Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationThu, 15 Dec 2016 19:26:43 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/15/t1481827903k74d0izer5fm26i.htm/, Retrieved Fri, 01 Nov 2024 03:34:47 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299960, Retrieved Fri, 01 Nov 2024 03:34:47 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact77
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [N2099 - r0481974] [2016-12-15 18:26:43] [ee2f08b6fcfe19fae25bd9410e008f6d] [Current]
Feedback Forum

Post a new message
Dataseries X:
2490
2560
2890
3420
2700
3290
2650
3060
3200
4600
4370
3340
2410
1920
2620
2840
2880
2380
2820
2480
3230
3860
5050
3630
1700
2590
2130
2350
2680
2270
2810
2200
3420
4300
3440
2670
2460
1920
2890
2600
2860
2010
2470
2210
3530
3790
3520
2510
1860
1760
1540
2240
2600
3060
2040
2230
2720
3740
3100
2100
3630
1620
1870
1680
1830
4620
1560
2800
1810
4260
2770
3280
1830
2590
1760
2950
2020
2530
2530
2220
2250
2630
3550
2670
2260
2170
2430
1700
2200
3140
1900
2260
3580
3050
3130
2350
1650
1760
2010
1910
1850
2030
2110
1900
2170
2690
3620
1920
1480
3910
2120
1980
2040
1820
1700
2210
2070
2650
3260
1590
1880
1390
1890
1640
1840
1620




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299960&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299960&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299960&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
12490NANA-461.855NA
22560NANA-346.855NA
32890NANA-434.355NA
43420NANA-322.318NA
52700NANA-229.262NA
63290NANA106.201NA
726502868.153210.83-342.683-218.15
830602943.573180.83-237.267116.433
932003355.693142.92212.775-155.692
1046004090.863107.5983.358509.142
1143704109.193090.831018.36260.808
1233403114.323060.4253.9001225.683
1324102567.733029.58-461.855-157.729
1419202665.653012.5-346.855-745.645
1526202555.232989.58-434.35564.7712
1628402637.682960-322.318202.318
1728802728.242957.5-229.262151.762
1823803104.122997.92106.201-724.118
1928202637.732980.42-342.683182.267
2024802741.482978.75-237.267-261.483
2132303199.032986.25212.77530.9749
2238603928.782945.42983.358-68.7751
2350503935.032916.671018.361114.97
2436302957.652903.7553.9001672.35
2517002436.92898.75-461.855-736.895
2625902539.812886.67-346.85550.1879
2721302448.562882.92-434.355-318.562
2823502586.852909.17-322.318-236.849
2926802631.152860.42-229.26248.8453
3022702859.532753.33106.201-589.534
3128102402.322745-342.683407.683
3222002511.482748.75-237.267-311.483
3334202965.282752.5212.775454.725
3443003777.942794.58983.358522.058
3534403830.862812.51018.36-390.858
3626702863.072809.1753.9001-193.067
3724602322.312784.17-461.855137.688
3819202423.562770.42-346.855-503.562
3928902341.062775.42-434.355548.938
4026002436.432758.75-322.318163.568
4128602511.572740.83-229.262348.429
4220102843.72737.5106.201-833.701
4324702363.152705.83-342.683106.85
4422102436.92674.17-237.267-226.9
4535302824.032611.25212.775705.975
4637903523.362540983.358266.642
4735203532.532514.171018.36-12.5251
4825102600.982547.0853.9001-90.9834
4918602111.062572.92-461.855-251.062
5017602208.982555.83-346.855-448.979
5115402088.562522.92-434.355-548.562
5222402164.772487.08-322.31875.2342
5326002238.242467.5-229.262361.762
5430602539.122432.92106.201520.882
5520402146.92489.58-342.683-106.9
5622302320.232557.5-237.267-90.2334
5727202778.192565.42212.775-58.1917
5837403539.192555.83983.358200.808
5931003518.782500.421018.36-418.775
6021002587.232533.3353.9001-487.233
6136302116.482578.33-461.8551513.52
6216202235.232582.08-346.855-615.229
6318702133.562567.92-434.355-263.562
6416802229.352551.67-322.318-549.349
6518302330.322559.58-229.262-500.321
6646202701.22595106.2011918.8
6715602226.482569.17-342.683-666.483
6828002297.322534.58-237.267502.683
