[/C][C] 17[/C][C] 4.302e-15[/C][/ROW]
[ROW][C]62[/C][C] 17[/C][C] 17[/C][C] 4.302e-15[/C][/ROW]
[ROW][C]63[/C][C] 16[/C][C] 16[/C][C]-1.38e-15[/C][/ROW]
[ROW][C]64[/C][C] 18[/C][C] 18[/C][C] 1.817e-16[/C][/ROW]
[ROW][C]65[/C][C] 18[/C][C] 18[/C][C] 8.29e-17[/C][/ROW]
[ROW][C]66[/C][C] 16[/C][C] 16[/C][C]-2.22e-15[/C][/ROW]
[ROW][C]67[/C][C] 15[/C][C] 15[/C][C]-8.485e-16[/C][/ROW]
[ROW][C]68[/C][C] 13[/C][C] 13[/C][C] 1.395e-15[/C][/ROW]
[ROW][C]69[/C][C] 16[/C][C] 16[/C][C]-1.38e-15[/C][/ROW]
[ROW][C]70[/C][C] 12[/C][C] 12[/C][C]-5.071e-15[/C][/ROW]
[ROW][C]71[/C][C] 16[/C][C] 16[/C][C]-1.38e-15[/C][/ROW]
[ROW][C]72[/C][C] 16[/C][C] 16[/C][C]-2.22e-15[/C][/ROW]
[ROW][C]73[/C][C] 16[/C][C] 16[/C][C]-2.22e-15[/C][/ROW]
[ROW][C]74[/C][C] 14[/C][C] 14[/C][C] 4.677e-16[/C][/ROW]
[ROW][C]75[/C][C] 15[/C][C] 15[/C][C]-8.485e-16[/C][/ROW]
[ROW][C]76[/C][C] 14[/C][C] 14[/C][C] 4.677e-16[/C][/ROW]
[ROW][C]77[/C][C] 15[/C][C] 15[/C][C]-8.485e-16[/C][/ROW]
[ROW][C]78[/C][C] 15[/C][C] 15[/C][C]-8.485e-16[/C][/ROW]
[ROW][C]79[/C][C] 16[/C][C] 16[/C][C]-2.22e-15[/C][/ROW]
[ROW][C]80[/C][C] 11[/C][C] 11[/C][C]-3.977e-15[/C][/ROW]
[ROW][C]81[/C][C] 18[/C][C] 18[/C][C] 1.817e-16[/C][/ROW]
[ROW][C]82[/C][C] 11[/C][C] 11[/C][C]-3.977e-15[/C][/ROW]
[ROW][C]83[/C][C] 18[/C][C] 18[/C][C] 9.785e-16[/C][/ROW]
[ROW][C]84[/C][C] 15[/C][C] 15[/C][C]-8.485e-16[/C][/ROW]
[ROW][C]85[/C][C] 19[/C][C] 19[/C][C] 2.676e-15[/C][/ROW]
[ROW][C]86[/C][C] 17[/C][C] 17[/C][C] 4.302e-15[/C][/ROW]
[ROW][C]87[/C][C] 14[/C][C] 14[/C][C] 4.677e-16[/C][/ROW]
[ROW][C]88[/C][C] 13[/C][C] 13[/C][C]-2.478e-15[/C][/ROW]
[ROW][C]89[/C][C] 17[/C][C] 17[/C][C] 4.302e-15[/C][/ROW]
[ROW][C]90[/C][C] 14[/C][C] 14[/C][C] 9.192e-16[/C][/ROW]
[ROW][C]91[/C][C] 19[/C][C] 19[/C][C] 2.676e-15[/C][/ROW]
[ROW][C]92[/C][C] 14[/C][C] 14[/C][C]-3.344e-15[/C][/ROW]
[ROW][C]93[/C][C] 16[/C][C] 16[/C][C]-1.38e-15[/C][/ROW]
[ROW][C]94[/C][C] 16[/C][C] 16[/C][C]-2.22e-15[/C][/ROW]
[ROW][C]95[/C][C] 15[/C][C] 15[/C][C]-8.485e-16[/C][/ROW]
[ROW][C]96[/C][C] 12[/C][C] 12[/C][C]-1.495e-15[/C][/ROW]
[ROW][C]97[/C][C] 17[/C][C] 17[/C][C] 7.256e-16[/C][/ROW]
[ROW][C]98[/C][C] 18[/C][C] 18[/C][C] 8.29e-17[/C][/ROW]
[ROW][C]99[/C][C] 15[/C][C] 15[/C][C]-8.485e-16[/C][/ROW]
[ROW][C]100[/C][C] 18[/C][C] 18[/C][C] 3.263e-15[/C][/ROW]
[ROW][C]101[/C][C] 15[/C][C] 15[/C][C]-1.195e-16[/C][/ROW]
[ROW][C]102[/C][C] 16[/C][C] 16[/C][C]-1.38e-15[/C][/ROW]
[ROW][C]103[/C][C] 16[/C][C] 16[/C][C]-2.626e-16[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300000&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300000&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 13 8.16e-14
2 16 16-6.623e-15
3 17 17-8.382e-15
4 16 16 1.553e-17
5 17 17-4.639e-15
6 17 17 7.256e-16
7 15 15-8.485e-16
8 16 16-1.38e-15
9 14 14-3.344e-15
10 16 16-1.38e-15
11 17 17 7.256e-16
