Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationThu, 15 Dec 2016 13:18:03 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/15/t1481804341i9o84pdhifc42k8.htm/, Retrieved Fri, 01 Nov 2024 03:40:26 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299905, Retrieved Fri, 01 Nov 2024 03:40:26 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywordsF1 competition
Estimated Impact73
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [ARIMA Forecasting] [2016-12-15 12:18:03] [00d6a26c230b6c589ee3bbc701d55499] [Current]
Feedback Forum

Post a new message
Dataseries X:
3840
3140
4580
4740
3920
4900
3400
3440
2600
2220
2190
2550
2720
3720
4710
5070
6030
5280
4420
3940
2750
2980
2690
2650
4000
4150
6050
6280
5520
4800
4610
3530
2790
2750
2470
2610
3680
3820
4460
4760
3290
3610
3650
3130
2850
2720
2740
2760
3330
3850
5430
5180
4770
5360
4950
3720
3330
3000
2760
3040
3260
3780
4670
4320
4080
4210
3350
3390
2630
2350
2330
2230
2830
3230
4240
3750
4160
3960
3000
2890
2300
2320
2270
1970
2920
3310
4370
3990
3970
3850
3510
2840
2130
2280
1960
1740
2370
1980
2680
3510
3350
3290
3150
2490
2490
2930
3590
2040
2480
2760
3400
3470
3130
3670
3080
2430




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299905&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299905&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299905&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[116])
1042490-------
1052490-------
1062930-------
1073590-------
1082040-------
1092480-------
1102760-------
1113400-------
1123470-------
1133130-------
1143670-------
1153080-------
1162430-------
117NA2209.35891718.2192840.8875NA0.24670.19190.2467
118NA2252.04831680.08543018.7285NANA0.04150.3246
119NA2299.33991662.23573180.6343NANA0.0020.3857
120NA1844.44361264.13062691.1557NANA0.32540.0876
121NA2353.55761569.64433528.9735NANA0.41650.4493
122NA2485.16061602.61283853.7213NANA0.34690.5315
123NA3209.74482007.00885133.2419NANA0.42310.7866
124NA3331.42872029.3815468.8681NANA0.44940.7958
125NA3153.88481869.03795321.9838NANA0.50860.7436
126NA3304.75841910.57745716.2972NANA0.38330.7614
127NA2882.94461627.35785107.2786NANA0.43110.6551
128NA2380.92821313.03934317.3264NANA0.48020.4802
129NA2075.49181089.20723954.8637NANANA0.3558
130NA2160.17061094.77994262.3517NANANA0.4007
131NA2201.2511080.47754484.5971NANANA0.4222
132NA1753.2504830.19123702.6253NANANA0.2481
133NA2254.44821036.12094905.3509NANANA0.4484
134NA2370.20951056.38765318.0223NANANA0.4841
135NA3063.93011325.87867080.337NANANA0.6215
136NA3183.37541339.83817563.5102NANANA0.632
137NA3009.60041232.19717350.849NANANA0.6032
138NA3156.32441258.57857915.5841NANANA0.6176
139NA2752.76631069.77177083.4948NANANA0.5581
140NA2273.1128861.42995998.215NANANA0.4671

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[116]) \tabularnewline
104 & 2490 & - & - & - & - & - & - & - \tabularnewline
105 & 2490 & - & - & - & - & - & - & - \tabularnewline
106 & 2930 & - & - & - & - & - & - & - \tabularnewline
107 & 3590 & - & - & - & - & - & - & - \tabularnewline
108 & 2040 & - & - & - & - & - & - & - \tabularnewline
109 & 2480 & - & - & - & - & - & - & - \tabularnewline
110 & 2760 & - & - & - & - & - & - & - \tabularnewline
111 & 3400 & - & - & - & - & - & - & - \tabularnewline
112 & 3470 & - & - & - & - & - & - & - \tabularnewline
113 & 3130 & - & - & - & - & - & - & - \tabularnewline
114 & 3670 & - & - & - & - & - & - & - \tabularnewline
115 & 3080 & - & - & - & - & - & - & - \tabularnewline
116 & 2430 & - & - & - & - & - & - & - \tabularnewline
117 & NA & 2209.3589 & 1718.219 & 2840.8875 & NA & 0.2467 & 0.1919 & 0.2467 \tabularnewline
118 & NA & 2252.0483 & 1680.0854 & 3018.7285 & NA & NA & 0.0415 & 0.3246 \tabularnewline
119 & NA & 2299.3399 & 1662.2357 & 3180.6343 & NA & NA & 0.002 & 0.3857 \tabularnewline
120 & NA & 1844.4436 & 1264.1306 & 2691.1557 & NA & NA & 0.3254 & 0.0876 \tabularnewline
121 & NA & 2353.5576 & 1569.6443 & 3528.9735 & NA & NA & 0.4165 & 0.4493 \tabularnewline
122 & NA & 2485.1606 & 1602.6128 & 3853.7213 & NA & NA & 0.3469 & 0.5315 \tabularnewline
123 & NA & 3209.7448 & 2007.0088 & 5133.2419 & NA & NA & 0.4231 & 0.7866 \tabularnewline