6918102783.192570.42212.775-973.192
7042603602.112618.75983.358657.892
7127703697.942679.581018.36-927.942
7232802654.322600.4253.9001625.683
7318302091.92553.75-461.855-261.895
7425902223.152570-346.855366.855
7517602129.812564.17-434.355-369.812
7629502192.272514.58-322.318757.734
7720202249.92479.17-229.262-229.905
7825302592.452486.25106.201-62.451
7925302136.072478.75-342.683393.933
8022202241.92479.17-237.267-21.9001
8122502702.362489.58212.775-452.358
8226303448.782465.42983.358-818.775
8335503439.192420.831018.36110.808
8426702507.652453.7553.9001162.35
8522601991.062452.92-461.855268.938
8621702081.482428.33-346.85588.5212
8724302051.062485.42-434.355378.938
8817002236.022558.33-322.318-536.016
8922002329.072558.33-229.262-129.071
9031402633.72527.5106.201506.299
9119002146.072488.75-342.683-246.067
9222602208.982446.25-237.26751.0166
9335802624.442411.67212.775955.558
9430503386.282402.92983.358-336.275
9531303415.442397.081018.36-285.442
9623502390.152336.2553.9001-40.1501
9716501836.92298.75-461.855-186.895
9817601945.652292.5-346.855-185.645
9920101784.42218.75-434.355225.605
10019101822.682145-322.31887.3175
10118501921.152150.42-229.262-71.1547
10220302259.122152.92106.201-229.118
10321101785.232127.92-342.683324.767
10419001973.152210.42-237.267-73.1501
10521702517.362304.58212.775-347.358
10626903295.442312.08983.358-605.442
10736203341.282322.921018.36278.725
10819202375.982322.0853.9001-455.983
10914801834.42296.25-461.855-354.395
11039101945.232292.08-346.8551964.77
11121201866.482300.83-434.355253.521
11219801972.682295-322.3187.31752
11320402049.072278.33-229.262-9.07137
11418202355.782249.58106.201-535.784
11517001909.822252.5-342.683-209.817
11622101926.92164.17-237.267283.1
11720702262.362049.58212.775-192.358
11826503009.192025.83983.358-359.192
11932603021.692003.331018.36238.308
12015902040.571986.6753.9001-450.567
1211880NANA-461.855NA
1221390NANA-346.855NA
1231890NANA-434.355NA
1241640NANA-322.318NA
1251840NANA-229.262NA
1261620NANA106.201NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 2490 & NA & NA & -461.855 & NA \tabularnewline
2 & 2560 & NA & NA & -346.855 & NA \tabularnewline
3 & 2890 & NA & NA & -434.355 & NA \tabularnewline
4 & 3420 & NA & NA & -322.318 & NA \tabularnewline
5 & 2700 & NA & NA & -229.262 & NA \tabularnewline
6 & 3290 & NA & NA & 106.201 & NA \tabularnewline
7 & 2650 & 2868.15 & 3210.83 & -342.683 & -218.15 \tabularnewline
8 & 3060 & 2943.57 & 3180.83 & -237.267 & 116.433 \tabularnewline
9 & 3200 & 3355.69 & 3142.92 & 212.775 & -155.692 \tabularnewline
10 & 4600 & 4090.86 & 3107.5 & 983.358 & 509.142 \tabularnewline
11 & 4370 & 4109.19 & 3090.83 & 1018.36 & 260.808 \tabularnewline
12 & 3340 & 3114.32 & 3060.42 & 53.9001 & 225.683 \tabularnewline
13 & 2410 & 2567.73 & 3029.58 & -461.855 & -157.729 \tabularnewline
14 & 1920 & 2665.65 & 3012.5 & -346.855 & -745.645 \tabularnewline
15 & 2620 & 2555.23 & 2989.58 & -434.355 & 64.7712 \tabularnewline
16 & 2840 & 2637.68 & 2960 & -322.318 & 202.318 \tabularnewline
17 & 2880 & 2728.24 & 2957.5 & -229.262 & 151.762 \tabularnewline
18 & 2380 & 3104.12 & 2997.92 & 106.201 & -724.118 \tabularnewline
19 & 2820 & 2637.73 & 2980.42 & -342.683 & 182.267 \tabularnewline
20 & 2480 & 2741.48 & 2978.75 & -237.267 & -261.483 \tabularnewline
21 & 3230 & 3199.03 & 2986.25 & 212.775 & 30.9749 \tabularnewline
22 & 3860 & 3928.78 & 2945.42 & 983.358 & -68.7751 \tabularnewline
23 & 5050 & 3935.03 & 2916.67 & 1018.36 & 1114.97 \tabularnewline
24 & 3630 & 2957.65 & 2903.75 & 53.9001 & 672.35 \tabularnewline
25 & 1700 & 2436.9 & 2898.75 & -461.855 & -736.895 \tabularnewline
26 & 2590 & 2539.81 & 2886.67 & -346.855 & 50.1879 \tabularnewline
