Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationThu, 15 Dec 2016 19:54:25 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/15/t1481828977n79y8wo7zvla9to.htm/, Retrieved Fri, 01 Nov 2024 03:41:28 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299967, Retrieved Fri, 01 Nov 2024 03:41:28 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact103
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [N2099 - r0481974] [2016-12-15 18:54:25] [ee2f08b6fcfe19fae25bd9410e008f6d] [Current]
Feedback Forum

Post a new message
Dataseries X:
2490
2560
2890
3420
2700
3290
2650
3060
3200
4600
4370
3340
2410
1920
2620
2840
2880
2380
2820
2480
3230
3860
5050
3630
1700
2590
2130
2350
2680
2270
2810
2200
3420
4300
3440
2670
2460
1920
2890
2600
2860
2010
2470
2210
3530
3790
3520
2510
1860
1760
1540
2240
2600
3060
2040
2230
2720
3740
3100
2100
3630
1620
1870
1680
1830
4620
1560
2800
1810
4260
2770
3280
1830
2590
1760
2950
2020
2530
2530
2220
2250
2630
3550
2670
2260
2170
2430
1700
2200
3140
1900
2260
3580
3050
3130
2350
1650
1760
2010
1910
1850
2030
2110
1900
2170
2690
3620
1920
1480
3910
2120
1980
2040
1820
1700
2210
2070
2650
3260
1590
1880
1390
1890
1640
1840
1620




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time6 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299967&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]6 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299967&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299967&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time6 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
124902490000
225602493.032279307960.27881527013704735.80043376635240.115228259627173
328902575.5913675358516.5544644535036172.7264905603970.601251512863013
434202802.6725878435751.8893867044656347.8458137650061.22512838614389
527002852.6219055060651.6124672049099-150.071252768784-0.0116030184777564
632902974.0814415152760.2403458014039214.9333026177640.452111492783955
726502961.4282187817752.3069523891676-195.347716099832-0.511318592854695
830602996.8347659590250.659437392025892.4505090260389-0.12726364544608
932003061.7492533864151.9225666415761111.7283871687720.114015778195738
1046003360.45559687272.0602265757665752.3629085503542.07634466659687
1143703633.1189769488687.3100906890386320.9192187022341.76063527989051
1233403695.1433133058385.5009069723612-300.53719130104-0.229854335199457
1324103691.6801707418182.3473392264702-1013.96938806123-1.14566857354556
1419203520.0503253015969.0436390553483-1001.04656724372-2.62550485485638
1526203357.3097406827954.9925658544935-271.567136326406-2.09827439528865
1628403201.9291437002841.838137138268843.1575170188057-1.84704185106159
1728803156.733296021736.4471741283444-106.927063723718-0.775588661903404
1823803009.0215407746925.3031006574421-258.471443378757-1.68847454553351
1928202986.0789817755422.4598189885834-65.8169991636934-0.455313487798115
2024802923.6899473656417.5838242671516-262.311752232729-0.821000320997485
2132302985.3822523742720.061894975316148.123748296280.435538842060589
2238603056.3750381324222.86438258816690.0906030490180.511168707530267
2350503301.3537690581334.81494829336061245.219372725092.26086097567738
2436303436.890912870940.0510492993572-39.68030961155671.04257732145463
2517003335.4038303697733.2547427110834-1294.27330417126-1.53211360696136
2625903304.7476236445330.0939415892738-564.695810324725-0.675482867809394
2721303150.6446337999220.6292514745349-604.426915502468-1.88441833040558
2823502979.0752858014310.5450209855178-203.798742530024-1.93378285154506
2926802877.22922656024.6046339345425650.164520913946-1.12718573179207
3022702791.22633731847-0.183721969072011-321.126964280715-0.912085927724801
3128102769.29276157343-1.3289207007293689.0526524747876-0.220281929191994
3222002735.44783527265-3.03224819950287-462.6716859553-0.331362517545047
3334202815.137958731181.27652176299027418.5837923541010.847472803771426
3443002973.952992928749.43141335370791969.5232645003331.62071020600384
3534402923.132675482116.33528531126311653.782478109351-0.621978307937072
3626702851.831601563672.38282310925445-4.67172578053965-0.804651922253094
3724602917.048111046835.54884707428936-601.2887234295530.655680148059955
3819202834.332618175721.08487575065974-712.406533009058-0.918120895646315
3928902858.996824711832.28677682073941-22.45616145733280.243344604630788
4026002835.794676199490.979748773716103-178.416018612278-0.261532956435287
4128602812.86932684783-0.249910142763969100.779130299999-0.244750865642834
4220102742.36798136579-3.86711801746461-574.707561904645-0.719544734051405
4324702677.54833608995-7.0044384845743-70.546889461528-0.625271764085582
4422102673.49557185018-6.85267703329855-470.1427197167290.0303319069131598
4535302740.80705378982-3.0452957331381621.8991184336310.763190128720239
4637902752.80309997859-2.274526432156261003.229297634730.154923993529644
4735202759.43562863666-1.81905659006946740.4358160658970.0917969721670589
4825102732.24033233522-3.11381626015889-164.854481216473-0.261753158110668
4918602674.45348170789-5.89882165796268-690.679421330194-0.564737361975723
5017602628.45556151116-7.94267380265407-777.705282784717-0.414071867469269
5115402464.04220388852-15.9309575595041-570.667756296296-1.61268461441122
5222402394.11622659736-18.6916214208315-32.4438081685985-0.555484830306273
5326002361.7085199986-19.3935389353315269.161307405967-0.14098266713681
5430602497.34450580692-11.4569030525235213.8042811753451.59352241531376
5520402479.58809376866-11.7794037008758-425.406554697927-0.0647831870471463
5622302508.21296700498-9.71142048370952-369.2255954744560.415737197855718
5727202456.84420461335-11.8426882626209357.031820278179-0.428781006911994
5837402468.48065503738-10.6420618640621218.599796335520.241698116661595
5931002439.12009039877-11.5987027020343703.068764180823-0.192693380033444
6021002385.96074099117-13.7215872728051-192.283562998901-0.427912039159622
6136302597.253413695-2.23166291233856525.421944511312.31769262597137
6216202601.2646261891-1.91284624559876-995.3408548297360.0643068263103254
6318702580.0720277752-2.8977871943472-666.6221818554-0.198504659277802
6416802470.44874836123-8.35194711239093-550.094868268565-1.09819835447186
6518302342.81253892282-14.4493335648884-244.300912045578-1.22701517311606
6646202567.32953522283-2.232906422608291514.806194616382.45809932023533
6715602552.29085732656-2.88757108650024-963.46342387763-0.131748735754945
6828002625.082206424070.9811296573784154.5202653955630.778749379379261
6918102498.87459542332-5.52009747888583-402.46663445254-1.3089020332292
7042602535.35918362268-3.3733272313121630.055613049440.432255866507261