12 16 16-2.22e-15
13 16 16-2.22e-15
14 16 16-1.38e-15
15 15 15-8.485e-16
16 16 16 1.875e-15
17 16 16 1.875e-15
18 13 13-2.478e-15
19 15 15-5.235e-16
20 17 17-2.752e-15
21 13 13-5.841e-15
22 17 17 7.256e-16
23 14 14-2.602e-15
24 14 14 9.192e-16
25 18 18 8.29e-17
26 17 17 7.256e-16
27 13 13-6.047e-15
28 16 16 1.875e-15
29 15 15-8.485e-16
30 15 15 3.358e-15
31 15 15-8.485e-16
32 13 13-2.478e-15
33 17 17 7.256e-16
34 11 11-3.977e-15
35 14 14 4.677e-16
36 13 13 1.395e-15
37 17 17 3.174e-16
38 16 16-1.38e-15
39 17 17 7.256e-16
40 16 16-2.22e-15
41 16 16 1.356e-15
42 16 16-2.22e-15
43 15 15-8.485e-16
44 12 12-5.392e-15
45 17 17 7.256e-16
46 14 14 4.677e-16
47 14 14 9.192e-16
48 16 16-2.22e-15
49 15 15-8.485e-16
50 16 16-1.507e-15
51 14 14 4.677e-16
52 15 15 6.651e-16
53 17 17 7.256e-16
54 10 10-2.994e-15
55 17 17-2.752e-15
56 20 20 2.311e-15
57 17 17 1.455e-15
58 18 18 8.29e-17
59 17 17-2.752e-15
60 14 14-7.626e-15
61 17 17 4.302e-15
62 17 17 4.302e-15
63 16 16-1.38e-15
64 18 18 1.817e-16
65 18 18 8.29e-17
66 16 16-2.22e-15
67 15 15-8.485e-16
68 13 13 1.395e-15
69 16 16-1.38e-15
70 12 12-5.071e-15
71 16 16-1.38e-15
72 16 16-2.22e-15
73 16 16-2.22e-15
74 14 14 4.677e-16
75 15 15-8.485e-16
76 14 14 4.677e-16
77 15 15-8.485e-16
78 15 15-8.485e-16
79 16 16-2.22e-15
80 11 11-3.977e-15
81 18 18 1.817e-16
82 11 11-3.977e-15
83 18 18 9.785e-16
84 15 15-8.485e-16
85 19 19 2.676e-15
86 17 17 4.302e-15
87 14 14 4.677e-16
88 13 13-2.478e-15
89 17 17 4.302e-15
90 14 14 9.192e-16
91 19 19 2.676e-15
92 14 14-3.344e-15
93 16 16-1.38e-15
94 16 16-2.22e-15
95 15 15-8.485e-16
96 12 12-1.495e-15
97 17 17 7.256e-16
98 18 18 8.29e-17
99 15 15-8.485e-16
100 18 18 3.263e-15
101 15 15-1.195e-16
102 16 16-1.38e-15
103 16 16-2.626e-16







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.2153 0.4306 0.7847
9 0.0562 0.1124 0.9438
10 0.02952 0.05904 0.9705
11 1.228e-06 2.455e-06 1
12 1.298e-07 2.597e-07 1
13 9.243e-06 1.849e-05 1
14 9.578e-06 1.916e-05 1
15 3.74e-05 7.48e-05 1
16 1.153e-13 2.307e-13 1
17 0.02419 0.04838 0.9758
18 6.136e-07 1.227e-06 1
19 0.0005425 0.001085 0.9995
20 3.996e-17 7.993e-17 1
21 2.584e-15 5.168e-15 1
22 1 7.086e-13 3.543e-13
23 9.506e-07 1.901e-06 1
24 0.658 0.684 0.342
25 2.604e-11 5.209e-11 1
26 3.952e-14 7.904e-14 1
27 7.532e-11 1.506e-10 1
28 0.9954 0.009192 0.004596
29 0.9963 0.007464 0.003732
30 0.9959 0.008153 0.004076
31 0.3992 0.7984 0.6008
32 5.573e-06 1.115e-05 1
33 8.326e-07 1.665e-06 1
34 0.8373 0.3254 0.1627
35 0.0002021 0.0004041 0.9998
36 2.305e-05 4.609e-05 1
37 1 2.142e-28 1.071e-28
38 0.8756 0.2487 0.1244
39 1 1.154e-08 5.768e-09
40 7.558e-09 1.512e-08 1
41 1 4.739e-14 2.369e-14
42 3.659e-35 7.319e-35 1
43 0.8317 0.3367 0.1683
44 1.226e-07 2.452e-07 1
45 0.2482 0.4965 0.7518
46 0.0001518 0.0003036 0.9998
47 0.9997 0.0006834 0.0003417
48 0.9512 0.09755 0.04877