124 & NA & 3331.4287 & 2029.381 & 5468.8681 & NA & NA & 0.4494 & 0.7958 \tabularnewline
125 & NA & 3153.8848 & 1869.0379 & 5321.9838 & NA & NA & 0.5086 & 0.7436 \tabularnewline
126 & NA & 3304.7584 & 1910.5774 & 5716.2972 & NA & NA & 0.3833 & 0.7614 \tabularnewline
127 & NA & 2882.9446 & 1627.3578 & 5107.2786 & NA & NA & 0.4311 & 0.6551 \tabularnewline
128 & NA & 2380.9282 & 1313.0393 & 4317.3264 & NA & NA & 0.4802 & 0.4802 \tabularnewline
129 & NA & 2075.4918 & 1089.2072 & 3954.8637 & NA & NA & NA & 0.3558 \tabularnewline
130 & NA & 2160.1706 & 1094.7799 & 4262.3517 & NA & NA & NA & 0.4007 \tabularnewline
131 & NA & 2201.251 & 1080.4775 & 4484.5971 & NA & NA & NA & 0.4222 \tabularnewline
132 & NA & 1753.2504 & 830.1912 & 3702.6253 & NA & NA & NA & 0.2481 \tabularnewline
133 & NA & 2254.4482 & 1036.1209 & 4905.3509 & NA & NA & NA & 0.4484 \tabularnewline
134 & NA & 2370.2095 & 1056.3876 & 5318.0223 & NA & NA & NA & 0.4841 \tabularnewline
135 & NA & 3063.9301 & 1325.8786 & 7080.337 & NA & NA & NA & 0.6215 \tabularnewline
136 & NA & 3183.3754 & 1339.8381 & 7563.5102 & NA & NA & NA & 0.632 \tabularnewline
137 & NA & 3009.6004 & 1232.1971 & 7350.849 & NA & NA & NA & 0.6032 \tabularnewline
138 & NA & 3156.3244 & 1258.5785 & 7915.5841 & NA & NA & NA & 0.6176 \tabularnewline
139 & NA & 2752.7663 & 1069.7717 & 7083.4948 & NA & NA & NA & 0.5581 \tabularnewline
140 & NA & 2273.1128 & 861.4299 & 5998.215 & NA & NA & NA & 0.4671 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299905&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[116])[/C][/ROW]
[ROW][C]104[/C][C]2490[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]105[/C][C]2490[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]106[/C][C]2930[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]107[/C][C]3590[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]108[/C][C]2040[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]109[/C][C]2480[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]110[/C][C]2760[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]111[/C][C]3400[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]112[/C][C]3470[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]113[/C][C]3130[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]114[/C][C]3670[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]115[/C][C]3080[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]116[/C][C]2430[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]117[/C][C]NA[/C][C]2209.3589[/C][C]1718.219[/C][C]2840.8875[/C][C]NA[/C][C]0.2467[/C][C]0.1919[/C][C]0.2467[/C][/ROW]
[ROW][C]118[/C][C]NA[/C][C]2252.0483[/C][C]1680.0854[/C][C]3018.7285[/C][C]NA[/C][C]NA[/C][C]0.0415[/C][C]0.3246[/C][/ROW]
[ROW][C]119[/C][C]NA[/C][C]2299.3399[/C][C]1662.2357[/C][C]3180.6343[/C][C]NA[/C][C]NA[/C][C]0.002[/C][C]0.3857[/C][/ROW]
[ROW][C]120[/C][C]NA[/C][C]1844.4436[/C][C]1264.1306[/C][C]2691.1557[/C][C]NA[/C][C]NA[/C][C]0.3254[/C][C]0.0876[/C][/ROW]
[ROW][C]121[/C][C]NA[/C][C]2353.5576[/C][C]1569.6443[/C][C]3528.9735[/C][C]NA[/C][C]NA[/C][C]0.4165[/C][C]0.4493[/C][/ROW]
[ROW][C]122[/C][C]NA[/C][C]2485.1606[/C][C]1602.6128[/C][C]3853.7213[/C][C]NA[/C][C]NA[/C][C]0.3469[/C][C]0.5315[/C][/ROW]
[ROW][C]123[/C][C]NA[/C][C]3209.7448[/C][C]2007.0088[/C][C]5133.2419[/C][C]NA[/C][C]NA[/C][C]0.4231[/C][C]0.7866[/C][/ROW]
[ROW][C]124[/C][C]NA[/C][C]3331.4287[/C][C]2029.381[/C][C]5468.8681[/C][C]NA[/C][C]NA[/C][C]0.4494[/C][C]0.7958[/C][/ROW]
[ROW][C]125[/C][C]NA[/C][C]3153.8848[/C][C]1869.0379[/C][C]5321.9838[/C][C]NA[/C][C]NA[/C][C]0.5086[/C][C]0.7436[/C][/ROW]
[ROW][C]126[/C][C]NA[/C][C]3304.7584[/C][C]1910.5774[/C][C]5716.2972[/C][C]NA[/C][C]NA[/C][C]0.3833[/C][C]0.7614[/C][/ROW]
[ROW][C]127[/C][C]NA[/C][C]2882.9446[/C][C]1627.3578[/C][C]5107.2786[/C][C]NA[/C][C]NA[/C][C]0.4311[/C][C]0.6551[/C][/ROW]
[ROW][C]128[/C][C]NA[/C][C]2380.9282[/C][C]1313.0393[/C][C]4317.3264[/C][C]NA[/C][C]NA[/C][C]0.4802[/C][C]0.4802[/C][/ROW]
[ROW][C]129[/C][C]NA[/C][C]2075.4918[/C][C]1089.2072[/C][C]3954.8637[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.3558[/C][/ROW]