27 & 2130 & 2448.56 & 2882.92 & -434.355 & -318.562 \tabularnewline
28 & 2350 & 2586.85 & 2909.17 & -322.318 & -236.849 \tabularnewline
29 & 2680 & 2631.15 & 2860.42 & -229.262 & 48.8453 \tabularnewline
30 & 2270 & 2859.53 & 2753.33 & 106.201 & -589.534 \tabularnewline
31 & 2810 & 2402.32 & 2745 & -342.683 & 407.683 \tabularnewline
32 & 2200 & 2511.48 & 2748.75 & -237.267 & -311.483 \tabularnewline
33 & 3420 & 2965.28 & 2752.5 & 212.775 & 454.725 \tabularnewline
34 & 4300 & 3777.94 & 2794.58 & 983.358 & 522.058 \tabularnewline
35 & 3440 & 3830.86 & 2812.5 & 1018.36 & -390.858 \tabularnewline
36 & 2670 & 2863.07 & 2809.17 & 53.9001 & -193.067 \tabularnewline
37 & 2460 & 2322.31 & 2784.17 & -461.855 & 137.688 \tabularnewline
38 & 1920 & 2423.56 & 2770.42 & -346.855 & -503.562 \tabularnewline
39 & 2890 & 2341.06 & 2775.42 & -434.355 & 548.938 \tabularnewline
40 & 2600 & 2436.43 & 2758.75 & -322.318 & 163.568 \tabularnewline
41 & 2860 & 2511.57 & 2740.83 & -229.262 & 348.429 \tabularnewline
42 & 2010 & 2843.7 & 2737.5 & 106.201 & -833.701 \tabularnewline
43 & 2470 & 2363.15 & 2705.83 & -342.683 & 106.85 \tabularnewline
44 & 2210 & 2436.9 & 2674.17 & -237.267 & -226.9 \tabularnewline
45 & 3530 & 2824.03 & 2611.25 & 212.775 & 705.975 \tabularnewline
46 & 3790 & 3523.36 & 2540 & 983.358 & 266.642 \tabularnewline
47 & 3520 & 3532.53 & 2514.17 & 1018.36 & -12.5251 \tabularnewline
48 & 2510 & 2600.98 & 2547.08 & 53.9001 & -90.9834 \tabularnewline
49 & 1860 & 2111.06 & 2572.92 & -461.855 & -251.062 \tabularnewline
50 & 1760 & 2208.98 & 2555.83 & -346.855 & -448.979 \tabularnewline
51 & 1540 & 2088.56 & 2522.92 & -434.355 & -548.562 \tabularnewline
52 & 2240 & 2164.77 & 2487.08 & -322.318 & 75.2342 \tabularnewline
53 & 2600 & 2238.24 & 2467.5 & -229.262 & 361.762 \tabularnewline
54 & 3060 & 2539.12 & 2432.92 & 106.201 & 520.882 \tabularnewline
55 & 2040 & 2146.9 & 2489.58 & -342.683 & -106.9 \tabularnewline
56 & 2230 & 2320.23 & 2557.5 & -237.267 & -90.2334 \tabularnewline
57 & 2720 & 2778.19 & 2565.42 & 212.775 & -58.1917 \tabularnewline
58 & 3740 & 3539.19 & 2555.83 & 983.358 & 200.808 \tabularnewline
59 & 3100 & 3518.78 & 2500.42 & 1018.36 & -418.775 \tabularnewline
60 & 2100 & 2587.23 & 2533.33 & 53.9001 & -487.233 \tabularnewline
61 & 3630 & 2116.48 & 2578.33 & -461.855 & 1513.52 \tabularnewline
62 & 1620 & 2235.23 & 2582.08 & -346.855 & -615.229 \tabularnewline
63 & 1870 & 2133.56 & 2567.92 & -434.355 & -263.562 \tabularnewline
64 & 1680 & 2229.35 & 2551.67 & -322.318 & -549.349 \tabularnewline
65 & 1830 & 2330.32 & 2559.58 & -229.262 & -500.321 \tabularnewline
66 & 4620 & 2701.2 & 2595 & 106.201 & 1918.8 \tabularnewline
67 & 1560 & 2226.48 & 2569.17 & -342.683 & -666.483 \tabularnewline
68 & 2800 & 2297.32 & 2534.58 & -237.267 & 502.683 \tabularnewline
69 & 1810 & 2783.19 & 2570.42 & 212.775 & -973.192 \tabularnewline
70 & 4260 & 3602.11 & 2618.75 & 983.358 & 657.892 \tabularnewline
71 & 2770 & 3697.94 & 2679.58 & 1018.36 & -927.942 \tabularnewline
72 & 3280 & 2654.32 & 2600.42 & 53.9001 & 625.683 \tabularnewline
73 & 1830 & 2091.9 & 2553.75 & -461.855 & -261.895 \tabularnewline
74 & 2590 & 2223.15 & 2570 & -346.855 & 366.855 \tabularnewline
75 & 1760 & 2129.81 & 2564.17 & -434.355 & -369.812 \tabularnewline
76 & 2950 & 2192.27 & 2514.58 & -322.318 & 757.734 \tabularnewline
77 & 2020 & 2249.9 & 2479.17 & -229.262 & -229.905 \tabularnewline
78 & 2530 & 2592.45 & 2486.25 & 106.201 & -62.451 \tabularnewline
79 & 2530 & 2136.07 & 2478.75 & -342.683 & 393.933 \tabularnewline
80 & 2220 & 2241.9 & 2479.17 & -237.267 & -21.9001 \tabularnewline
81 & 2250 & 2702.36 & 2489.58 & 212.775 & -452.358 \tabularnewline
82 & 2630 & 3448.78 & 2465.42 & 983.358 & -818.775 \tabularnewline