7127702488.50418532028-5.5952418631127379.397802824832-0.447426867302253
7232802631.491464496981.9962822395549313.9739777553631.52896583288945
7318302494.75067166377-5.09169036979143-352.353444002651-1.42785318046483
7425902589.424846283390.00538767206421031-224.0845281502081.0268370517657
7517602576.75308468342-0.642344334133225-788.209169076188-0.130463704608675
7629502691.302232548685.24377867985432-0.6078452354172441.18522767427532
7720202704.911617676015.67127249641736-703.7398844887910.0860641030322778
7825302494.94392008514-5.34844296421524520.366016878218-2.21844550061627
7925302571.39319962617-1.16835206660121-225.4946014973460.84157751641036
8022202526.84167353222-3.38532696220752-209.1920957232-0.446381063339323
8122502536.42475106809-2.72262907396292-315.6156789406570.133437781394117
8226302338.55583510944-12.694440036859730.687937632328-2.00787291618009
8335502402.8220840461-8.76197882416609973.9622597791250.791817749053136
8426702391.85116498296-8.87484478341152283.120381328428-0.0227269777338248
8522602427.29590454669-6.61037752944137-267.0472161627350.45601271920301
8621702429.88102758765-6.14054005730118-280.5783627705490.0946177962018332
8724302539.94223779485-0.203183579297138-371.4832105173411.19563027861371
8817002448.7692694658-4.85139409600804-544.035653740692-0.935945202674889
8922002453.14785511407-4.37977189351286-273.9190387619970.0949578824048408
9031402479.87628567217-2.79023688263769590.1192791466460.320039263706132
9119002429.2958286453-5.23217173926025-421.748648722618-0.49167768180489
9222602411.23013554377-5.88792389237204-122.34866828892-0.13203842581306
9335802572.145945043842.63517112905691632.4641322878141.7161765414513
9430502596.787101547633.75959089411836403.68979458340.226405747490708
9531302555.011309452911.43293872116611677.459865247086-0.468473455151267
9623502492.7236238136-1.822860090124970.668934244284173-0.655564278442496
9716502407.20636585263-6.0991902605121-568.863598916526-0.861075251852739
9817602344.9758591035-8.9671983935931-458.657743400992-0.577507849851382
9920102314.5478071067-10.0637376919663-256.2525082262-0.220798609247868
10019102320.05663862201-9.26805598190576-445.0999609619330.16021309190591
10118502293.00232874154-10.176847729098-402.978697820887-0.182983779062028
10220302165.44402091986-16.1744724887972128.691517884231-1.20760929424616
10321102175.80560020531-14.8186097031841-125.5183867562060.273003854408556
10419002169.18330937654-14.3998180798128-287.6273282121410.0843251168213159
10521702071.73892415419-18.6429829892966285.135165579317-0.854377451521708
10626902046.84152682804-18.9625517699823657.232539700984-0.0643458378292536
10736202125.58223828464-13.97042950893771274.563378510431.00516572832248
10819202092.82605052875-14.9302792806211-130.554161997047-0.19326649309354
10914802059.50219334457-15.8700887385534-538.112571058708-0.189233449989137
11039102334.97780371677-0.983944623503474919.424417637992.997395145959
11121202409.475058215632.87272959668343-459.3257405530660.776557162505456
11219802427.374630891653.64051943303498-481.1882270110780.154595867942006
11320402423.520826696953.25760030115154-366.65721611129-0.0771007223593419
11418202335.10699478631-1.42630783851702-308.830415895973-0.943103467314168
11517002244.90540254035-5.9622360909429-345.144987426121-0.913313180717442
11622102242.28892706749-5.79128618105934-39.81753503146990.0344211205793952
11720702185.92374550963-8.3753328681114-2.1225799359481-0.520303484856437
11826502159.37406525383-9.30394110200695531.521561815048-0.186976478174817
11932602129.97063432424-10.33091225246421175.25658685045-0.206781056195469
12015902079.80831538087-12.3660709781037-400.181290168675-0.409780098377079
12118802148.23257715723-8.23814709199864-450.0241027323040.831162980951932
12213901951.69765299009-17.8590347765724-137.997379181396-1.93718617082285
12318901937.39385425704-17.677382493042-55.39375082798010.0365760502271859
12416401933.15094447818-16.9909573964598-323.3807008187560.138212460259573
12518401935.12137963958-16.0221383071206-137.7873771591060.195072032215064
12616201908.97076640906-16.539645439101-266.180223095321-0.104200177289538

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 2490 & 2490 & 0 & 0 & 0 \tabularnewline
2 & 2560 & 2493.03227930796 & 0.278815270137047 & 35.8004337663524 & 0.115228259627173 \tabularnewline
3 & 2890 & 2575.59136753585 & 16.5544644535036 & 172.726490560397 & 0.601251512863013 \tabularnewline
4 & 3420 & 2802.67258784357 & 51.8893867044656 & 347.845813765006 & 1.22512838614389 \tabularnewline
5 & 2700 & 2852.62190550606 & 51.6124672049099 & -150.071252768784 & -0.0116030184777564 \tabularnewline
6 & 3290 & 2974.08144151527 & 60.2403458014039 & 214.933302617764 & 0.452111492783955 \tabularnewline
7 & 2650 & 2961.42821878177 & 52.3069523891676 & -195.347716099832 & -0.511318592854695 \tabularnewline
8 & 3060 & 2996.83476595902 & 50.6594373920258 & 92.4505090260389 & -0.12726364544608 \tabularnewline
9 & 3200 & 3061.74925338641 & 51.9225666415761 & 111.728387168772 & 0.114015778195738 \tabularnewline
10 & 4600 & 3360.455596872 & 72.0602265757665 & 752.362908550354 & 2.07634466659687 \tabularnewline
11 & 4370 & 3633.11897694886 & 87.3100906890386 & 320.919218702234 & 1.76063527989051 \tabularnewline
12 & 3340 & 3695.14331330583 & 85.5009069723612 & -300.53719130104 & -0.229854335199457 \tabularnewline
13 & 2410 & 3691.68017074181 & 82.3473392264702 & -1013.96938806123 & -1.14566857354556 \tabularnewline
14 & 1920 & 3520.05032530159 & 69.0436390553483 & -1001.04656724372 & -2.62550485485638 \tabularnewline
15 & 2620 & 3357.30974068279 & 54.9925658544935 & -271.567136326406 & -2.09827439528865 \tabularnewline
16 & 2840 & 3201.92914370028 & 41.8381371382688 & 43.1575170188057 & -1.84704185106159 \tabularnewline
17 & 2880 & 3156.7332960217 & 36.4471741283444 & -106.927063723718 & -0.775588661903404 \tabularnewline
18 & 2380 & 3009.02154077469 & 25.3031006574421 & -258.471443378757 & -1.68847454553351 \tabularnewline
19 & 2820 & 2986.07898177554 & 22.4598189885834 & -65.8169991636934 & -0.455313487798115 \tabularnewline
20 & 2480 & 2923.68994736564 & 17.5838242671516 & -262.311752232729 & -0.821000320997485 \tabularnewline
21 & 3230 & 2985.38225237427 & 20.061894975316 & 148.12374829628 & 0.435538842060589 \tabularnewline
22 & 3860 & 3056.37503813242 & 22.86438258816 & 690.090603049018 & 0.511168707530267 \tabularnewline
23 & 5050 & 3301.35376905813 & 34.8149482933606 & 1245.21937272509 & 2.26086097567738 \tabularnewline
24 & 3630 & 3436.8909128709 & 40.0510492993572 & -39.6803096115567 & 1.04257732145463 \tabularnewline