[ROW][C]130[/C][C]NA[/C][C]2160.1706[/C][C]1094.7799[/C][C]4262.3517[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4007[/C][/ROW]
[ROW][C]131[/C][C]NA[/C][C]2201.251[/C][C]1080.4775[/C][C]4484.5971[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4222[/C][/ROW]
[ROW][C]132[/C][C]NA[/C][C]1753.2504[/C][C]830.1912[/C][C]3702.6253[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.2481[/C][/ROW]
[ROW][C]133[/C][C]NA[/C][C]2254.4482[/C][C]1036.1209[/C][C]4905.3509[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4484[/C][/ROW]
[ROW][C]134[/C][C]NA[/C][C]2370.2095[/C][C]1056.3876[/C][C]5318.0223[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4841[/C][/ROW]
[ROW][C]135[/C][C]NA[/C][C]3063.9301[/C][C]1325.8786[/C][C]7080.337[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.6215[/C][/ROW]
[ROW][C]136[/C][C]NA[/C][C]3183.3754[/C][C]1339.8381[/C][C]7563.5102[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.632[/C][/ROW]
[ROW][C]137[/C][C]NA[/C][C]3009.6004[/C][C]1232.1971[/C][C]7350.849[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.6032[/C][/ROW]
[ROW][C]138[/C][C]NA[/C][C]3156.3244[/C][C]1258.5785[/C][C]7915.5841[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.6176[/C][/ROW]
[ROW][C]139[/C][C]NA[/C][C]2752.7663[/C][C]1069.7717[/C][C]7083.4948[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5581[/C][/ROW]
[ROW][C]140[/C][C]NA[/C][C]2273.1128[/C][C]861.4299[/C][C]5998.215[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4671[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299905&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299905&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[116])
1042490-------
1052490-------
1062930-------
1073590-------
1082040-------
1092480-------
1102760-------
1113400-------
1123470-------
1133130-------
1143670-------
1153080-------
1162430-------
117NA2209.35891718.2192840.8875NA0.24670.19190.2467
118NA2252.04831680.08543018.7285NANA0.04150.3246
119NA2299.33991662.23573180.6343NANA0.0020.3857
120NA1844.44361264.13062691.1557NANA0.32540.0876
121NA2353.55761569.64433528.9735NANA0.41650.4493
122NA2485.16061602.61283853.7213NANA0.34690.5315
123NA3209.74482007.00885133.2419NANA0.42310.7866
124NA3331.42872029.3815468.8681NANA0.44940.7958
125NA3153.88481869.03795321.9838NANA0.50860.7436
126NA3304.75841910.57745716.2972NANA0.38330.7614
127NA2882.94461627.35785107.2786NANA0.43110.6551
128NA2380.92821313.03934317.3264NANA0.48020.4802
129NA2075.49181089.20723954.8637NANANA0.3558
130NA2160.17061094.77994262.3517NANANA0.4007
131NA2201.2511080.47754484.5971NANANA0.4222
132NA1753.2504830.19123702.6253NANANA0.2481
133NA2254.44821036.12094905.3509NANANA0.4484
134NA2370.20951056.38765318.0223NANANA0.4841
135NA3063.93011325.87867080.337NANANA0.6215
136NA3183.37541339.83817563.5102NANANA0.632
137NA3009.60041232.19717350.849NANANA0.6032
138NA3156.32441258.57857915.5841NANANA0.6176
139NA2752.76631069.77177083.4948NANANA0.5581
140NA2273.1128861.42995998.215NANANA0.4671







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1170.1458NANANANA00NANA
1180.1737NANANANANANANANA
1190.1956NANANANANANANANA
1200.2342NANANANANANANANA
1210.2548NANANANANANANANA
1220.281NANANANANANANANA
1230.3057NANANANANANANANA
1240.3273NANANANANANANANA
1250.3507NANANANANANANANA
1260.3723NANANANANANANANA
1270.3936NANANANANANANANA
1280.4149NANANANANANANANA
1290.462NANANANANANANANA
1300.4965NANANANANANANANA
1310.5292NANANANANANANANA
1320.5673NANANANANANANANA
1330.5999NANANANANANANANA
1340.6345NANANANANANANANA
1350.6688NANANANANANANANA
1360.702NANANANANANANANA
1370.736NANANANANANANANA
1380.7693NANANANANANANANA
1390.8027NANANANANANANANA
1400.8361NANANANANANANANA

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
117 & 0.1458 & NA & NA & NA & NA & 0 & 0 & NA & NA \tabularnewline
118 & 0.1737 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
119 & 0.1956 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
120 & 0.2342 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
121 & 0.2548 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
122 & 0.281 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