49 2.344e-27 4.688e-27 1
50 1 6.397e-12 3.198e-12
51 0.0002388 0.0004776 0.9998
52 0.5375 0.9251 0.4625
53 3.453e-13 6.905e-13 1
54 5.036e-18 1.007e-17 1
55 0.9923 0.01538 0.00769
56 0.1811 0.3621 0.8189
57 0.07776 0.1555 0.9222
58 4.119e-17 8.238e-17 1
59 1 9.237e-14 4.618e-14
60 1 7.883e-05 3.942e-05
61 1 1.032e-13 5.16e-14
62 4.548e-37 9.095e-37 1
63 0.9849 0.03019 0.0151
64 0.7695 0.461 0.2305
65 1.815e-06 3.63e-06 1
66 0.0003702 0.0007404 0.9996
67 0.003263 0.006526 0.9967
68 1 1.852e-11 9.258e-12
69 1 1.657e-06 8.285e-07
70 1 5.825e-11 2.913e-11
71 5.87e-21 1.174e-20 1
72 0.9823 0.0355 0.01775
73 0.01017 0.02035 0.9898
74 1.398e-11 2.797e-11 1
75 1 1.532e-06 7.661e-07
76 1 5.044e-17 2.522e-17
77 1 5.079e-23 2.54e-23
78 1 1.409e-05 7.046e-06
79 0.9999 0.0002385 0.0001192
80 0.9863 0.02732 0.01366
81 0.0007182 0.001436 0.9993
82 1 2.915e-20 1.458e-20
83 1 6.072e-13 3.036e-13
84 0.9976 0.004769 0.002384
85 1 2.465e-07 1.233e-07
86 0.9997 0.000619 0.0003095
87 1 3.715e-11 1.858e-11
88 3.314e-20 6.629e-20 1
89 1 7.472e-05 3.736e-05
90 1 8.724e-07 4.362e-07
91 0.9985 0.003085 0.001543
92 0.9957 0.008537 0.004268
93 0.0545 0.109 0.9455
94 0.1221 0.2442 0.8779
95 0.9332 0.1336 0.06679

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.2153 &  0.4306 &  0.7847 \tabularnewline
9 &  0.0562 &  0.1124 &  0.9438 \tabularnewline
10 &  0.02952 &  0.05904 &  0.9705 \tabularnewline
11 &  1.228e-06 &  2.455e-06 &  1 \tabularnewline
12 &  1.298e-07 &  2.597e-07 &  1 \tabularnewline
13 &  9.243e-06 &  1.849e-05 &  1 \tabularnewline
14 &  9.578e-06 &  1.916e-05 &  1 \tabularnewline
15 &  3.74e-05 &  7.48e-05 &  1 \tabularnewline
16 &  1.153e-13 &  2.307e-13 &  1 \tabularnewline
17 &  0.02419 &  0.04838 &  0.9758 \tabularnewline
18 &  6.136e-07 &  1.227e-06 &  1 \tabularnewline
19 &  0.0005425 &  0.001085 &  0.9995 \tabularnewline
20 &  3.996e-17 &  7.993e-17 &  1 \tabularnewline
21 &  2.584e-15 &  5.168e-15 &  1 \tabularnewline
22 &  1 &  7.086e-13 &  3.543e-13 \tabularnewline
23 &  9.506e-07 &  1.901e-06 &  1 \tabularnewline
24 &  0.658 &  0.684 &  0.342 \tabularnewline
25 &  2.604e-11 &  5.209e-11 &  1 \tabularnewline
26 &  3.952e-14 &  7.904e-14 &  1 \tabularnewline
27 &  7.532e-11 &  1.506e-10 &  1 \tabularnewline
28 &  0.9954 &  0.009192 &  0.004596 \tabularnewline
29 &  0.9963 &  0.007464 &  0.003732 \tabularnewline
30 &  0.9959 &  0.008153 &  0.004076 \tabularnewline
31 &  0.3992 &  0.7984 &  0.6008 \tabularnewline
32 &  5.573e-06 &  1.115e-05 &  1 \tabularnewline
33 &  8.326e-07 &  1.665e-06 &  1 \tabularnewline
34 &  0.8373 &  0.3254 &  0.1627 \tabularnewline
35 &  0.0002021 &  0.0004041 &  0.9998 \tabularnewline
36 &  2.305e-05 &  4.609e-05 &  1 \tabularnewline
37 &  1 &  2.142e-28 &  1.071e-28 \tabularnewline
38 &  0.8756 &  0.2487 &  0.1244 \tabularnewline