25 & 1700 & 3335.40383036977 & 33.2547427110834 & -1294.27330417126 & -1.53211360696136 \tabularnewline
26 & 2590 & 3304.74762364453 & 30.0939415892738 & -564.695810324725 & -0.675482867809394 \tabularnewline
27 & 2130 & 3150.64463379992 & 20.6292514745349 & -604.426915502468 & -1.88441833040558 \tabularnewline
28 & 2350 & 2979.07528580143 & 10.5450209855178 & -203.798742530024 & -1.93378285154506 \tabularnewline
29 & 2680 & 2877.2292265602 & 4.60463393454256 & 50.164520913946 & -1.12718573179207 \tabularnewline
30 & 2270 & 2791.22633731847 & -0.183721969072011 & -321.126964280715 & -0.912085927724801 \tabularnewline
31 & 2810 & 2769.29276157343 & -1.32892070072936 & 89.0526524747876 & -0.220281929191994 \tabularnewline
32 & 2200 & 2735.44783527265 & -3.03224819950287 & -462.6716859553 & -0.331362517545047 \tabularnewline
33 & 3420 & 2815.13795873118 & 1.27652176299027 & 418.583792354101 & 0.847472803771426 \tabularnewline
34 & 4300 & 2973.95299292874 & 9.43141335370791 & 969.523264500333 & 1.62071020600384 \tabularnewline
35 & 3440 & 2923.13267548211 & 6.33528531126311 & 653.782478109351 & -0.621978307937072 \tabularnewline
36 & 2670 & 2851.83160156367 & 2.38282310925445 & -4.67172578053965 & -0.804651922253094 \tabularnewline
37 & 2460 & 2917.04811104683 & 5.54884707428936 & -601.288723429553 & 0.655680148059955 \tabularnewline
38 & 1920 & 2834.33261817572 & 1.08487575065974 & -712.406533009058 & -0.918120895646315 \tabularnewline
39 & 2890 & 2858.99682471183 & 2.28677682073941 & -22.4561614573328 & 0.243344604630788 \tabularnewline
40 & 2600 & 2835.79467619949 & 0.979748773716103 & -178.416018612278 & -0.261532956435287 \tabularnewline
41 & 2860 & 2812.86932684783 & -0.249910142763969 & 100.779130299999 & -0.244750865642834 \tabularnewline
42 & 2010 & 2742.36798136579 & -3.86711801746461 & -574.707561904645 & -0.719544734051405 \tabularnewline
43 & 2470 & 2677.54833608995 & -7.0044384845743 & -70.546889461528 & -0.625271764085582 \tabularnewline
44 & 2210 & 2673.49557185018 & -6.85267703329855 & -470.142719716729 & 0.0303319069131598 \tabularnewline
45 & 3530 & 2740.80705378982 & -3.0452957331381 & 621.899118433631 & 0.763190128720239 \tabularnewline
46 & 3790 & 2752.80309997859 & -2.27452643215626 & 1003.22929763473 & 0.154923993529644 \tabularnewline
47 & 3520 & 2759.43562863666 & -1.81905659006946 & 740.435816065897 & 0.0917969721670589 \tabularnewline
48 & 2510 & 2732.24033233522 & -3.11381626015889 & -164.854481216473 & -0.261753158110668 \tabularnewline
49 & 1860 & 2674.45348170789 & -5.89882165796268 & -690.679421330194 & -0.564737361975723 \tabularnewline
50 & 1760 & 2628.45556151116 & -7.94267380265407 & -777.705282784717 & -0.414071867469269 \tabularnewline
51 & 1540 & 2464.04220388852 & -15.9309575595041 & -570.667756296296 & -1.61268461441122 \tabularnewline
52 & 2240 & 2394.11622659736 & -18.6916214208315 & -32.4438081685985 & -0.555484830306273 \tabularnewline
53 & 2600 & 2361.7085199986 & -19.3935389353315 & 269.161307405967 & -0.14098266713681 \tabularnewline
54 & 3060 & 2497.34450580692 & -11.4569030525235 & 213.804281175345 & 1.59352241531376 \tabularnewline
55 & 2040 & 2479.58809376866 & -11.7794037008758 & -425.406554697927 & -0.0647831870471463 \tabularnewline
56 & 2230 & 2508.21296700498 & -9.71142048370952 & -369.225595474456 & 0.415737197855718 \tabularnewline
57 & 2720 & 2456.84420461335 & -11.8426882626209 & 357.031820278179 & -0.428781006911994 \tabularnewline
58 & 3740 & 2468.48065503738 & -10.642061864062 & 1218.59979633552 & 0.241698116661595 \tabularnewline
59 & 3100 & 2439.12009039877 & -11.5987027020343 & 703.068764180823 & -0.192693380033444 \tabularnewline
60 & 2100 & 2385.96074099117 & -13.7215872728051 & -192.283562998901 & -0.427912039159622 \tabularnewline
61 & 3630 & 2597.253413695 & -2.23166291233856 & 525.42194451131 & 2.31769262597137 \tabularnewline
62 & 1620 & 2601.2646261891 & -1.91284624559876 & -995.340854829736 & 0.0643068263103254 \tabularnewline
63 & 1870 & 2580.0720277752 & -2.8977871943472 & -666.6221818554 & -0.198504659277802 \tabularnewline
64 & 1680 & 2470.44874836123 & -8.35194711239093 & -550.094868268565 & -1.09819835447186 \tabularnewline
65 & 1830 & 2342.81253892282 & -14.4493335648884 & -244.300912045578 & -1.22701517311606 \tabularnewline
66 & 4620 & 2567.32953522283 & -2.23290642260829 & 1514.80619461638 & 2.45809932023533 \tabularnewline
67 & 1560 & 2552.29085732656 & -2.88757108650024 & -963.46342387763 & -0.131748735754945 \tabularnewline
68 & 2800 & 2625.08220642407 & 0.981129657378415 & 4.520265395563 & 0.778749379379261 \tabularnewline
69 & 1810 & 2498.87459542332 & -5.52009747888583 & -402.46663445254 & -1.3089020332292 \tabularnewline
70 & 4260 & 2535.35918362268 & -3.373327231312 & 1630.05561304944 & 0.432255866507261 \tabularnewline
71 & 2770 & 2488.50418532028 & -5.5952418631127 & 379.397802824832 & -0.447426867302253 \tabularnewline
72 & 3280 & 2631.49146449698 & 1.9962822395549 & 313.973977755363 & 1.52896583288945 \tabularnewline
73 & 1830 & 2494.75067166377 & -5.09169036979143 & -352.353444002651 & -1.42785318046483 \tabularnewline
74 & 2590 & 2589.42484628339 & 0.00538767206421031 & -224.084528150208 & 1.0268370517657 \tabularnewline
75 & 1760 & 2576.75308468342 & -0.642344334133225 & -788.209169076188 & -0.130463704608675 \tabularnewline
76 & 2950 & 2691.30223254868 & 5.24377867985432 & -0.607845235417244 & 1.18522767427532 \tabularnewline
77 & 2020 & 2704.91161767601 & 5.67127249641736 & -703.739884488791 & 0.0860641030322778 \tabularnewline
78 & 2530 & 2494.94392008514 & -5.34844296421524 & 520.366016878218 & -2.21844550061627 \tabularnewline
79 & 2530 & 2571.39319962617 & -1.16835206660121 & -225.494601497346 & 0.84157751641036 \tabularnewline
80 & 2220 & 2526.84167353222 & -3.38532696220752 & -209.1920957232 & -0.446381063339323 \tabularnewline
81 & 2250 & 2536.42475106809 & -2.72262907396292 & -315.615678940657 & 0.133437781394117 \tabularnewline
82 & 2630 & 2338.55583510944 & -12.694440036859 & 730.687937632328 & -2.00787291618009 \tabularnewline
83 & 3550 & 2402.8220840461 & -8.76197882416609 & 973.962259779125 & 0.791817749053136 \tabularnewline
84 & 2670 & 2391.85116498296 & -8.87484478341152 & 283.120381328428 & -0.0227269777338248 \tabularnewline
85 & 2260 & 2427.29590454669 & -6.61037752944137 & -267.047216162735 & 0.45601271920301 \tabularnewline
86 & 2170 & 2429.88102758765 & -6.14054005730118 & -280.578362770549 & 0.0946177962018332 \tabularnewline
87 & 2430 & 2539.94223779485 & -0.203183579297138 & -371.483210517341 & 1.19563027861371 \tabularnewline
