Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationThu, 15 Dec 2016 11:41:50 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/15/t14817985983h4mbwkbrdh1tdh.htm/, Retrieved Fri, 01 Nov 2024 03:36:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299844, Retrieved Fri, 01 Nov 2024 03:36:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact104
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [F1 Autocorrelatio...] [2016-12-15 10:41:50] [10299735033611e1e2dae6371997f8c9] [Current]
Feedback Forum

Post a new message
Dataseries X:
7235.6
7268.3
7271.3
7327.4
7339.5
7303.2
7300.7
7311.8
7329
7330.8
7328.6
7346.5
7356.9
7385.7
7394.9
7422.8
7446.6
7441.2
7476.1
7461.6
7450.2
7483.8
7479.7
7509.3
7518.6
7495.4
7507.5
7533.8
7544.7
7564.7
7573.6
7604.6
7605.6
7619.9
7661
7664.1
7663.9
7652.1
7632.8
7677.7
7677.3
7727
7746.4
7771.2
7781.2
7819.4
7819.1
7849.1
7757.8
7823
7825.6
7827
7884.7
7912
7897
7881.1
7885.8
7891.3
7920.9
7946.3
7952.3
8001.9
8007.9
8028.1
8012.5
8069.6
8082.7
8110.6
8129
8149.4
8139.7
8162.4
8207.7
8215.5
8244.6
8269
8245.6
8244.6
8287.6
8284.3
8290.6
8325
8344.2
8353.6
8367.8
8334.6
8330.2
8368.2
8384.7
8351.4
8411.4
8442.8
8443.1
8462.6
8508.5
8522.7
8559.6
8556.7
8618.9
8613.2
8634
8653.4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299844&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299844&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299844&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.273714-2.75080.003523
2-0.019639-0.19740.421969
30.0366940.36880.356537
4-0.04131-0.41520.339454
5-0.166363-1.67190.048817
60.0939350.9440.173703
7-0.034962-0.35140.363022
80.0718250.72180.236033
9-0.07299-0.73350.232466
100.0943590.94830.172621
11-0.115048-1.15620.12516
120.0554190.5570.289395
130.0527810.53040.298485
14-0.120508-1.21110.114344
15-0.02617-0.2630.39654
160.1681671.69010.047051
17-0.214653-2.15720.01668
180.0900360.90490.183848
19-0.024998-0.25120.401076
200.0844820.8490.198936