39 &  1 &  1.154e-08 &  5.768e-09 \tabularnewline
40 &  7.558e-09 &  1.512e-08 &  1 \tabularnewline
41 &  1 &  4.739e-14 &  2.369e-14 \tabularnewline
42 &  3.659e-35 &  7.319e-35 &  1 \tabularnewline
43 &  0.8317 &  0.3367 &  0.1683 \tabularnewline
44 &  1.226e-07 &  2.452e-07 &  1 \tabularnewline
45 &  0.2482 &  0.4965 &  0.7518 \tabularnewline
46 &  0.0001518 &  0.0003036 &  0.9998 \tabularnewline
47 &  0.9997 &  0.0006834 &  0.0003417 \tabularnewline
48 &  0.9512 &  0.09755 &  0.04877 \tabularnewline
49 &  2.344e-27 &  4.688e-27 &  1 \tabularnewline
50 &  1 &  6.397e-12 &  3.198e-12 \tabularnewline
51 &  0.0002388 &  0.0004776 &  0.9998 \tabularnewline
52 &  0.5375 &  0.9251 &  0.4625 \tabularnewline
53 &  3.453e-13 &  6.905e-13 &  1 \tabularnewline
54 &  5.036e-18 &  1.007e-17 &  1 \tabularnewline
55 &  0.9923 &  0.01538 &  0.00769 \tabularnewline
56 &  0.1811 &  0.3621 &  0.8189 \tabularnewline
57 &  0.07776 &  0.1555 &  0.9222 \tabularnewline
58 &  4.119e-17 &  8.238e-17 &  1 \tabularnewline
59 &  1 &  9.237e-14 &  4.618e-14 \tabularnewline
60 &  1 &  7.883e-05 &  3.942e-05 \tabularnewline
61 &  1 &  1.032e-13 &  5.16e-14 \tabularnewline
62 &  4.548e-37 &  9.095e-37 &  1 \tabularnewline
63 &  0.9849 &  0.03019 &  0.0151 \tabularnewline
64 &  0.7695 &  0.461 &  0.2305 \tabularnewline
65 &  1.815e-06 &  3.63e-06 &  1 \tabularnewline
66 &  0.0003702 &  0.0007404 &  0.9996 \tabularnewline
67 &  0.003263 &  0.006526 &  0.9967 \tabularnewline
68 &  1 &  1.852e-11 &  9.258e-12 \tabularnewline
69 &  1 &  1.657e-06 &  8.285e-07 \tabularnewline
70 &  1 &  5.825e-11 &  2.913e-11 \tabularnewline
71 &  5.87e-21 &  1.174e-20 &  1 \tabularnewline
72 &  0.9823 &  0.0355 &  0.01775 \tabularnewline
73 &  0.01017 &  0.02035 &  0.9898 \tabularnewline
74 &  1.398e-11 &  2.797e-11 &  1 \tabularnewline
75 &  1 &  1.532e-06 &  7.661e-07 \tabularnewline
76 &  1 &  5.044e-17 &  2.522e-17 \tabularnewline
77 &  1 &  5.079e-23 &  2.54e-23 \tabularnewline
78 &  1 &  1.409e-05 &  7.046e-06 \tabularnewline
79 &  0.9999 &  0.0002385 &  0.0001192 \tabularnewline
80 &  0.9863 &  0.02732 &  0.01366 \tabularnewline
81 &  0.0007182 &  0.001436 &  0.9993 \tabularnewline
82 &  1 &  2.915e-20 &  1.458e-20 \tabularnewline
83 &  1 &  6.072e-13 &  3.036e-13 \tabularnewline
84 &  0.9976 &  0.004769 &  0.002384 \tabularnewline
85 &  1 &  2.465e-07 &  1.233e-07 \tabularnewline
86 &  0.9997 &  0.000619 &  0.0003095 \tabularnewline
87 &  1 &  3.715e-11 &  1.858e-11 \tabularnewline
88 &  3.314e-20 &  6.629e-20 &  1 \tabularnewline
89 &  1 &  7.472e-05 &  3.736e-05 \tabularnewline
90 &  1 &  8.724e-07 &  4.362e-07 \tabularnewline
91 &  0.9985 &  0.003085 &  0.001543 \tabularnewline
92 &  0.9957 &  0.008537 &  0.004268 \tabularnewline
93 &  0.0545 &  0.109 &  0.9455 \tabularnewline
94 &  0.1221 &  0.2442 &  0.8779 \tabularnewline