88 & 1700 & 2448.7692694658 & -4.85139409600804 & -544.035653740692 & -0.935945202674889 \tabularnewline
89 & 2200 & 2453.14785511407 & -4.37977189351286 & -273.919038761997 & 0.0949578824048408 \tabularnewline
90 & 3140 & 2479.87628567217 & -2.79023688263769 & 590.119279146646 & 0.320039263706132 \tabularnewline
91 & 1900 & 2429.2958286453 & -5.23217173926025 & -421.748648722618 & -0.49167768180489 \tabularnewline
92 & 2260 & 2411.23013554377 & -5.88792389237204 & -122.34866828892 & -0.13203842581306 \tabularnewline
93 & 3580 & 2572.14594504384 & 2.63517112905691 & 632.464132287814 & 1.7161765414513 \tabularnewline
94 & 3050 & 2596.78710154763 & 3.75959089411836 & 403.6897945834 & 0.226405747490708 \tabularnewline
95 & 3130 & 2555.01130945291 & 1.43293872116611 & 677.459865247086 & -0.468473455151267 \tabularnewline
96 & 2350 & 2492.7236238136 & -1.82286009012497 & 0.668934244284173 & -0.655564278442496 \tabularnewline
97 & 1650 & 2407.20636585263 & -6.0991902605121 & -568.863598916526 & -0.861075251852739 \tabularnewline
98 & 1760 & 2344.9758591035 & -8.9671983935931 & -458.657743400992 & -0.577507849851382 \tabularnewline
99 & 2010 & 2314.5478071067 & -10.0637376919663 & -256.2525082262 & -0.220798609247868 \tabularnewline
100 & 1910 & 2320.05663862201 & -9.26805598190576 & -445.099960961933 & 0.16021309190591 \tabularnewline
101 & 1850 & 2293.00232874154 & -10.176847729098 & -402.978697820887 & -0.182983779062028 \tabularnewline
102 & 2030 & 2165.44402091986 & -16.1744724887972 & 128.691517884231 & -1.20760929424616 \tabularnewline
103 & 2110 & 2175.80560020531 & -14.8186097031841 & -125.518386756206 & 0.273003854408556 \tabularnewline
104 & 1900 & 2169.18330937654 & -14.3998180798128 & -287.627328212141 & 0.0843251168213159 \tabularnewline
105 & 2170 & 2071.73892415419 & -18.6429829892966 & 285.135165579317 & -0.854377451521708 \tabularnewline
106 & 2690 & 2046.84152682804 & -18.9625517699823 & 657.232539700984 & -0.0643458378292536 \tabularnewline
107 & 3620 & 2125.58223828464 & -13.9704295089377 & 1274.56337851043 & 1.00516572832248 \tabularnewline
108 & 1920 & 2092.82605052875 & -14.9302792806211 & -130.554161997047 & -0.19326649309354 \tabularnewline
109 & 1480 & 2059.50219334457 & -15.8700887385534 & -538.112571058708 & -0.189233449989137 \tabularnewline
110 & 3910 & 2334.97780371677 & -0.983944623503474 & 919.42441763799 & 2.997395145959 \tabularnewline
111 & 2120 & 2409.47505821563 & 2.87272959668343 & -459.325740553066 & 0.776557162505456 \tabularnewline
112 & 1980 & 2427.37463089165 & 3.64051943303498 & -481.188227011078 & 0.154595867942006 \tabularnewline
113 & 2040 & 2423.52082669695 & 3.25760030115154 & -366.65721611129 & -0.0771007223593419 \tabularnewline
114 & 1820 & 2335.10699478631 & -1.42630783851702 & -308.830415895973 & -0.943103467314168 \tabularnewline
115 & 1700 & 2244.90540254035 & -5.9622360909429 & -345.144987426121 & -0.913313180717442 \tabularnewline
116 & 2210 & 2242.28892706749 & -5.79128618105934 & -39.8175350314699 & 0.0344211205793952 \tabularnewline
117 & 2070 & 2185.92374550963 & -8.3753328681114 & -2.1225799359481 & -0.520303484856437 \tabularnewline
118 & 2650 & 2159.37406525383 & -9.30394110200695 & 531.521561815048 & -0.186976478174817 \tabularnewline
119 & 3260 & 2129.97063432424 & -10.3309122524642 & 1175.25658685045 & -0.206781056195469 \tabularnewline
120 & 1590 & 2079.80831538087 & -12.3660709781037 & -400.181290168675 & -0.409780098377079 \tabularnewline
121 & 1880 & 2148.23257715723 & -8.23814709199864 & -450.024102732304 & 0.831162980951932 \tabularnewline
122 & 1390 & 1951.69765299009 & -17.8590347765724 & -137.997379181396 & -1.93718617082285 \tabularnewline
123 & 1890 & 1937.39385425704 & -17.677382493042 & -55.3937508279801 & 0.0365760502271859 \tabularnewline
124 & 1640 & 1933.15094447818 & -16.9909573964598 & -323.380700818756 & 0.138212460259573 \tabularnewline
125 & 1840 & 1935.12137963958 & -16.0221383071206 & -137.787377159106 & 0.195072032215064 \tabularnewline
126 & 1620 & 1908.97076640906 & -16.539645439101 & -266.180223095321 & -0.104200177289538 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299967&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]2490[/C][C]2490[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]2560[/C][C]2493.03227930796[/C][C]0.278815270137047[/C][C]35.8004337663524[/C][C]0.115228259627173[/C][/ROW]
[ROW][C]3[/C][C]2890[/C][C]2575.59136753585[/C][C]16.5544644535036[/C][C]172.726490560397[/C][C]0.601251512863013[/C][/ROW]
[ROW][C]4[/C][C]3420[/C][C]2802.67258784357[/C][C]51.8893867044656[/C][C]347.845813765006[/C][C]1.22512838614389[/C][/ROW]
[ROW][C]5[/C][C]2700[/C][C]2852.62190550606[/C][C]51.6124672049099[/C][C]-150.071252768784[/C][C]-0.0116030184777564[/C][/ROW]
[ROW][C]6[/C][C]3290[/C][C]2974.08144151527[/C][C]60.2403458014039[/C][C]214.933302617764[/C][C]0.452111492783955[/C][/ROW]
[ROW][C]7[/C][C]2650[/C][C]2961.42821878177[/C][C]52.3069523891676[/C][C]-195.347716099832[/C][C]-0.511318592854695[/C][/ROW]
[ROW][C]8[/C][C]3060[/C][C]2996.83476595902[/C][C]50.6594373920258[/C][C]92.4505090260389[/C][C]-0.12726364544608[/C][/ROW]
[ROW][C]9[/C][C]3200[/C][C]3061.74925338641[/C][C]51.9225666415761[/C][C]111.728387168772[/C][C]0.114015778195738[/C][/ROW]
[ROW][C]10[/C][C]4600[/C][C]3360.455596872[/C][C]72.0602265757665[/C][C]752.362908550354[/C][C]2.07634466659687[/C][/ROW]
[ROW][C]11[/C][C]4370[/C][C]3633.11897694886[/C][C]87.3100906890386[/C][C]320.919218702234[/C][C]1.76063527989051[/C][/ROW]
[ROW][C]12[/C][C]3340[/C][C]3695.14331330583[/C][C]85.5009069723612[/C][C]-300.53719130104[/C][C]-0.229854335199457[/C][/ROW]
[ROW][C]13[/C][C]2410[/C][C]3691.68017074181[/C][C]82.3473392264702[/C][C]-1013.96938806123[/C][C]-1.14566857354556[/C][/ROW]
[ROW][C]14[/C][C]1920[/C][C]3520.05032530159[/C][C]69.0436390553483[/C][C]-1001.04656724372[/C][C]-2.62550485485638[/C][/ROW]
[ROW][C]15[/C][C]2620[/C][C]3357.30974068279[/C][C]54.9925658544935[/C][C]-271.567136326406[/C][C]-2.09827439528865[/C][/ROW]
[ROW][C]16[/C][C]2840[/C][C]3201.92914370028[/C][C]41.8381371382688[/C][C]43.1575170188057[/C][C]-1.84704185106159[/C][/ROW]
[ROW][C]17[/C][C]2880[/C][C]3156.7332960217[/C][C]36.4471741283444[/C][C]-106.927063723718[/C][C]-0.775588661903404[/C][/ROW]
[ROW][C]18[/C][C]2380[/C][C]3009.02154077469[/C][C]25.3031006574421[/C][C]-258.471443378757[/C][C]-1.68847454553351[/C][/ROW]
[ROW][C]19[/C][C]2820[/C][C]2986.07898177554[/C][C]22.4598189885834[/C][C]-65.8169991636934[/C][C]-0.455313487798115[/C][/ROW]
[ROW][C]20[/C][C]2480[/C][C]2923.68994736564[/C][C]17.5838242671516[/C][C]-262.311752232729[/C][C]-0.821000320997485[/C][/ROW]