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.273714 & -2.7508 & 0.003523 \tabularnewline
2 & -0.019639 & -0.1974 & 0.421969 \tabularnewline
3 & 0.036694 & 0.3688 & 0.356537 \tabularnewline
4 & -0.04131 & -0.4152 & 0.339454 \tabularnewline
5 & -0.166363 & -1.6719 & 0.048817 \tabularnewline
6 & 0.093935 & 0.944 & 0.173703 \tabularnewline
7 & -0.034962 & -0.3514 & 0.363022 \tabularnewline
8 & 0.071825 & 0.7218 & 0.236033 \tabularnewline
9 & -0.07299 & -0.7335 & 0.232466 \tabularnewline
10 & 0.094359 & 0.9483 & 0.172621 \tabularnewline
11 & -0.115048 & -1.1562 & 0.12516 \tabularnewline
12 & 0.055419 & 0.557 & 0.289395 \tabularnewline
13 & 0.052781 & 0.5304 & 0.298485 \tabularnewline
14 & -0.120508 & -1.2111 & 0.114344 \tabularnewline
15 & -0.02617 & -0.263 & 0.39654 \tabularnewline
16 & 0.168167 & 1.6901 & 0.047051 \tabularnewline
17 & -0.214653 & -2.1572 & 0.01668 \tabularnewline
18 & 0.090036 & 0.9049 & 0.183848 \tabularnewline
19 & -0.024998 & -0.2512 & 0.401076 \tabularnewline
20 & 0.084482 & 0.849 & 0.198936 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299844&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.273714[/C][C]-2.7508[/C][C]0.003523[/C][/ROW]
[ROW][C]2[/C][C]-0.019639[/C][C]-0.1974[/C][C]0.421969[/C][/ROW]
[ROW][C]3[/C][C]0.036694[/C][C]0.3688[/C][C]0.356537[/C][/ROW]
[ROW][C]4[/C][C]-0.04131[/C][C]-0.4152[/C][C]0.339454[/C][/ROW]
[ROW][C]5[/C][C]-0.166363[/C][C]-1.6719[/C][C]0.048817[/C][/ROW]
[ROW][C]6[/C][C]0.093935[/C][C]0.944[/C][C]0.173703[/C][/ROW]
[ROW][C]7[/C][C]-0.034962[/C][C]-0.3514[/C][C]0.363022[/C][/ROW]
[ROW][C]8[/C][C]0.071825[/C][C]0.7218[/C][C]0.236033[/C][/ROW]
[ROW][C]9[/C][C]-0.07299[/C][C]-0.7335[/C][C]0.232466[/C][/ROW]
[ROW][C]10[/C][C]0.094359[/C][C]0.9483[/C][C]0.172621[/C][/ROW]
[ROW][C]11[/C][C]-0.115048[/C][C]-1.1562[/C][C]0.12516[/C][/ROW]
[ROW][C]12[/C][C]0.055419[/C][C]0.557[/C][C]0.289395[/C][/ROW]
[ROW][C]13[/C][C]0.052781[/C][C]0.5304[/C][C]0.298485[/C][/ROW]
[ROW][C]14[/C][C]-0.120508[/C][C]-1.2111[/C][C]0.114344[/C][/ROW]
[ROW][C]15[/C][C]-0.02617[/C][C]-0.263[/C][C]0.39654[/C][/ROW]
[ROW][C]16[/C][C]0.168167[/C][C]1.6901[/C][C]0.047051[/C][/ROW]
[ROW][C]17[/C][C]-0.214653[/C][C]-2.1572[/C][C]0.01668[/C][/ROW]
[ROW][C]18[/C][C]0.090036[/C][C]0.9049[/C][C]0.183848[/C][/ROW]
[ROW][C]19[/C][C]-0.024998[/C][C]-0.2512[/C][C]0.401076[/C][/ROW]
[ROW][C]20[/C][C]0.084482[/C][C]0.849[/C][C]0.198936[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299844&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299844&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.273714-2.75080.003523
2-0.019639-0.19740.421969
30.0366940.36880.356537
4-0.04131-0.41520.339454
5-0.166363-1.67190.048817
60.0939350.9440.173703
7-0.034962-0.35140.363022
80.0718250.72180.236033
9-0.07299-0.73350.232466
100.0943590.94830.172621
11-0.115048-1.15620.12516
120.0554190.5570.289395
130.0527810.53040.298485
14-0.120508-1.21110.114344
15-0.02617-0.2630.39654
160.1681671.69010.047051
17-0.214653-2.15720.01668
180.0900360.90490.183848
19-0.024998-0.25120.401076
200.0844820.8490.198936







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.273714-2.75080.003523
2-0.102216-1.02730.153377
30.0030490.03060.487809
4-0.034308-0.34480.365484
5-0.201785-2.02790.022601
6-0.020275-0.20380.419477
7-0.03523-0.35410.362016
80.0682820.68620.247072
9-0.066057-0.66390.254143
100.0417050.41910.338007
11-0.084933-0.85360.197682
120.0136890.13760.445428
130.0844650.84890.198983
14-0.108456-1.090.13916
15-0.079324-0.79720.213602
160.1031041.03620.151297
17-0.122921-1.23530.109786
180.0035170.03530.485937
19-0.064532-0.64850.259055
200.0810570.81460.208604