83 & 3550 & 3439.19 & 2420.83 & 1018.36 & 110.808 \tabularnewline
84 & 2670 & 2507.65 & 2453.75 & 53.9001 & 162.35 \tabularnewline
85 & 2260 & 1991.06 & 2452.92 & -461.855 & 268.938 \tabularnewline
86 & 2170 & 2081.48 & 2428.33 & -346.855 & 88.5212 \tabularnewline
87 & 2430 & 2051.06 & 2485.42 & -434.355 & 378.938 \tabularnewline
88 & 1700 & 2236.02 & 2558.33 & -322.318 & -536.016 \tabularnewline
89 & 2200 & 2329.07 & 2558.33 & -229.262 & -129.071 \tabularnewline
90 & 3140 & 2633.7 & 2527.5 & 106.201 & 506.299 \tabularnewline
91 & 1900 & 2146.07 & 2488.75 & -342.683 & -246.067 \tabularnewline
92 & 2260 & 2208.98 & 2446.25 & -237.267 & 51.0166 \tabularnewline
93 & 3580 & 2624.44 & 2411.67 & 212.775 & 955.558 \tabularnewline
94 & 3050 & 3386.28 & 2402.92 & 983.358 & -336.275 \tabularnewline
95 & 3130 & 3415.44 & 2397.08 & 1018.36 & -285.442 \tabularnewline
96 & 2350 & 2390.15 & 2336.25 & 53.9001 & -40.1501 \tabularnewline
97 & 1650 & 1836.9 & 2298.75 & -461.855 & -186.895 \tabularnewline
98 & 1760 & 1945.65 & 2292.5 & -346.855 & -185.645 \tabularnewline
99 & 2010 & 1784.4 & 2218.75 & -434.355 & 225.605 \tabularnewline
100 & 1910 & 1822.68 & 2145 & -322.318 & 87.3175 \tabularnewline
101 & 1850 & 1921.15 & 2150.42 & -229.262 & -71.1547 \tabularnewline
102 & 2030 & 2259.12 & 2152.92 & 106.201 & -229.118 \tabularnewline
103 & 2110 & 1785.23 & 2127.92 & -342.683 & 324.767 \tabularnewline
104 & 1900 & 1973.15 & 2210.42 & -237.267 & -73.1501 \tabularnewline
105 & 2170 & 2517.36 & 2304.58 & 212.775 & -347.358 \tabularnewline
106 & 2690 & 3295.44 & 2312.08 & 983.358 & -605.442 \tabularnewline
107 & 3620 & 3341.28 & 2322.92 & 1018.36 & 278.725 \tabularnewline
108 & 1920 & 2375.98 & 2322.08 & 53.9001 & -455.983 \tabularnewline
109 & 1480 & 1834.4 & 2296.25 & -461.855 & -354.395 \tabularnewline
110 & 3910 & 1945.23 & 2292.08 & -346.855 & 1964.77 \tabularnewline
111 & 2120 & 1866.48 & 2300.83 & -434.355 & 253.521 \tabularnewline
112 & 1980 & 1972.68 & 2295 & -322.318 & 7.31752 \tabularnewline
113 & 2040 & 2049.07 & 2278.33 & -229.262 & -9.07137 \tabularnewline
114 & 1820 & 2355.78 & 2249.58 & 106.201 & -535.784 \tabularnewline
115 & 1700 & 1909.82 & 2252.5 & -342.683 & -209.817 \tabularnewline
116 & 2210 & 1926.9 & 2164.17 & -237.267 & 283.1 \tabularnewline
117 & 2070 & 2262.36 & 2049.58 & 212.775 & -192.358 \tabularnewline
118 & 2650 & 3009.19 & 2025.83 & 983.358 & -359.192 \tabularnewline
119 & 3260 & 3021.69 & 2003.33 & 1018.36 & 238.308 \tabularnewline
120 & 1590 & 2040.57 & 1986.67 & 53.9001 & -450.567 \tabularnewline
121 & 1880 & NA & NA & -461.855 & NA \tabularnewline
122 & 1390 & NA & NA & -346.855 & NA \tabularnewline
123 & 1890 & NA & NA & -434.355 & NA \tabularnewline
124 & 1640 & NA & NA & -322.318 & NA \tabularnewline
125 & 1840 & NA & NA & -229.262 & NA \tabularnewline
126 & 1620 & NA & NA & 106.201 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299960&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]2490[/C][C]NA[/C][C]NA[/C][C]-461.855[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]2560[/C][C]NA[/C][C]NA[/C][C]-346.855[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]2890[/C][C]NA[/C][C]NA[/C][C]-434.355[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]3420[/C][C]NA[/C][C]NA[/C][C]-322.318[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]2700[/C][C]NA[/C][C]NA[/C][C]-229.262[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]3290[/C][C]NA[/C][C]NA[/C][C]106.201[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]2650[/C][C]2868.15[/C][C]3210.83[/C][C]-342.683[/C][C]-218.15[/C][/ROW]
[ROW][C]8[/C][C]3060[/C][C]2943.57[/C][C]3180.83[/C][C]-237.267[/C][C]116.433[/C][/ROW]
[ROW][C]9[/C][C]3200[/C][C]3355.69[/C][C]3142.92[/C][C]212.775[/C][C]-155.692[/C][/ROW]