[ROW][C]21[/C][C]3230[/C][C]2985.38225237427[/C][C]20.061894975316[/C][C]148.12374829628[/C][C]0.435538842060589[/C][/ROW]
[ROW][C]22[/C][C]3860[/C][C]3056.37503813242[/C][C]22.86438258816[/C][C]690.090603049018[/C][C]0.511168707530267[/C][/ROW]
[ROW][C]23[/C][C]5050[/C][C]3301.35376905813[/C][C]34.8149482933606[/C][C]1245.21937272509[/C][C]2.26086097567738[/C][/ROW]
[ROW][C]24[/C][C]3630[/C][C]3436.8909128709[/C][C]40.0510492993572[/C][C]-39.6803096115567[/C][C]1.04257732145463[/C][/ROW]
[ROW][C]25[/C][C]1700[/C][C]3335.40383036977[/C][C]33.2547427110834[/C][C]-1294.27330417126[/C][C]-1.53211360696136[/C][/ROW]
[ROW][C]26[/C][C]2590[/C][C]3304.74762364453[/C][C]30.0939415892738[/C][C]-564.695810324725[/C][C]-0.675482867809394[/C][/ROW]
[ROW][C]27[/C][C]2130[/C][C]3150.64463379992[/C][C]20.6292514745349[/C][C]-604.426915502468[/C][C]-1.88441833040558[/C][/ROW]
[ROW][C]28[/C][C]2350[/C][C]2979.07528580143[/C][C]10.5450209855178[/C][C]-203.798742530024[/C][C]-1.93378285154506[/C][/ROW]
[ROW][C]29[/C][C]2680[/C][C]2877.2292265602[/C][C]4.60463393454256[/C][C]50.164520913946[/C][C]-1.12718573179207[/C][/ROW]
[ROW][C]30[/C][C]2270[/C][C]2791.22633731847[/C][C]-0.183721969072011[/C][C]-321.126964280715[/C][C]-0.912085927724801[/C][/ROW]
[ROW][C]31[/C][C]2810[/C][C]2769.29276157343[/C][C]-1.32892070072936[/C][C]89.0526524747876[/C][C]-0.220281929191994[/C][/ROW]
[ROW][C]32[/C][C]2200[/C][C]2735.44783527265[/C][C]-3.03224819950287[/C][C]-462.6716859553[/C][C]-0.331362517545047[/C][/ROW]
[ROW][C]33[/C][C]3420[/C][C]2815.13795873118[/C][C]1.27652176299027[/C][C]418.583792354101[/C][C]0.847472803771426[/C][/ROW]
[ROW][C]34[/C][C]4300[/C][C]2973.95299292874[/C][C]9.43141335370791[/C][C]969.523264500333[/C][C]1.62071020600384[/C][/ROW]
[ROW][C]35[/C][C]3440[/C][C]2923.13267548211[/C][C]6.33528531126311[/C][C]653.782478109351[/C][C]-0.621978307937072[/C][/ROW]
[ROW][C]36[/C][C]2670[/C][C]2851.83160156367[/C][C]2.38282310925445[/C][C]-4.67172578053965[/C][C]-0.804651922253094[/C][/ROW]
[ROW][C]37[/C][C]2460[/C][C]2917.04811104683[/C][C]5.54884707428936[/C][C]-601.288723429553[/C][C]0.655680148059955[/C][/ROW]
[ROW][C]38[/C][C]1920[/C][C]2834.33261817572[/C][C]1.08487575065974[/C][C]-712.406533009058[/C][C]-0.918120895646315[/C][/ROW]
[ROW][C]39[/C][C]2890[/C][C]2858.99682471183[/C][C]2.28677682073941[/C][C]-22.4561614573328[/C][C]0.243344604630788[/C][/ROW]
[ROW][C]40[/C][C]2600[/C][C]2835.79467619949[/C][C]0.979748773716103[/C][C]-178.416018612278[/C][C]-0.261532956435287[/C][/ROW]
[ROW][C]41[/C][C]2860[/C][C]2812.86932684783[/C][C]-0.249910142763969[/C][C]100.779130299999[/C][C]-0.244750865642834[/C][/ROW]
[ROW][C]42[/C][C]2010[/C][C]2742.36798136579[/C][C]-3.86711801746461[/C][C]-574.707561904645[/C][C]-0.719544734051405[/C][/ROW]
[ROW][C]43[/C][C]2470[/C][C]2677.54833608995[/C][C]-7.0044384845743[/C][C]-70.546889461528[/C][C]-0.625271764085582[/C][/ROW]
[ROW][C]44[/C][C]2210[/C][C]2673.49557185018[/C][C]-6.85267703329855[/C][C]-470.142719716729[/C][C]0.0303319069131598[/C][/ROW]
[ROW][C]45[/C][C]3530[/C][C]2740.80705378982[/C][C]-3.0452957331381[/C][C]621.899118433631[/C][C]0.763190128720239[/C][/ROW]
[ROW][C]46[/C][C]3790[/C][C]2752.80309997859[/C][C]-2.27452643215626[/C][C]1003.22929763473[/C][C]0.154923993529644[/C][/ROW]
[ROW][C]47[/C][C]3520[/C][C]2759.43562863666[/C][C]-1.81905659006946[/C][C]740.435816065897[/C][C]0.0917969721670589[/C][/ROW]
[ROW][C]48[/C][C]2510[/C][C]2732.24033233522[/C][C]-3.11381626015889[/C][C]-164.854481216473[/C][C]-0.261753158110668[/C][/ROW]
[ROW][C]49[/C][C]1860[/C][C]2674.45348170789[/C][C]-5.89882165796268[/C][C]-690.679421330194[/C][C]-0.564737361975723[/C][/ROW]
[ROW][C]50[/C][C]1760[/C][C]2628.45556151116[/C][C]-7.94267380265407[/C][C]-777.705282784717[/C][C]-0.414071867469269[/C][/ROW]
[ROW][C]51[/C][C]1540[/C][C]2464.04220388852[/C][C]-15.9309575595041[/C][C]-570.667756296296[/C][C]-1.61268461441122[/C][/ROW]
[ROW][C]52[/C][C]2240[/C][C]2394.11622659736[/C][C]-18.6916214208315[/C][C]-32.4438081685985[/C][C]-0.555484830306273[/C][/ROW]
[ROW][C]53[/C][C]2600[/C][C]2361.7085199986[/C][C]-19.3935389353315[/C][C]269.161307405967[/C][C]-0.14098266713681[/C][/ROW]
[ROW][C]54[/C][C]3060[/C][C]2497.34450580692[/C][C]-11.4569030525235[/C][C]213.804281175345[/C][C]1.59352241531376[/C][/ROW]
[ROW][C]55[/C][C]2040[/C][C]2479.58809376866[/C][C]-11.7794037008758[/C][C]-425.406554697927[/C][C]-0.0647831870471463[/C][/ROW]
[ROW][C]56[/C][C]2230[/C][C]2508.21296700498[/C][C]-9.71142048370952[/C][C]-369.225595474456[/C][C]0.415737197855718[/C][/ROW]
[ROW][C]57[/C][C]2720[/C][C]2456.84420461335[/C][C]-11.8426882626209[/C][C]357.031820278179[/C][C]-0.428781006911994[/C][/ROW]
[ROW][C]58[/C][C]3740[/C][C]2468.48065503738[/C][C]-10.642061864062[/C][C]1218.59979633552[/C][C]0.241698116661595[/C][/ROW]
[ROW][C]59[/C][C]3100[/C][C]2439.12009039877[/C][C]-11.5987027020343[/C][C]703.068764180823[/C][C]-0.192693380033444[/C][/ROW]
[ROW][C]60[/C][C]2100[/C][C]2385.96074099117[/C][C]-13.7215872728051[/C][C]-192.283562998901[/C][C]-0.427912039159622[/C][/ROW]
[ROW][C]61[/C][C]3630[/C][C]2597.253413695[/C][C]-2.23166291233856[/C][C]525.42194451131[/C][C]2.31769262597137[/C][/ROW]
[ROW][C]62[/C][C]1620[/C][C]2601.2646261891[/C][C]-1.91284624559876[/C][C]-995.340854829736[/C][C]0.0643068263103254[/C][/ROW]
[ROW][C]63[/C][C]1870[/C][C]2580.0720277752[/C][C]-2.8977871943472[/C][C]-666.6221818554[/C][C]-0.198504659277802[/C][/ROW]
[ROW][C]64[/C][C]1680[/C][C]2470.44874836123[/C][C]-8.35194711239093[/C][C]-550.094868268565[/C][C]-1.09819835447186[/C][/ROW]
[ROW][C]65[/C][C]1830[/C][C]2342.81253892282[/C][C]-14.4493335648884[/C][C]-244.300912045578[/C][C]-1.22701517311606[/C][/ROW]
[ROW][C]66[/C][C]4620[/C][C]2567.32953522283[/C][C]-2.23290642260829[/C][C]1514.80619461638[/C][C]2.45809932023533[/C][/ROW]
[ROW][C]67[/C][C]1560[/C][C]2552.29085732656[/C][C]-2.88757108650024[/C][C]-963.46342387763[/C][C]-0.131748735754945[/C][/ROW]
[ROW][C]68[/C][C]2800[/C][C]2625.08220642407[/C][C]0.981129657378415[/C][C]4.520265395563[/C][C]0.778749379379261[/C][/ROW]
[ROW][C]69[/C][C]1810[/C][C]2498.87459542332[/C][C]-5.52009747888583[/C][C]-402.46663445254[/C][C]-1.3089020332292[/C][/ROW]
[ROW][C]70[/C][C]4260[/C][C]2535.35918362268[/C][C]-3.373327231312[/C][C]1630.05561304944[/C][C]0.432255866507261[/C][/ROW]
[ROW][C]71[/C][C]2770[/C][C]2488.50418532028[/C][C]-5.5952418631127[/C][C]379.397802824832[/C][C]-0.447426867302253[/C][/ROW]
[ROW][C]72[/C][C]3280[/C][C]2631.49146449698[/C][C]1.9962822395549[/C][C]313.973977755363[/C][C]1.52896583288945[/C][/ROW]