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.273714 & -2.7508 & 0.003523 \tabularnewline
2 & -0.102216 & -1.0273 & 0.153377 \tabularnewline
3 & 0.003049 & 0.0306 & 0.487809 \tabularnewline
4 & -0.034308 & -0.3448 & 0.365484 \tabularnewline
5 & -0.201785 & -2.0279 & 0.022601 \tabularnewline
6 & -0.020275 & -0.2038 & 0.419477 \tabularnewline
7 & -0.03523 & -0.3541 & 0.362016 \tabularnewline
8 & 0.068282 & 0.6862 & 0.247072 \tabularnewline
9 & -0.066057 & -0.6639 & 0.254143 \tabularnewline
10 & 0.041705 & 0.4191 & 0.338007 \tabularnewline
11 & -0.084933 & -0.8536 & 0.197682 \tabularnewline
12 & 0.013689 & 0.1376 & 0.445428 \tabularnewline
13 & 0.084465 & 0.8489 & 0.198983 \tabularnewline
14 & -0.108456 & -1.09 & 0.13916 \tabularnewline
15 & -0.079324 & -0.7972 & 0.213602 \tabularnewline
16 & 0.103104 & 1.0362 & 0.151297 \tabularnewline
17 & -0.122921 & -1.2353 & 0.109786 \tabularnewline
18 & 0.003517 & 0.0353 & 0.485937 \tabularnewline
19 & -0.064532 & -0.6485 & 0.259055 \tabularnewline
20 & 0.081057 & 0.8146 & 0.208604 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299844&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.273714[/C][C]-2.7508[/C][C]0.003523[/C][/ROW]
[ROW][C]2[/C][C]-0.102216[/C][C]-1.0273[/C][C]0.153377[/C][/ROW]
[ROW][C]3[/C][C]0.003049[/C][C]0.0306[/C][C]0.487809[/C][/ROW]
[ROW][C]4[/C][C]-0.034308[/C][C]-0.3448[/C][C]0.365484[/C][/ROW]
[ROW][C]5[/C][C]-0.201785[/C][C]-2.0279[/C][C]0.022601[/C][/ROW]
[ROW][C]6[/C][C]-0.020275[/C][C]-0.2038[/C][C]0.419477[/C][/ROW]
[ROW][C]7[/C][C]-0.03523[/C][C]-0.3541[/C][C]0.362016[/C][/ROW]
[ROW][C]8[/C][C]0.068282[/C][C]0.6862[/C][C]0.247072[/C][/ROW]
[ROW][C]9[/C][C]-0.066057[/C][C]-0.6639[/C][C]0.254143[/C][/ROW]
[ROW][C]10[/C][C]0.041705[/C][C]0.4191[/C][C]0.338007[/C][/ROW]
[ROW][C]11[/C][C]-0.084933[/C][C]-0.8536[/C][C]0.197682[/C][/ROW]
[ROW][C]12[/C][C]0.013689[/C][C]0.1376[/C][C]0.445428[/C][/ROW]
[ROW][C]13[/C][C]0.084465[/C][C]0.8489[/C][C]0.198983[/C][/ROW]
[ROW][C]14[/C][C]-0.108456[/C][C]-1.09[/C][C]0.13916[/C][/ROW]
[ROW][C]15[/C][C]-0.079324[/C][C]-0.7972[/C][C]0.213602[/C][/ROW]
[ROW][C]16[/C][C]0.103104[/C][C]1.0362[/C][C]0.151297[/C][/ROW]
[ROW][C]17[/C][C]-0.122921[/C][C]-1.2353[/C][C]0.109786[/C][/ROW]
[ROW][C]18[/C][C]0.003517[/C][C]0.0353[/C][C]0.485937[/C][/ROW]
[ROW][C]19[/C][C]-0.064532[/C][C]-0.6485[/C][C]0.259055[/C][/ROW]
[ROW][C]20[/C][C]0.081057[/C][C]0.8146[/C][C]0.208604[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299844&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299844&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.273714-2.75080.003523
2-0.102216-1.02730.153377
30.0030490.03060.487809
4-0.034308-0.34480.365484
5-0.201785-2.02790.022601
6-0.020275-0.20380.419477
7-0.03523-0.35410.362016
80.0682820.68620.247072
9-0.066057-0.66390.254143
100.0417050.41910.338007
11-0.084933-0.85360.197682
120.0136890.13760.445428
130.0844650.84890.198983
14-0.108456-1.090.13916
15-0.079324-0.79720.213602
160.1031041.03620.151297
17-0.122921-1.23530.109786
180.0035170.03530.485937
19-0.064532-0.64850.259055
200.0810570.81460.208604



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')