[ROW][C]10[/C][C]4600[/C][C]4090.86[/C][C]3107.5[/C][C]983.358[/C][C]509.142[/C][/ROW]
[ROW][C]11[/C][C]4370[/C][C]4109.19[/C][C]3090.83[/C][C]1018.36[/C][C]260.808[/C][/ROW]
[ROW][C]12[/C][C]3340[/C][C]3114.32[/C][C]3060.42[/C][C]53.9001[/C][C]225.683[/C][/ROW]
[ROW][C]13[/C][C]2410[/C][C]2567.73[/C][C]3029.58[/C][C]-461.855[/C][C]-157.729[/C][/ROW]
[ROW][C]14[/C][C]1920[/C][C]2665.65[/C][C]3012.5[/C][C]-346.855[/C][C]-745.645[/C][/ROW]
[ROW][C]15[/C][C]2620[/C][C]2555.23[/C][C]2989.58[/C][C]-434.355[/C][C]64.7712[/C][/ROW]
[ROW][C]16[/C][C]2840[/C][C]2637.68[/C][C]2960[/C][C]-322.318[/C][C]202.318[/C][/ROW]
[ROW][C]17[/C][C]2880[/C][C]2728.24[/C][C]2957.5[/C][C]-229.262[/C][C]151.762[/C][/ROW]
[ROW][C]18[/C][C]2380[/C][C]3104.12[/C][C]2997.92[/C][C]106.201[/C][C]-724.118[/C][/ROW]
[ROW][C]19[/C][C]2820[/C][C]2637.73[/C][C]2980.42[/C][C]-342.683[/C][C]182.267[/C][/ROW]
[ROW][C]20[/C][C]2480[/C][C]2741.48[/C][C]2978.75[/C][C]-237.267[/C][C]-261.483[/C][/ROW]
[ROW][C]21[/C][C]3230[/C][C]3199.03[/C][C]2986.25[/C][C]212.775[/C][C]30.9749[/C][/ROW]
[ROW][C]22[/C][C]3860[/C][C]3928.78[/C][C]2945.42[/C][C]983.358[/C][C]-68.7751[/C][/ROW]
[ROW][C]23[/C][C]5050[/C][C]3935.03[/C][C]2916.67[/C][C]1018.36[/C][C]1114.97[/C][/ROW]
[ROW][C]24[/C][C]3630[/C][C]2957.65[/C][C]2903.75[/C][C]53.9001[/C][C]672.35[/C][/ROW]
[ROW][C]25[/C][C]1700[/C][C]2436.9[/C][C]2898.75[/C][C]-461.855[/C][C]-736.895[/C][/ROW]
[ROW][C]26[/C][C]2590[/C][C]2539.81[/C][C]2886.67[/C][C]-346.855[/C][C]50.1879[/C][/ROW]
[ROW][C]27[/C][C]2130[/C][C]2448.56[/C][C]2882.92[/C][C]-434.355[/C][C]-318.562[/C][/ROW]
[ROW][C]28[/C][C]2350[/C][C]2586.85[/C][C]2909.17[/C][C]-322.318[/C][C]-236.849[/C][/ROW]
[ROW][C]29[/C][C]2680[/C][C]2631.15[/C][C]2860.42[/C][C]-229.262[/C][C]48.8453[/C][/ROW]
[ROW][C]30[/C][C]2270[/C][C]2859.53[/C][C]2753.33[/C][C]106.201[/C][C]-589.534[/C][/ROW]
[ROW][C]31[/C][C]2810[/C][C]2402.32[/C][C]2745[/C][C]-342.683[/C][C]407.683[/C][/ROW]
[ROW][C]32[/C][C]2200[/C][C]2511.48[/C][C]2748.75[/C][C]-237.267[/C][C]-311.483[/C][/ROW]
[ROW][C]33[/C][C]3420[/C][C]2965.28[/C][C]2752.5[/C][C]212.775[/C][C]454.725[/C][/ROW]
[ROW][C]34[/C][C]4300[/C][C]3777.94[/C][C]2794.58[/C][C]983.358[/C][C]522.058[/C][/ROW]
[ROW][C]35[/C][C]3440[/C][C]3830.86[/C][C]2812.5[/C][C]1018.36[/C][C]-390.858[/C][/ROW]
[ROW][C]36[/C][C]2670[/C][C]2863.07[/C][C]2809.17[/C][C]53.9001[/C][C]-193.067[/C][/ROW]
[ROW][C]37[/C][C]2460[/C][C]2322.31[/C][C]2784.17[/C][C]-461.855[/C][C]137.688[/C][/ROW]
[ROW][C]38[/C][C]1920[/C][C]2423.56[/C][C]2770.42[/C][C]-346.855[/C][C]-503.562[/C][/ROW]
[ROW][C]39[/C][C]2890[/C][C]2341.06[/C][C]2775.42[/C][C]-434.355[/C][C]548.938[/C][/ROW]
[ROW][C]40[/C][C]2600[/C][C]2436.43[/C][C]2758.75[/C][C]-322.318[/C][C]163.568[/C][/ROW]
[ROW][C]41[/C][C]2860[/C][C]2511.57[/C][C]2740.83[/C][C]-229.262[/C][C]348.429[/C][/ROW]
[ROW][C]42[/C][C]2010[/C][C]2843.7[/C][C]2737.5[/C][C]106.201[/C][C]-833.701[/C][/ROW]
[ROW][C]43[/C][C]2470[/C][C]2363.15[/C][C]2705.83[/C][C]-342.683[/C][C]106.85[/C][/ROW]
[ROW][C]44[/C][C]2210[/C][C]2436.9[/C][C]2674.17[/C][C]-237.267[/C][C]-226.9[/C][/ROW]
[ROW][C]45[/C][C]3530[/C][C]2824.03[/C][C]2611.25[/C][C]212.775[/C][C]705.975[/C][/ROW]
[ROW][C]46[/C][C]3790[/C][C]3523.36[/C][C]2540[/C][C]983.358[/C][C]266.642[/C][/ROW]
[ROW][C]47[/C][C]3520[/C][C]3532.53[/C][C]2514.17[/C][C]1018.36[/C][C]-12.5251[/C][/ROW]
[ROW][C]48[/C][C]2510[/C][C]2600.98[/C][C]2547.08[/C][C]53.9001[/C][C]-90.9834[/C][/ROW]
[ROW][C]49[/C][C]1860[/C][C]2111.06[/C][C]2572.92[/C][C]-461.855[/C][C]-251.062[/C][/ROW]
[ROW][C]50[/C][C]1760[/C][C]2208.98[/C][C]2555.83[/C][C]-346.855[/C][C]-448.979[/C][/ROW]
[ROW][C]51[/C][C]1540[/C][C]2088.56[/C][C]2522.92[/C][C]-434.355[/C][C]-548.562[/C][/ROW]