[ROW][C]73[/C][C]1830[/C][C]2494.75067166377[/C][C]-5.09169036979143[/C][C]-352.353444002651[/C][C]-1.42785318046483[/C][/ROW]
[ROW][C]74[/C][C]2590[/C][C]2589.42484628339[/C][C]0.00538767206421031[/C][C]-224.084528150208[/C][C]1.0268370517657[/C][/ROW]
[ROW][C]75[/C][C]1760[/C][C]2576.75308468342[/C][C]-0.642344334133225[/C][C]-788.209169076188[/C][C]-0.130463704608675[/C][/ROW]
[ROW][C]76[/C][C]2950[/C][C]2691.30223254868[/C][C]5.24377867985432[/C][C]-0.607845235417244[/C][C]1.18522767427532[/C][/ROW]
[ROW][C]77[/C][C]2020[/C][C]2704.91161767601[/C][C]5.67127249641736[/C][C]-703.739884488791[/C][C]0.0860641030322778[/C][/ROW]
[ROW][C]78[/C][C]2530[/C][C]2494.94392008514[/C][C]-5.34844296421524[/C][C]520.366016878218[/C][C]-2.21844550061627[/C][/ROW]
[ROW][C]79[/C][C]2530[/C][C]2571.39319962617[/C][C]-1.16835206660121[/C][C]-225.494601497346[/C][C]0.84157751641036[/C][/ROW]
[ROW][C]80[/C][C]2220[/C][C]2526.84167353222[/C][C]-3.38532696220752[/C][C]-209.1920957232[/C][C]-0.446381063339323[/C][/ROW]
[ROW][C]81[/C][C]2250[/C][C]2536.42475106809[/C][C]-2.72262907396292[/C][C]-315.615678940657[/C][C]0.133437781394117[/C][/ROW]
[ROW][C]82[/C][C]2630[/C][C]2338.55583510944[/C][C]-12.694440036859[/C][C]730.687937632328[/C][C]-2.00787291618009[/C][/ROW]
[ROW][C]83[/C][C]3550[/C][C]2402.8220840461[/C][C]-8.76197882416609[/C][C]973.962259779125[/C][C]0.791817749053136[/C][/ROW]
[ROW][C]84[/C][C]2670[/C][C]2391.85116498296[/C][C]-8.87484478341152[/C][C]283.120381328428[/C][C]-0.0227269777338248[/C][/ROW]
[ROW][C]85[/C][C]2260[/C][C]2427.29590454669[/C][C]-6.61037752944137[/C][C]-267.047216162735[/C][C]0.45601271920301[/C][/ROW]
[ROW][C]86[/C][C]2170[/C][C]2429.88102758765[/C][C]-6.14054005730118[/C][C]-280.578362770549[/C][C]0.0946177962018332[/C][/ROW]
[ROW][C]87[/C][C]2430[/C][C]2539.94223779485[/C][C]-0.203183579297138[/C][C]-371.483210517341[/C][C]1.19563027861371[/C][/ROW]
[ROW][C]88[/C][C]1700[/C][C]2448.7692694658[/C][C]-4.85139409600804[/C][C]-544.035653740692[/C][C]-0.935945202674889[/C][/ROW]
[ROW][C]89[/C][C]2200[/C][C]2453.14785511407[/C][C]-4.37977189351286[/C][C]-273.919038761997[/C][C]0.0949578824048408[/C][/ROW]
[ROW][C]90[/C][C]3140[/C][C]2479.87628567217[/C][C]-2.79023688263769[/C][C]590.119279146646[/C][C]0.320039263706132[/C][/ROW]
[ROW][C]91[/C][C]1900[/C][C]2429.2958286453[/C][C]-5.23217173926025[/C][C]-421.748648722618[/C][C]-0.49167768180489[/C][/ROW]
[ROW][C]92[/C][C]2260[/C][C]2411.23013554377[/C][C]-5.88792389237204[/C][C]-122.34866828892[/C][C]-0.13203842581306[/C][/ROW]
[ROW][C]93[/C][C]3580[/C][C]2572.14594504384[/C][C]2.63517112905691[/C][C]632.464132287814[/C][C]1.7161765414513[/C][/ROW]
[ROW][C]94[/C][C]3050[/C][C]2596.78710154763[/C][C]3.75959089411836[/C][C]403.6897945834[/C][C]0.226405747490708[/C][/ROW]
[ROW][C]95[/C][C]3130[/C][C]2555.01130945291[/C][C]1.43293872116611[/C][C]677.459865247086[/C][C]-0.468473455151267[/C][/ROW]
[ROW][C]96[/C][C]2350[/C][C]2492.7236238136[/C][C]-1.82286009012497[/C][C]0.668934244284173[/C][C]-0.655564278442496[/C][/ROW]
[ROW][C]97[/C][C]1650[/C][C]2407.20636585263[/C][C]-6.0991902605121[/C][C]-568.863598916526[/C][C]-0.861075251852739[/C][/ROW]
[ROW][C]98[/C][C]1760[/C][C]2344.9758591035[/C][C]-8.9671983935931[/C][C]-458.657743400992[/C][C]-0.577507849851382[/C][/ROW]
[ROW][C]99[/C][C]2010[/C][C]2314.5478071067[/C][C]-10.0637376919663[/C][C]-256.2525082262[/C][C]-0.220798609247868[/C][/ROW]
[ROW][C]100[/C][C]1910[/C][C]2320.05663862201[/C][C]-9.26805598190576[/C][C]-445.099960961933[/C][C]0.16021309190591[/C][/ROW]
[ROW][C]101[/C][C]1850[/C][C]2293.00232874154[/C][C]-10.176847729098[/C][C]-402.978697820887[/C][C]-0.182983779062028[/C][/ROW]
[ROW][C]102[/C][C]2030[/C][C]2165.44402091986[/C][C]-16.1744724887972[/C][C]128.691517884231[/C][C]-1.20760929424616[/C][/ROW]
[ROW][C]103[/C][C]2110[/C][C]2175.80560020531[/C][C]-14.8186097031841[/C][C]-125.518386756206[/C][C]0.273003854408556[/C][/ROW]
[ROW][C]104[/C][C]1900[/C][C]2169.18330937654[/C][C]-14.3998180798128[/C][C]-287.627328212141[/C][C]0.0843251168213159[/C][/ROW]
[ROW][C]105[/C][C]2170[/C][C]2071.73892415419[/C][C]-18.6429829892966[/C][C]285.135165579317[/C][C]-0.854377451521708[/C][/ROW]
[ROW][C]106[/C][C]2690[/C][C]2046.84152682804[/C][C]-18.9625517699823[/C][C]657.232539700984[/C][C]-0.0643458378292536[/C][/ROW]
[ROW][C]107[/C][C]3620[/C][C]2125.58223828464[/C][C]-13.9704295089377[/C][C]1274.56337851043[/C][C]1.00516572832248[/C][/ROW]
[ROW][C]108[/C][C]1920[/C][C]2092.82605052875[/C][C]-14.9302792806211[/C][C]-130.554161997047[/C][C]-0.19326649309354[/C][/ROW]
[ROW][C]109[/C][C]1480[/C][C]2059.50219334457[/C][C]-15.8700887385534[/C][C]-538.112571058708[/C][C]-0.189233449989137[/C][/ROW]
[ROW][C]110[/C][C]3910[/C][C]2334.97780371677[/C][C]-0.983944623503474[/C][C]919.42441763799[/C][C]2.997395145959[/C][/ROW]
[ROW][C]111[/C][C]2120[/C][C]2409.47505821563[/C][C]2.87272959668343[/C][C]-459.325740553066[/C][C]0.776557162505456[/C][/ROW]
[ROW][C]112[/C][C]1980[/C][C]2427.37463089165[/C][C]3.64051943303498[/C][C]-481.188227011078[/C][C]0.154595867942006[/C][/ROW]
[ROW][C]113[/C][C]2040[/C][C]2423.52082669695[/C][C]3.25760030115154[/C][C]-366.65721611129[/C][C]-0.0771007223593419[/C][/ROW]
[ROW][C]114[/C][C]1820[/C][C]2335.10699478631[/C][C]-1.42630783851702[/C][C]-308.830415895973[/C][C]-0.943103467314168[/C][/ROW]
[ROW][C]115[/C][C]1700[/C][C]2244.90540254035[/C][C]-5.9622360909429[/C][C]-345.144987426121[/C][C]-0.913313180717442[/C][/ROW]
[ROW][C]116[/C][C]2210[/C][C]2242.28892706749[/C][C]-5.79128618105934[/C][C]-39.8175350314699[/C][C]0.0344211205793952[/C][/ROW]
[ROW][C]117[/C][C]2070[/C][C]2185.92374550963[/C][C]-8.3753328681114[/C][C]-2.1225799359481[/C][C]-0.520303484856437[/C][/ROW]
[ROW][C]118[/C][C]2650[/C][C]2159.37406525383[/C][C]-9.30394110200695[/C][C]531.521561815048[/C][C]-0.186976478174817[/C][/ROW]
[ROW][C]119[/C][C]3260[/C][C]2129.97063432424[/C][C]-10.3309122524642[/C][C]1175.25658685045[/C][C]-0.206781056195469[/C][/ROW]
[ROW][C]120[/C][C]1590[/C][C]2079.80831538087[/C][C]-12.3660709781037[/C][C]-400.181290168675[/C][C]-0.409780098377079[/C][/ROW]
[ROW][C]121[/C][C]1880[/C][C]2148.23257715723[/C][C]-8.23814709199864[/C][C]-450.024102732304[/C][C]0.831162980951932[/C][/ROW]
[ROW][C]122[/C][C]1390[/C][C]1951.69765299009[/C][C]-17.8590347765724[/C][C]-137.997379181396[/C][C]-1.93718617082285[/C][/ROW]
[ROW][C]123[/C][C]1890[/C][C]1937.39385425704[/C][C]-17.677382493042[/C][C]-55.3937508279801[/C][C]0.0365760502271859[/C][/ROW]
[ROW][C]124[/C][C]1640[/C][C]1933.15094447818[/C][C]-16.9909573964598[/C][C]-323.380700818756[/C][C]0.138212460259573[/C][/ROW]