95 &  0.9332 &  0.1336 &  0.06679 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300000&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.2153[/C][C] 0.4306[/C][C] 0.7847[/C][/ROW]
[ROW][C]9[/C][C] 0.0562[/C][C] 0.1124[/C][C] 0.9438[/C][/ROW]
[ROW][C]10[/C][C] 0.02952[/C][C] 0.05904[/C][C] 0.9705[/C][/ROW]
[ROW][C]11[/C][C] 1.228e-06[/C][C] 2.455e-06[/C][C] 1[/C][/ROW]
[ROW][C]12[/C][C] 1.298e-07[/C][C] 2.597e-07[/C][C] 1[/C][/ROW]
[ROW][C]13[/C][C] 9.243e-06[/C][C] 1.849e-05[/C][C] 1[/C][/ROW]
[ROW][C]14[/C][C] 9.578e-06[/C][C] 1.916e-05[/C][C] 1[/C][/ROW]
[ROW][C]15[/C][C] 3.74e-05[/C][C] 7.48e-05[/C][C] 1[/C][/ROW]
[ROW][C]16[/C][C] 1.153e-13[/C][C] 2.307e-13[/C][C] 1[/C][/ROW]
[ROW][C]17[/C][C] 0.02419[/C][C] 0.04838[/C][C] 0.9758[/C][/ROW]
[ROW][C]18[/C][C] 6.136e-07[/C][C] 1.227e-06[/C][C] 1[/C][/ROW]
[ROW][C]19[/C][C] 0.0005425[/C][C] 0.001085[/C][C] 0.9995[/C][/ROW]
[ROW][C]20[/C][C] 3.996e-17[/C][C] 7.993e-17[/C][C] 1[/C][/ROW]
[ROW][C]21[/C][C] 2.584e-15[/C][C] 5.168e-15[/C][C] 1[/C][/ROW]
[ROW][C]22[/C][C] 1[/C][C] 7.086e-13[/C][C] 3.543e-13[/C][/ROW]
[ROW][C]23[/C][C] 9.506e-07[/C][C] 1.901e-06[/C][C] 1[/C][/ROW]
[ROW][C]24[/C][C] 0.658[/C][C] 0.684[/C][C] 0.342[/C][/ROW]
[ROW][C]25[/C][C] 2.604e-11[/C][C] 5.209e-11[/C][C] 1[/C][/ROW]
[ROW][C]26[/C][C] 3.952e-14[/C][C] 7.904e-14[/C][C] 1[/C][/ROW]
[ROW][C]27[/C][C] 7.532e-11[/C][C] 1.506e-10[/C][C] 1[/C][/ROW]
[ROW][C]28[/C][C] 0.9954[/C][C] 0.009192[/C][C] 0.004596[/C][/ROW]
[ROW][C]29[/C][C] 0.9963[/C][C] 0.007464[/C][C] 0.003732[/C][/ROW]
[ROW][C]30[/C][C] 0.9959[/C][C] 0.008153[/C][C] 0.004076[/C][/ROW]
[ROW][C]31[/C][C] 0.3992[/C][C] 0.7984[/C][C] 0.6008[/C][/ROW]
[ROW][C]32[/C][C] 5.573e-06[/C][C] 1.115e-05[/C][C] 1[/C][/ROW]
[ROW][C]33[/C][C] 8.326e-07[/C][C] 1.665e-06[/C][C] 1[/C][/ROW]
[ROW][C]34[/C][C] 0.8373[/C][C] 0.3254[/C][C] 0.1627[/C][/ROW]
[ROW][C]35[/C][C] 0.0002021[/C][C] 0.0004041[/C][C] 0.9998[/C][/ROW]
[ROW][C]36[/C][C] 2.305e-05[/C][C] 4.609e-05[/C][C] 1[/C][/ROW]
[ROW][C]37[/C][C] 1[/C][C] 2.142e-28[/C][C] 1.071e-28[/C][/ROW]
[ROW][C]38[/C][C] 0.8756[/C][C] 0.2487[/C][C] 0.1244[/C][/ROW]
[ROW][C]39[/C][C] 1[/C][C] 1.154e-08[/C][C] 5.768e-09[/C][/ROW]
[ROW][C]40[/C][C] 7.558e-09[/C][C] 1.512e-08[/C][C] 1[/C][/ROW]
[ROW][C]41[/C][C] 1[/C][C] 4.739e-14[/C][C] 2.369e-14[/C][/ROW]
[ROW][C]42[/C][C] 3.659e-35[/C][C] 7.319e-35[/C][C] 1[/C][/ROW]
[ROW][C]43[/C][C] 0.8317[/C][C] 0.3367[/C][C] 0.1683[/C][/ROW]
[ROW][C]44[/C][C] 1.226e-07[/C][C] 2.452e-07[/C][C] 1[/C][/ROW]
[ROW][C]45[/C][C] 0.2482[/C][C] 0.4965[/C][C] 0.7518[/C][/ROW]
[ROW][C]46[/C][C] 0.0001518[/C][C] 0.0003036[/C][C] 0.9998[/C][/ROW]
[ROW][C]47[/C][C] 0.9997[/C][C] 0.0006834[/C][C] 0.0003417[/C][/ROW]
[ROW][C]48[/C][C] 0.9512[/C][C] 0.09755[/C][C] 0.04877[/C][/ROW]
[ROW][C]49[/C][C] 2.344e-27[/C][C] 4.688e-27[/C][C] 1[/C][/ROW]