[ROW][C]52[/C][C]2240[/C][C]2164.77[/C][C]2487.08[/C][C]-322.318[/C][C]75.2342[/C][/ROW]
[ROW][C]53[/C][C]2600[/C][C]2238.24[/C][C]2467.5[/C][C]-229.262[/C][C]361.762[/C][/ROW]
[ROW][C]54[/C][C]3060[/C][C]2539.12[/C][C]2432.92[/C][C]106.201[/C][C]520.882[/C][/ROW]
[ROW][C]55[/C][C]2040[/C][C]2146.9[/C][C]2489.58[/C][C]-342.683[/C][C]-106.9[/C][/ROW]
[ROW][C]56[/C][C]2230[/C][C]2320.23[/C][C]2557.5[/C][C]-237.267[/C][C]-90.2334[/C][/ROW]
[ROW][C]57[/C][C]2720[/C][C]2778.19[/C][C]2565.42[/C][C]212.775[/C][C]-58.1917[/C][/ROW]
[ROW][C]58[/C][C]3740[/C][C]3539.19[/C][C]2555.83[/C][C]983.358[/C][C]200.808[/C][/ROW]
[ROW][C]59[/C][C]3100[/C][C]3518.78[/C][C]2500.42[/C][C]1018.36[/C][C]-418.775[/C][/ROW]
[ROW][C]60[/C][C]2100[/C][C]2587.23[/C][C]2533.33[/C][C]53.9001[/C][C]-487.233[/C][/ROW]
[ROW][C]61[/C][C]3630[/C][C]2116.48[/C][C]2578.33[/C][C]-461.855[/C][C]1513.52[/C][/ROW]
[ROW][C]62[/C][C]1620[/C][C]2235.23[/C][C]2582.08[/C][C]-346.855[/C][C]-615.229[/C][/ROW]
[ROW][C]63[/C][C]1870[/C][C]2133.56[/C][C]2567.92[/C][C]-434.355[/C][C]-263.562[/C][/ROW]
[ROW][C]64[/C][C]1680[/C][C]2229.35[/C][C]2551.67[/C][C]-322.318[/C][C]-549.349[/C][/ROW]
[ROW][C]65[/C][C]1830[/C][C]2330.32[/C][C]2559.58[/C][C]-229.262[/C][C]-500.321[/C][/ROW]
[ROW][C]66[/C][C]4620[/C][C]2701.2[/C][C]2595[/C][C]106.201[/C][C]1918.8[/C][/ROW]
[ROW][C]67[/C][C]1560[/C][C]2226.48[/C][C]2569.17[/C][C]-342.683[/C][C]-666.483[/C][/ROW]
[ROW][C]68[/C][C]2800[/C][C]2297.32[/C][C]2534.58[/C][C]-237.267[/C][C]502.683[/C][/ROW]
[ROW][C]69[/C][C]1810[/C][C]2783.19[/C][C]2570.42[/C][C]212.775[/C][C]-973.192[/C][/ROW]
[ROW][C]70[/C][C]4260[/C][C]3602.11[/C][C]2618.75[/C][C]983.358[/C][C]657.892[/C][/ROW]
[ROW][C]71[/C][C]2770[/C][C]3697.94[/C][C]2679.58[/C][C]1018.36[/C][C]-927.942[/C][/ROW]
[ROW][C]72[/C][C]3280[/C][C]2654.32[/C][C]2600.42[/C][C]53.9001[/C][C]625.683[/C][/ROW]
[ROW][C]73[/C][C]1830[/C][C]2091.9[/C][C]2553.75[/C][C]-461.855[/C][C]-261.895[/C][/ROW]
[ROW][C]74[/C][C]2590[/C][C]2223.15[/C][C]2570[/C][C]-346.855[/C][C]366.855[/C][/ROW]
[ROW][C]75[/C][C]1760[/C][C]2129.81[/C][C]2564.17[/C][C]-434.355[/C][C]-369.812[/C][/ROW]
[ROW][C]76[/C][C]2950[/C][C]2192.27[/C][C]2514.58[/C][C]-322.318[/C][C]757.734[/C][/ROW]
[ROW][C]77[/C][C]2020[/C][C]2249.9[/C][C]2479.17[/C][C]-229.262[/C][C]-229.905[/C][/ROW]
[ROW][C]78[/C][C]2530[/C][C]2592.45[/C][C]2486.25[/C][C]106.201[/C][C]-62.451[/C][/ROW]
[ROW][C]79[/C][C]2530[/C][C]2136.07[/C][C]2478.75[/C][C]-342.683[/C][C]393.933[/C][/ROW]
[ROW][C]80[/C][C]2220[/C][C]2241.9[/C][C]2479.17[/C][C]-237.267[/C][C]-21.9001[/C][/ROW]
[ROW][C]81[/C][C]2250[/C][C]2702.36[/C][C]2489.58[/C][C]212.775[/C][C]-452.358[/C][/ROW]
[ROW][C]82[/C][C]2630[/C][C]3448.78[/C][C]2465.42[/C][C]983.358[/C][C]-818.775[/C][/ROW]
[ROW][C]83[/C][C]3550[/C][C]3439.19[/C][C]2420.83[/C][C]1018.36[/C][C]110.808[/C][/ROW]
[ROW][C]84[/C][C]2670[/C][C]2507.65[/C][C]2453.75[/C][C]53.9001[/C][C]162.35[/C][/ROW]
[ROW][C]85[/C][C]2260[/C][C]1991.06[/C][C]2452.92[/C][C]-461.855[/C][C]268.938[/C][/ROW]
[ROW][C]86[/C][C]2170[/C][C]2081.48[/C][C]2428.33[/C][C]-346.855[/C][C]88.5212[/C][/ROW]
[ROW][C]87[/C][C]2430[/C][C]2051.06[/C][C]2485.42[/C][C]-434.355[/C][C]378.938[/C][/ROW]
[ROW][C]88[/C][C]1700[/C][C]2236.02[/C][C]2558.33[/C][C]-322.318[/C][C]-536.016[/C][/ROW]
[ROW][C]89[/C][C]2200[/C][C]2329.07[/C][C]2558.33[/C][C]-229.262[/C][C]-129.071[/C][/ROW]
[ROW][C]90[/C][C]3140[/C][C]2633.7[/C][C]2527.5[/C][C]106.201[/C][C]506.299[/C][/ROW]
[ROW][C]91[/C][C]1900[/C][C]2146.07[/C][C]2488.75[/C][C]-342.683[/C][C]-246.067[/C][/ROW]
[ROW][C]92[/C][C]2260[/C][C]2208.98[/C][C]2446.25[/C][C]-237.267[/C][C]51.0166[/C][/ROW]
[ROW][C]93[/C][C]3580[/C][C]2624.44[/C][C]2411.67[/C][C]212.775[/C][C]955.558[/C][/ROW]