[ROW][C]125[/C][C]1840[/C][C]1935.12137963958[/C][C]-16.0221383071206[/C][C]-137.787377159106[/C][C]0.195072032215064[/C][/ROW]
[ROW][C]126[/C][C]1620[/C][C]1908.97076640906[/C][C]-16.539645439101[/C][C]-266.180223095321[/C][C]-0.104200177289538[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299967&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299967&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
124902490000
225602493.032279307960.27881527013704735.80043376635240.115228259627173
328902575.5913675358516.5544644535036172.7264905603970.601251512863013
434202802.6725878435751.8893867044656347.8458137650061.22512838614389
527002852.6219055060651.6124672049099-150.071252768784-0.0116030184777564
632902974.0814415152760.2403458014039214.9333026177640.452111492783955
726502961.4282187817752.3069523891676-195.347716099832-0.511318592854695
830602996.8347659590250.659437392025892.4505090260389-0.12726364544608
932003061.7492533864151.9225666415761111.7283871687720.114015778195738
1046003360.45559687272.0602265757665752.3629085503542.07634466659687
1143703633.1189769488687.3100906890386320.9192187022341.76063527989051
1233403695.1433133058385.5009069723612-300.53719130104-0.229854335199457
1324103691.6801707418182.3473392264702-1013.96938806123-1.14566857354556
1419203520.0503253015969.0436390553483-1001.04656724372-2.62550485485638
1526203357.3097406827954.9925658544935-271.567136326406-2.09827439528865
1628403201.9291437002841.838137138268843.1575170188057-1.84704185106159
1728803156.733296021736.4471741283444-106.927063723718-0.775588661903404
1823803009.0215407746925.3031006574421-258.471443378757-1.68847454553351
1928202986.0789817755422.4598189885834-65.8169991636934-0.455313487798115
2024802923.6899473656417.5838242671516-262.311752232729-0.821000320997485
2132302985.3822523742720.061894975316148.123748296280.435538842060589
2238603056.3750381324222.86438258816690.0906030490180.511168707530267
2350503301.3537690581334.81494829336061245.219372725092.26086097567738
2436303436.890912870940.0510492993572-39.68030961155671.04257732145463
2517003335.4038303697733.2547427110834-1294.27330417126-1.53211360696136
2625903304.7476236445330.0939415892738-564.695810324725-0.675482867809394
2721303150.6446337999220.6292514745349-604.426915502468-1.88441833040558
2823502979.0752858014310.5450209855178-203.798742530024-1.93378285154506
2926802877.22922656024.6046339345425650.164520913946-1.12718573179207
3022702791.22633731847-0.183721969072011-321.126964280715-0.912085927724801
3128102769.29276157343-1.3289207007293689.0526524747876-0.220281929191994
3222002735.44783527265-3.03224819950287-462.6716859553-0.331362517545047
3334202815.137958731181.27652176299027418.5837923541010.847472803771426
3443002973.952992928749.43141335370791969.5232645003331.62071020600384
3534402923.132675482116.33528531126311653.782478109351-0.621978307937072
3626702851.831601563672.38282310925445-4.67172578053965-0.804651922253094
3724602917.048111046835.54884707428936-601.2887234295530.655680148059955
3819202834.332618175721.08487575065974-712.406533009058-0.918120895646315
3928902858.996824711832.28677682073941-22.45616145733280.243344604630788
4026002835.794676199490.979748773716103-178.416018612278-0.261532956435287
4128602812.86932684783-0.249910142763969100.779130299999-0.244750865642834
4220102742.36798136579-3.86711801746461-574.707561904645-0.719544734051405
4324702677.54833608995-7.0044384845743-70.546889461528-0.625271764085582
4422102673.49557185018-6.85267703329855-470.1427197167290.0303319069131598
4535302740.80705378982-3.0452957331381621.8991184336310.763190128720239
4637902752.80309997859-2.274526432156261003.229297634730.154923993529644
4735202759.43562863666-1.81905659006946740.4358160658970.0917969721670589
4825102732.24033233522-3.11381626015889-164.854481216473-0.261753158110668
4918602674.45348170789-5.89882165796268-690.679421330194-0.564737361975723
5017602628.45556151116-7.94267380265407-777.705282784717-0.414071867469269
5115402464.04220388852-15.9309575595041-570.667756296296-1.61268461441122
5222402394.11622659736-18.6916214208315-32.4438081685985-0.555484830306273
5326002361.7085199986-19.3935389353315269.161307405967-0.14098266713681
5430602497.34450580692-11.4569030525235213.8042811753451.59352241531376
5520402479.58809376866-11.7794037008758-425.406554697927-0.0647831870471463
5622302508.21296700498-9.71142048370952-369.2255954744560.415737197855718
5727202456.84420461335-11.8426882626209357.031820278179-0.428781006911994
5837402468.48065503738-10.6420618640621218.599796335520.241698116661595
5931002439.12009039877-11.5987027020343703.068764180823-0.192693380033444
6021002385.96074099117-13.7215872728051-192.283562998901-0.427912039159622
6136302597.253413695-2.23166291233856525.421944511312.31769262597137
6216202601.2646261891-1.91284624559876-995.3408548297360.0643068263103254
6318702580.0720277752-2.8977871943472-666.6221818554-0.198504659277802
6416802470.44874836123-8.35194711239093-550.094868268565-1.09819835447186
6518302342.81253892282-14.4493335648884-244.300912045578-1.22701517311606
6646202567.32953522283-2.232906422608291514.806194616382.45809932023533
6715602552.29085732656-2.88757108650024-963.46342387763-0.131748735754945
6828002625.082206424070.9811296573784154.5202653955630.778749379379261
6918102498.87459542332-5.52009747888583-402.46663445254-1.3089020332292
7042602535.35918362268-3.3733272313121630.055613049440.432255866507261
7127702488.50418532028-5.5952418631127379.397802824832-0.447426867302253
7232802631.491464496981.9962822395549313.9739777553631.52896583288945
7318302494.75067166377-5.09169036979143-352.353444002651-1.42785318046483
7425902589.424846283390.00538767206421031-224.0845281502081.0268370517657
7517602576.75308468342-0.642344334133225-788.209169076188-0.130463704608675
7629502691.302232548685.24377867985432-0.6078452354172441.18522767427532
7720202704.911617676015.67127249641736-703.7398844887910.0860641030322778
7825302494.94392008514-5.34844296421524520.366016878218-2.21844550061627
7925302571.39319962617-1.16835206660121-225.4946014973460.84157751641036
8022202526.84167353222-3.38532696220752-209.1920957232-0.446381063339323
8122502536.42475106809-2.72262907396292-315.6156789406570.133437781394117
8226302338.55583510944-12.694440036859730.687937632328-2.00787291618009
8335502402.8220840461-8.76197882416609973.9622597791250.791817749053136
8426702391.85116498296-8.87484478341152283.120381328428-0.0227269777338248
8522602427.29590454669-6.61037752944137-267.0472161627350.45601271920301
8621702429.88102758765-6.14054005730118-280.5783627705490.0946177962018332