[ROW][C]50[/C][C] 1[/C][C] 6.397e-12[/C][C] 3.198e-12[/C][/ROW]
[ROW][C]51[/C][C] 0.0002388[/C][C] 0.0004776[/C][C] 0.9998[/C][/ROW]
[ROW][C]52[/C][C] 0.5375[/C][C] 0.9251[/C][C] 0.4625[/C][/ROW]
[ROW][C]53[/C][C] 3.453e-13[/C][C] 6.905e-13[/C][C] 1[/C][/ROW]
[ROW][C]54[/C][C] 5.036e-18[/C][C] 1.007e-17[/C][C] 1[/C][/ROW]
[ROW][C]55[/C][C] 0.9923[/C][C] 0.01538[/C][C] 0.00769[/C][/ROW]
[ROW][C]56[/C][C] 0.1811[/C][C] 0.3621[/C][C] 0.8189[/C][/ROW]
[ROW][C]57[/C][C] 0.07776[/C][C] 0.1555[/C][C] 0.9222[/C][/ROW]
[ROW][C]58[/C][C] 4.119e-17[/C][C] 8.238e-17[/C][C] 1[/C][/ROW]
[ROW][C]59[/C][C] 1[/C][C] 9.237e-14[/C][C] 4.618e-14[/C][/ROW]
[ROW][C]60[/C][C] 1[/C][C] 7.883e-05[/C][C] 3.942e-05[/C][/ROW]
[ROW][C]61[/C][C] 1[/C][C] 1.032e-13[/C][C] 5.16e-14[/C][/ROW]
[ROW][C]62[/C][C] 4.548e-37[/C][C] 9.095e-37[/C][C] 1[/C][/ROW]
[ROW][C]63[/C][C] 0.9849[/C][C] 0.03019[/C][C] 0.0151[/C][/ROW]
[ROW][C]64[/C][C] 0.7695[/C][C] 0.461[/C][C] 0.2305[/C][/ROW]
[ROW][C]65[/C][C] 1.815e-06[/C][C] 3.63e-06[/C][C] 1[/C][/ROW]
[ROW][C]66[/C][C] 0.0003702[/C][C] 0.0007404[/C][C] 0.9996[/C][/ROW]
[ROW][C]67[/C][C] 0.003263[/C][C] 0.006526[/C][C] 0.9967[/C][/ROW]
[ROW][C]68[/C][C] 1[/C][C] 1.852e-11[/C][C] 9.258e-12[/C][/ROW]
[ROW][C]69[/C][C] 1[/C][C] 1.657e-06[/C][C] 8.285e-07[/C][/ROW]
[ROW][C]70[/C][C] 1[/C][C] 5.825e-11[/C][C] 2.913e-11[/C][/ROW]
[ROW][C]71[/C][C] 5.87e-21[/C][C] 1.174e-20[/C][C] 1[/C][/ROW]
[ROW][C]72[/C][C] 0.9823[/C][C] 0.0355[/C][C] 0.01775[/C][/ROW]
[ROW][C]73[/C][C] 0.01017[/C][C] 0.02035[/C][C] 0.9898[/C][/ROW]
[ROW][C]74[/C][C] 1.398e-11[/C][C] 2.797e-11[/C][C] 1[/C][/ROW]
[ROW][C]75[/C][C] 1[/C][C] 1.532e-06[/C][C] 7.661e-07[/C][/ROW]
[ROW][C]76[/C][C] 1[/C][C] 5.044e-17[/C][C] 2.522e-17[/C][/ROW]
[ROW][C]77[/C][C] 1[/C][C] 5.079e-23[/C][C] 2.54e-23[/C][/ROW]
[ROW][C]78[/C][C] 1[/C][C] 1.409e-05[/C][C] 7.046e-06[/C][/ROW]
[ROW][C]79[/C][C] 0.9999[/C][C] 0.0002385[/C][C] 0.0001192[/C][/ROW]
[ROW][C]80[/C][C] 0.9863[/C][C] 0.02732[/C][C] 0.01366[/C][/ROW]
[ROW][C]81[/C][C] 0.0007182[/C][C] 0.001436[/C][C] 0.9993[/C][/ROW]
[ROW][C]82[/C][C] 1[/C][C] 2.915e-20[/C][C] 1.458e-20[/C][/ROW]
[ROW][C]83[/C][C] 1[/C][C] 6.072e-13[/C][C] 3.036e-13[/C][/ROW]
[ROW][C]84[/C][C] 0.9976[/C][C] 0.004769[/C][C] 0.002384[/C][/ROW]
[ROW][C]85[/C][C] 1[/C][C] 2.465e-07[/C][C] 1.233e-07[/C][/ROW]
[ROW][C]86[/C][C] 0.9997[/C][C] 0.000619[/C][C] 0.0003095[/C][/ROW]
[ROW][C]87[/C][C] 1[/C][C] 3.715e-11[/C][C] 1.858e-11[/C][/ROW]
[ROW][C]88[/C][C] 3.314e-20[/C][C] 6.629e-20[/C][C] 1[/C][/ROW]
[ROW][C]89[/C][C] 1[/C][C] 7.472e-05[/C][C] 3.736e-05[/C][/ROW]
[ROW][C]90[/C][C] 1[/C][C] 8.724e-07[/C][C] 4.362e-07[/C][/ROW]
[ROW][C]91[/C][C] 0.9985[/C][C] 0.003085[/C][C] 0.001543[/C][/ROW]
[ROW][C]92[/C][C] 0.9957[/C][C] 0.008537[/C][C] 0.004268[/C][/ROW]