[ROW][C]94[/C][C]3050[/C][C]3386.28[/C][C]2402.92[/C][C]983.358[/C][C]-336.275[/C][/ROW]
[ROW][C]95[/C][C]3130[/C][C]3415.44[/C][C]2397.08[/C][C]1018.36[/C][C]-285.442[/C][/ROW]
[ROW][C]96[/C][C]2350[/C][C]2390.15[/C][C]2336.25[/C][C]53.9001[/C][C]-40.1501[/C][/ROW]
[ROW][C]97[/C][C]1650[/C][C]1836.9[/C][C]2298.75[/C][C]-461.855[/C][C]-186.895[/C][/ROW]
[ROW][C]98[/C][C]1760[/C][C]1945.65[/C][C]2292.5[/C][C]-346.855[/C][C]-185.645[/C][/ROW]
[ROW][C]99[/C][C]2010[/C][C]1784.4[/C][C]2218.75[/C][C]-434.355[/C][C]225.605[/C][/ROW]
[ROW][C]100[/C][C]1910[/C][C]1822.68[/C][C]2145[/C][C]-322.318[/C][C]87.3175[/C][/ROW]
[ROW][C]101[/C][C]1850[/C][C]1921.15[/C][C]2150.42[/C][C]-229.262[/C][C]-71.1547[/C][/ROW]
[ROW][C]102[/C][C]2030[/C][C]2259.12[/C][C]2152.92[/C][C]106.201[/C][C]-229.118[/C][/ROW]
[ROW][C]103[/C][C]2110[/C][C]1785.23[/C][C]2127.92[/C][C]-342.683[/C][C]324.767[/C][/ROW]
[ROW][C]104[/C][C]1900[/C][C]1973.15[/C][C]2210.42[/C][C]-237.267[/C][C]-73.1501[/C][/ROW]
[ROW][C]105[/C][C]2170[/C][C]2517.36[/C][C]2304.58[/C][C]212.775[/C][C]-347.358[/C][/ROW]
[ROW][C]106[/C][C]2690[/C][C]3295.44[/C][C]2312.08[/C][C]983.358[/C][C]-605.442[/C][/ROW]
[ROW][C]107[/C][C]3620[/C][C]3341.28[/C][C]2322.92[/C][C]1018.36[/C][C]278.725[/C][/ROW]
[ROW][C]108[/C][C]1920[/C][C]2375.98[/C][C]2322.08[/C][C]53.9001[/C][C]-455.983[/C][/ROW]
[ROW][C]109[/C][C]1480[/C][C]1834.4[/C][C]2296.25[/C][C]-461.855[/C][C]-354.395[/C][/ROW]
[ROW][C]110[/C][C]3910[/C][C]1945.23[/C][C]2292.08[/C][C]-346.855[/C][C]1964.77[/C][/ROW]
[ROW][C]111[/C][C]2120[/C][C]1866.48[/C][C]2300.83[/C][C]-434.355[/C][C]253.521[/C][/ROW]
[ROW][C]112[/C][C]1980[/C][C]1972.68[/C][C]2295[/C][C]-322.318[/C][C]7.31752[/C][/ROW]
[ROW][C]113[/C][C]2040[/C][C]2049.07[/C][C]2278.33[/C][C]-229.262[/C][C]-9.07137[/C][/ROW]
[ROW][C]114[/C][C]1820[/C][C]2355.78[/C][C]2249.58[/C][C]106.201[/C][C]-535.784[/C][/ROW]
[ROW][C]115[/C][C]1700[/C][C]1909.82[/C][C]2252.5[/C][C]-342.683[/C][C]-209.817[/C][/ROW]
[ROW][C]116[/C][C]2210[/C][C]1926.9[/C][C]2164.17[/C][C]-237.267[/C][C]283.1[/C][/ROW]
[ROW][C]117[/C][C]2070[/C][C]2262.36[/C][C]2049.58[/C][C]212.775[/C][C]-192.358[/C][/ROW]
[ROW][C]118[/C][C]2650[/C][C]3009.19[/C][C]2025.83[/C][C]983.358[/C][C]-359.192[/C][/ROW]
[ROW][C]119[/C][C]3260[/C][C]3021.69[/C][C]2003.33[/C][C]1018.36[/C][C]238.308[/C][/ROW]
[ROW][C]120[/C][C]1590[/C][C]2040.57[/C][C]1986.67[/C][C]53.9001[/C][C]-450.567[/C][/ROW]
[ROW][C]121[/C][C]1880[/C][C]NA[/C][C]NA[/C][C]-461.855[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]1390[/C][C]NA[/C][C]NA[/C][C]-346.855[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]1890[/C][C]NA[/C][C]NA[/C][C]-434.355[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]1640[/C][C]NA[/C][C]NA[/C][C]-322.318[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]1840[/C][C]NA[/C][C]NA[/C][C]-229.262[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]1620[/C][C]NA[/C][C]NA[/C][C]106.201[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299960&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299960&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
12490NANA-461.855NA
22560NANA-346.855NA
32890NANA-434.355NA
43420NANA-322.318NA
52700NANA-229.262NA
63290NANA106.201NA
726502868.153210.83-342.683-218.15
830602943.573180.83-237.267116.433
932003355.693142.92212.775-155.692
1046004090.863107.5983.358509.142
1143704109.193090.831018.36260.808
1233403114.323060.4253.9001225.683
1324102567.733029.58-461.855-157.729
1419202665.653012.5-346.855-745.645
1526202555.232989.58-434.35564.7712
1628402637.682960-322.318202.318
1728802728.242957.5-229.262151.762
1823803104.122997.92106.201-724.118
1928202637.732980.42-342.683182.267
2024802741.482978.75-237.267-261.483
2132303199.032986.25212.77530.9749