8724302539.94223779485-0.203183579297138-371.4832105173411.19563027861371
8817002448.7692694658-4.85139409600804-544.035653740692-0.935945202674889
8922002453.14785511407-4.37977189351286-273.9190387619970.0949578824048408
9031402479.87628567217-2.79023688263769590.1192791466460.320039263706132
9119002429.2958286453-5.23217173926025-421.748648722618-0.49167768180489
9222602411.23013554377-5.88792389237204-122.34866828892-0.13203842581306
9335802572.145945043842.63517112905691632.4641322878141.7161765414513
9430502596.787101547633.75959089411836403.68979458340.226405747490708
9531302555.011309452911.43293872116611677.459865247086-0.468473455151267
9623502492.7236238136-1.822860090124970.668934244284173-0.655564278442496
9716502407.20636585263-6.0991902605121-568.863598916526-0.861075251852739
9817602344.9758591035-8.9671983935931-458.657743400992-0.577507849851382
9920102314.5478071067-10.0637376919663-256.2525082262-0.220798609247868
10019102320.05663862201-9.26805598190576-445.0999609619330.16021309190591
10118502293.00232874154-10.176847729098-402.978697820887-0.182983779062028
10220302165.44402091986-16.1744724887972128.691517884231-1.20760929424616
10321102175.80560020531-14.8186097031841-125.5183867562060.273003854408556
10419002169.18330937654-14.3998180798128-287.6273282121410.0843251168213159
10521702071.73892415419-18.6429829892966285.135165579317-0.854377451521708
10626902046.84152682804-18.9625517699823657.232539700984-0.0643458378292536
10736202125.58223828464-13.97042950893771274.563378510431.00516572832248
10819202092.82605052875-14.9302792806211-130.554161997047-0.19326649309354
10914802059.50219334457-15.8700887385534-538.112571058708-0.189233449989137
11039102334.97780371677-0.983944623503474919.424417637992.997395145959
11121202409.475058215632.87272959668343-459.3257405530660.776557162505456
11219802427.374630891653.64051943303498-481.1882270110780.154595867942006
11320402423.520826696953.25760030115154-366.65721611129-0.0771007223593419
11418202335.10699478631-1.42630783851702-308.830415895973-0.943103467314168
11517002244.90540254035-5.9622360909429-345.144987426121-0.913313180717442
11622102242.28892706749-5.79128618105934-39.81753503146990.0344211205793952
11720702185.92374550963-8.3753328681114-2.1225799359481-0.520303484856437
11826502159.37406525383-9.30394110200695531.521561815048-0.186976478174817
11932602129.97063432424-10.33091225246421175.25658685045-0.206781056195469
12015902079.80831538087-12.3660709781037-400.181290168675-0.409780098377079
12118802148.23257715723-8.23814709199864-450.0241027323040.831162980951932
12213901951.69765299009-17.8590347765724-137.997379181396-1.93718617082285
12318901937.39385425704-17.677382493042-55.39375082798010.0365760502271859
12416401933.15094447818-16.9909573964598-323.3807008187560.138212460259573
12518401935.12137963958-16.0221383071206-137.7873771591060.195072032215064
12616201908.97076640906-16.539645439101-266.180223095321-0.104200177289538







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
11754.309394538261994.99479033772-240.685395799463
22129.779736082442000.06038063949129.719355442948
32095.899457137222005.1259709412690.7734861959659
42655.637055452532010.19156124303645.445494209496
53287.74961160492015.25715154481272.4924600601
61612.144733488312020.32274184657-408.178008358264
71816.281632835142025.38833214834-209.106699313198
81775.429453410242030.45392245011-255.024469039873
91931.163810942882035.51951275188-104.355701809003
101643.910301728442040.58510305365-396.674801325208
111864.658357672982045.65069335542-180.992335682444
121707.302899076132050.71628365719-343.413384581055

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 1754.30939453826 & 1994.99479033772 & -240.685395799463 \tabularnewline
2 & 2129.77973608244 & 2000.06038063949 & 129.719355442948 \tabularnewline
3 & 2095.89945713722 & 2005.12597094126 & 90.7734861959659 \tabularnewline
4 & 2655.63705545253 & 2010.19156124303 & 645.445494209496 \tabularnewline
5 & 3287.7496116049 & 2015.2571515448 & 1272.4924600601 \tabularnewline
6 & 1612.14473348831 & 2020.32274184657 & -408.178008358264 \tabularnewline
7 & 1816.28163283514 & 2025.38833214834 & -209.106699313198 \tabularnewline
8 & 1775.42945341024 & 2030.45392245011 & -255.024469039873 \tabularnewline
9 & 1931.16381094288 & 2035.51951275188 & -104.355701809003 \tabularnewline
10 & 1643.91030172844 & 2040.58510305365 & -396.674801325208 \tabularnewline
11 & 1864.65835767298 & 2045.65069335542 & -180.992335682444 \tabularnewline
12 & 1707.30289907613 & 2050.71628365719 & -343.413384581055 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299967&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]1754.30939453826[/C][C]1994.99479033772[/C][C]-240.685395799463[/C][/ROW]
[ROW][C]2[/C][C]2129.77973608244[/C][C]2000.06038063949[/C][C]129.719355442948[/C][/ROW]
[ROW][C]3[/C][C]2095.89945713722[/C][C]2005.12597094126[/C][C]90.7734861959659[/C][/ROW]
[ROW][C]4[/C][C]2655.63705545253[/C][C]2010.19156124303[/C][C]645.445494209496[/C][/ROW]
[ROW][C]5[/C][C]3287.7496116049[/C][C]2015.2571515448[/C][C]1272.4924600601[/C][/ROW]
[ROW][C]6[/C][C]1612.14473348831[/C][C]2020.32274184657[/C][C]-408.178008358264[/C][/ROW]
[ROW][C]7[/C][C]1816.28163283514[/C][C]2025.38833214834[/C][C]-209.106699313198[/C][/ROW]
[ROW][C]8[/C][C]1775.42945341024[/C][C]2030.45392245011[/C][C]-255.024469039873[/C][/ROW]
[ROW][C]9[/C][C]1931.16381094288[/C][C]2035.51951275188[/C][C]-104.355701809003[/C][/ROW]
[ROW][C]10[/C][C]1643.91030172844[/C][C]2040.58510305365[/C][C]-396.674801325208[/C][/ROW]
[ROW][C]11[/C][C]1864.65835767298[/C][C]2045.65069335542[/C][C]-180.992335682444[/C][/ROW]
[ROW][C]12[/C][C]1707.30289907613[/C][C]2050.71628365719[/C][C]-343.413384581055[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299967&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299967&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
11754.309394538261994.99479033772-240.685395799463
22129.779736082442000.06038063949129.719355442948
32095.899457137222005.1259709412690.7734861959659
42655.637055452532010.19156124303645.445494209496
53287.74961160492015.25715154481272.4924600601
61612.144733488312020.32274184657-408.178008358264
71816.281632835142025.38833214834-209.106699313198
81775.429453410242030.45392245011-255.024469039873
91931.163810942882035.51951275188-104.355701809003
101643.910301728442040.58510305365-396.674801325208
111864.658357672982045.65069335542-180.992335682444
121707.302899076132050.71628365719-343.413384581055



Parameters (Session):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')