[ROW][C]93[/C][C] 0.0545[/C][C] 0.109[/C][C] 0.9455[/C][/ROW]
[ROW][C]94[/C][C] 0.1221[/C][C] 0.2442[/C][C] 0.8779[/C][/ROW]
[ROW][C]95[/C][C] 0.9332[/C][C] 0.1336[/C][C] 0.06679[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300000&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300000&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.2153 0.4306 0.7847
9 0.0562 0.1124 0.9438
10 0.02952 0.05904 0.9705
11 1.228e-06 2.455e-06 1
12 1.298e-07 2.597e-07 1
13 9.243e-06 1.849e-05 1
14 9.578e-06 1.916e-05 1
15 3.74e-05 7.48e-05 1
16 1.153e-13 2.307e-13 1
17 0.02419 0.04838 0.9758
18 6.136e-07 1.227e-06 1
19 0.0005425 0.001085 0.9995
20 3.996e-17 7.993e-17 1
21 2.584e-15 5.168e-15 1
22 1 7.086e-13 3.543e-13
23 9.506e-07 1.901e-06 1
24 0.658 0.684 0.342
25 2.604e-11 5.209e-11 1
26 3.952e-14 7.904e-14 1
27 7.532e-11 1.506e-10 1
28 0.9954 0.009192 0.004596
29 0.9963 0.007464 0.003732
30 0.9959 0.008153 0.004076
31 0.3992 0.7984 0.6008
32 5.573e-06 1.115e-05 1
33 8.326e-07 1.665e-06 1
34 0.8373 0.3254 0.1627
35 0.0002021 0.0004041 0.9998
36 2.305e-05 4.609e-05 1
37 1 2.142e-28 1.071e-28
38 0.8756 0.2487 0.1244
39 1 1.154e-08 5.768e-09
40 7.558e-09 1.512e-08 1
41 1 4.739e-14 2.369e-14
42 3.659e-35 7.319e-35 1
43 0.8317 0.3367 0.1683
44 1.226e-07 2.452e-07 1
45 0.2482 0.4965 0.7518
46 0.0001518 0.0003036 0.9998
47 0.9997 0.0006834 0.0003417
48 0.9512 0.09755 0.04877
49 2.344e-27 4.688e-27 1
50 1 6.397e-12 3.198e-12
51 0.0002388 0.0004776 0.9998
52 0.5375 0.9251 0.4625
53 3.453e-13 6.905e-13 1
54 5.036e-18 1.007e-17 1
55 0.9923 0.01538 0.00769
56 0.1811 0.3621 0.8189
57 0.07776 0.1555 0.9222
58 4.119e-17 8.238e-17 1
59 1 9.237e-14 4.618e-14
60 1 7.883e-05 3.942e-05
61 1 1.032e-13 5.16e-14
62 4.548e-37 9.095e-37 1
63 0.9849 0.03019 0.0151
64 0.7695 0.461 0.2305
65 1.815e-06 3.63e-06 1
66 0.0003702 0.0007404 0.9996
67 0.003263 0.006526 0.9967
68 1 1.852e-11 9.258e-12
69 1 1.657e-06 8.285e-07
70 1 5.825e-11 2.913e-11
71 5.87e-21 1.174e-20 1
72 0.9823 0.0355 0.01775
73 0.01017 0.02035 0.9898
74 1.398e-11 2.797e-11 1
75 1 1.532e-06 7.661e-07
76 1 5.044e-17 2.522e-17
77 1 5.079e-23 2.54e-23
78 1 1.409e-05 7.046e-06
79 0.9999 0.0002385 0.0001192
80 0.9863 0.02732 0.01366
81 0.0007182 0.001436 0.9993
82 1 2.915e-20 1.458e-20
83 1 6.072e-13 3.036e-13
84 0.9976 0.004769 0.002384
85 1 2.465e-07 1.233e-07
86 0.9997 0.000619 0.0003095
87 1 3.715e-11 1.858e-11
88 3.314e-20 6.629e-20 1
89 1 7.472e-05 3.736e-05
90 1 8.724e-07 4.362e-07
91 0.9985 0.003085 0.001543
92 0.9957 0.008537 0.004268
93 0.0545 0.109 0.9455
94 0.1221 0.2442 0.8779
95 0.9332 0.1336 0.06679







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level65 0.7386NOK
5% type I error level710.806818NOK
10% type I error level730.829545NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 65 &  0.7386 & NOK \tabularnewline