2238603928.782945.42983.358-68.7751
2350503935.032916.671018.361114.97
2436302957.652903.7553.9001672.35
2517002436.92898.75-461.855-736.895
2625902539.812886.67-346.85550.1879
2721302448.562882.92-434.355-318.562
2823502586.852909.17-322.318-236.849
2926802631.152860.42-229.26248.8453
3022702859.532753.33106.201-589.534
3128102402.322745-342.683407.683
3222002511.482748.75-237.267-311.483
3334202965.282752.5212.775454.725
3443003777.942794.58983.358522.058
3534403830.862812.51018.36-390.858
3626702863.072809.1753.9001-193.067
3724602322.312784.17-461.855137.688
3819202423.562770.42-346.855-503.562
3928902341.062775.42-434.355548.938
4026002436.432758.75-322.318163.568
4128602511.572740.83-229.262348.429
4220102843.72737.5106.201-833.701
4324702363.152705.83-342.683106.85
4422102436.92674.17-237.267-226.9
4535302824.032611.25212.775705.975
4637903523.362540983.358266.642
4735203532.532514.171018.36-12.5251
4825102600.982547.0853.9001-90.9834
4918602111.062572.92-461.855-251.062
5017602208.982555.83-346.855-448.979
5115402088.562522.92-434.355-548.562
5222402164.772487.08-322.31875.2342
5326002238.242467.5-229.262361.762
5430602539.122432.92106.201520.882
5520402146.92489.58-342.683-106.9
5622302320.232557.5-237.267-90.2334
5727202778.192565.42212.775-58.1917
5837403539.192555.83983.358200.808
5931003518.782500.421018.36-418.775
6021002587.232533.3353.9001-487.233
6136302116.482578.33-461.8551513.52
6216202235.232582.08-346.855-615.229
6318702133.562567.92-434.355-263.562
6416802229.352551.67-322.318-549.349
6518302330.322559.58-229.262-500.321
6646202701.22595106.2011918.8
6715602226.482569.17-342.683-666.483
6828002297.322534.58-237.267502.683
6918102783.192570.42212.775-973.192
7042603602.112618.75983.358657.892
7127703697.942679.581018.36-927.942
7232802654.322600.4253.9001625.683
7318302091.92553.75-461.855-261.895
7425902223.152570-346.855366.855
7517602129.812564.17-434.355-369.812
7629502192.272514.58-322.318757.734
7720202249.92479.17-229.262-229.905
7825302592.452486.25106.201-62.451
7925302136.072478.75-342.683393.933
8022202241.92479.17-237.267-21.9001
8122502702.362489.58212.775-452.358
8226303448.782465.42983.358-818.775
8335503439.192420.831018.36110.808
8426702507.652453.7553.9001162.35
8522601991.062452.92-461.855268.938
8621702081.482428.33-346.85588.5212
8724302051.062485.42-434.355378.938
8817002236.022558.33-322.318-536.016
8922002329.072558.33-229.262-129.071
9031402633.72527.5106.201506.299
9119002146.072488.75-342.683-246.067
9222602208.982446.25-237.26751.0166
9335802624.442411.67212.775955.558
9430503386.282402.92983.358-336.275
9531303415.442397.081018.36-285.442
9623502390.152336.2553.9001-40.1501
9716501836.92298.75-461.855-186.895
9817601945.652292.5-346.855-185.645
9920101784.42218.75-434.355225.605
10019101822.682145-322.31887.3175
10118501921.152150.42-229.262-71.1547
10220302259.122152.92106.201-229.118
10321101785.232127.92-342.683324.767
10419001973.152210.42-237.267-73.1501
10521702517.362304.58212.775-347.358
10626903295.442312.08983.358-605.442
10736203341.282322.921018.36278.725
10819202375.982322.0853.9001-455.983
10914801834.42296.25-461.855-354.395
11039101945.232292.08-346.8551964.77
11121201866.482300.83-434.355253.521
11219801972.682295-322.3187.31752
11320402049.072278.33-229.262-9.07137
11418202355.782249.58106.201-535.784
11517001909.822252.5-342.683-209.817
11622101926.92164.17-237.267283.1
11720702262.362049.58212.775-192.358
11826503009.192025.83983.358-359.192
11932603021.692003.331018.36238.308
12015902040.571986.6753.9001-450.567
1211880NANA-461.855NA
1221390NANA-346.855NA
1231890NANA-434.355NA
1241640NANA-322.318NA
1251840NANA-229.262NA
1261620NANA106.201NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')