123 & 0.3057 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
124 & 0.3273 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
125 & 0.3507 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
126 & 0.3723 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
127 & 0.3936 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
128 & 0.4149 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
129 & 0.462 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
130 & 0.4965 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
131 & 0.5292 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
132 & 0.5673 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
133 & 0.5999 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
134 & 0.6345 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
135 & 0.6688 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
136 & 0.702 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
137 & 0.736 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
138 & 0.7693 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
139 & 0.8027 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
140 & 0.8361 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299905&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]117[/C][C]0.1458[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0[/C][C]0[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]118[/C][C]0.1737[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]119[/C][C]0.1956[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]120[/C][C]0.2342[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]121[/C][C]0.2548[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]0.281[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]0.3057[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]0.3273[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]0.3507[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]0.3723[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]127[/C][C]0.3936[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]128[/C][C]0.4149[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]129[/C][C]0.462[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]130[/C][C]0.4965[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]131[/C][C]0.5292[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]132[/C][C]0.5673[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]133[/C][C]0.5999[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]134[/C][C]0.6345[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]135[/C][C]0.6688[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]136[/C][C]0.702[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]137[/C][C]0.736[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]138[/C][C]0.7693[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]139[/C][C]0.8027[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]140[/C][C]0.8361[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299905&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299905&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1170.1458NANANANA00NANA
1180.1737NANANANANANANANA
1190.1956NANANANANANANANA
1200.2342NANANANANANANANA
1210.2548NANANANANANANANA
1220.281NANANANANANANANA
1230.3057NANANANANANANANA
1240.3273NANANANANANANANA
1250.3507NANANANANANANANA
1260.3723NANANANANANANANA
1270.3936NANANANANANANANA
1280.4149NANANANANANANANA
1290.462NANANANANANANANA
1300.4965NANANANANANANANA
1310.5292NANANANANANANANA
1320.5673NANANANANANANANA
1330.5999NANANANANANANANA
1340.6345NANANANANANANANA
1350.6688NANANANANANANANA
1360.702NANANANANANANANA
1370.736NANANANANANANANA
1380.7693NANANANANANANANA
1390.8027NANANANANANANANA
1400.8361NANANANANANANANA



Parameters (Session):
par1 = TRUE ; par2 = -0.5 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
Parameters (R input):
par1 = 0 ; par2 = 0.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 2 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par10 <- 'FALSE'
par9 <- '1'
par8 <- '0'
par7 <- '1'
par6 <- '2'
par5 <- '12'
par4 <- '1'
par3 <- '1'
par2 <- '0.0'
par1 <- '0'
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')