5% type I error level & 71 & 0.806818 & NOK \tabularnewline
10% type I error level & 73 & 0.829545 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=300000&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]65[/C][C] 0.7386[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]71[/C][C]0.806818[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]73[/C][C]0.829545[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=300000&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300000&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level65 0.7386NOK
5% type I error level710.806818NOK
10% type I error level730.829545NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.89691, df1 = 2, df2 = 96, p-value = 0.4112
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3209, df1 = 8, df2 = 90, p-value = 0.2434
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.57881, df1 = 2, df2 = 96, p-value = 0.5625

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.89691, df1 = 2, df2 = 96, p-value = 0.4112
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3209, df1 = 8, df2 = 90, p-value = 0.2434
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.57881, df1 = 2, df2 = 96, p-value = 0.5625
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300000&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.89691, df1 = 2, df2 = 96, p-value = 0.4112
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3209, df1 = 8, df2 = 90, p-value = 0.2434
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.57881, df1 = 2, df2 = 96, p-value = 0.5625
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300000&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300000&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.89691, df1 = 2, df2 = 96, p-value = 0.4112
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 1.3209, df1 = 8, df2 = 90, p-value = 0.2434
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.57881, df1 = 2, df2 = 96, p-value = 0.5625







Variance Inflation Factors (Multicollinearity)
> vif
   TVDC1    TVDC2    TVDC3    TVDC4 
1.352849 1.255450 1.439439 1.116175 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
   TVDC1    TVDC2    TVDC3    TVDC4 
1.352849 1.255450 1.439439 1.116175 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=300000&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
   TVDC1    TVDC2    TVDC3    TVDC4 
1.352849 1.255450 1.439439 1.116175 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=300000&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=300000&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
   TVDC1    TVDC2    TVDC3    TVDC4 
1.352849 1.255450 1.439439 1.116175 



Parameters (Session):
Parameters (R input):
par1 = 5 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '4'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')