Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationThu, 15 Dec 2016 10:51:57 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/15/t14817969275ggi63jlgdovg98.htm/, Retrieved Fri, 01 Nov 2024 03:33:37 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299818, Retrieved Fri, 01 Nov 2024 03:33:37 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact97
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [F1 Structural Tim...] [2016-12-15 09:51:57] [10299735033611e1e2dae6371997f8c9] [Current]
Feedback Forum

Post a new message
Dataseries X:
7235.6
7268.3
7271.3
7327.4
7339.5
7303.2
7300.7
7311.8
7329
7330.8
7328.6
7346.5
7356.9
7385.7
7394.9
7422.8
7446.6
7441.2
7476.1
7461.6
7450.2
7483.8
7479.7
7509.3
7518.6
7495.4
7507.5
7533.8
7544.7
7564.7
7573.6
7604.6
7605.6
7619.9
7661
7664.1
7663.9
7652.1
7632.8
7677.7
7677.3
7727
7746.4
7771.2
7781.2
7819.4
7819.1
7849.1
7757.8
7823
7825.6
7827
7884.7
7912
7897
7881.1
7885.8
7891.3
7920.9
7946.3
7952.3
8001.9
8007.9
8028.1
8012.5
8069.6
8082.7
8110.6
8129
8149.4
8139.7
8162.4
8207.7
8215.5
8244.6
8269
8245.6
8244.6
8287.6
8284.3
8290.6
8325
8344.2
8353.6
8367.8
8334.6
8330.2
8368.2
8384.7
8351.4
8411.4
8442.8
8443.1
8462.6
8508.5
8522.7
8559.6
8556.7
8618.9
8613.2
8634
8653.4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299818&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299818&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299818&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
17235.67235.6000
27268.37264.915531162041.726719340623191.675723313150370.861156989869521
37271.37269.217690622831.780426151536991.707038796810380.121870237070786
47327.47318.420284260272.727484241041951.994798448532692.25176772128521
57339.57335.349293190663.065657087144262.06819476282570.672389768764826
67303.27306.017688612212.157090862361131.90871943903928-1.52929629555993
77300.77300.014610338421.89519607650261.86997237677802-0.384091644205923
87311.87308.889612046142.145605950092651.90188973316110.32764270381325
973297325.02428262952.696413054758691.963290094461490.65500064925461
107330.87328.693279363312.737830950358071.96737396325370.0454310659463686
117328.67327.246672015972.547377607049511.95061618673543-0.195035544049031
127346.57342.668865695253.167569416343311.999655562519150.59888746863635
137356.97365.427469712333.41688527489879-11.27676783389031.09832439958536
147385.77382.879555412784.349384592893881.384114868254410.549343418218877
157394.97392.720659064044.652922505161261.409359140756880.253471891591301
167422.87418.396838002045.819053208269931.446443652232390.970810919884834
177446.67442.554941885686.862573034235291.470802005607470.845784575085643
187441.27440.928794103846.367452816055741.46056167812036-0.391065786614066
197476.17471.260352295097.795854973099911.487591215297171.10293527092623
207461.67462.449484718176.787229231403191.47002353449845-0.763662127854603
217450.27451.255967819685.677271034364311.4521918887867-0.826219877233032
227483.87479.221631207137.072599492400351.47289557138261.02346979622339
237479.77479.218175921336.624201177631821.46674386380755-0.324735387601547
247509.37505.134657764467.859636141506541.48242992762150.884900200220405
257518.67528.587065554938.72931781011828-12.1187165776980.787359628803446
267495.47499.289534838746.08635184154940.483735295479921-1.58015049034257
277507.57506.813681732226.181256401715130.4872216210874160.0658376254786613
287533.87530.828793239977.357010615472860.4977980690953990.81668855875933
297544.77543.468195621777.706802802310960.4995713562242940.24180356346704
307564.77562.612405662688.467565809757220.5028282798931650.5234176682227
317573.67572.851351997978.585856663531660.503292103913220.0810480401070347
327604.67601.336437980139.919276919603770.5081401263589910.910309271379739
337605.67605.842456200239.555461157927130.506911217498031-0.247595855341195
347619.97618.906728341419.791890501203510.5076535117999560.160466700435838
3576617656.6229150485211.67767573117060.5131577608002191.27689430958908
367664.17664.1603871879611.39753883136980.512397472239511-0.189299145860125
377663.97670.9868763698111.1002961062832-6.46381606664264-0.223145916439443
387652.17655.104134208799.234393243565230.265824970014137-1.15192103231895
397632.87636.433969734277.334202775275770.221275030508066-1.27567185790638
407677.77673.377135931779.348675489599040.2283969523030461.35347858397876
417677.37677.758648132229.010488951900580.228090552861572-0.227013362064685
4277277721.9123444651711.40511898130580.2293653824266891.60604063521817
437746.47744.609366163712.17509443459550.2297156118498820.516018154106605
447771.27769.2472514374813.02544348730620.2300710220946870.56950695984588
457781.27781.1281562645312.94730800570590.230040687672191-0.0523000392386982
467819.47816.1222585469914.45310910660680.2305845477258031.00741032813852
477819.17820.2910302897413.7504002159550.230348372589097-0.469924435735366
487849.17847.0689252067914.64085794788490.230626879938280.595257076930222
497757.87782.095634576519.28024025050106-13.4274146693038-3.82392943117775
5078237818.1815409169111.1218360799851.473986285805971.16170269608903
517825.67824.7591234160910.81082608162961.46853045324887-0.207674904937884
5278277826.7513145361510.20742922480531.46745071993406-0.40296170009431
537884.77877.6150970504312.98956335306231.466817008424541.85751169730553
5479127908.1142473334414.18792236569931.466267129721060.799961021709851
5578977898.7828687964212.57804973717361.4670064834832-1.07452026930841
567881.17883.4841294436210.66969597680361.46783021682314-1.27359533616824
577885.87885.5243311785110.07889110177431.46806789476248-0.394251111179899
587891.37890.532461756729.731699835833081.46819791917308-0.231664654071361
597920.97917.105181902910.88487735772881.467795948020190.769403833233623
607946.37942.7878440010711.8982106584051.467467182802560.676055061635618
617952.37965.7206799501412.6485288477314-14.92981650314940.524905952359574
628001.97997.906715366913.98668626283571.510448547303710.854793529892532
638007.98007.0616349785813.65576565948881.50574962167288-0.220795941353722
648028.18025.8803976810714.00939119888061.506149098588840.235898296279859
658012.58014.5009389155712.27040880436341.50705853413031-1.15989263914098
668069.68063.0781935719614.75726421974541.505337423073941.65865994899072
678082.78080.7869891685314.95943504346911.505201776537470.134839282231821
688110.68107.4748057191915.76280798761221.504697262340680.535806602799526
6981298126.978568302616.019060792221.50454736031240.170904467322461
708149.48147.3010168763716.31384409920861.504386838544590.196599506203819
718139.78141.2807347160714.78393075462271.50516228113324-1.02033273476409
728162.48160.3085922812615.07464783965131.505025129894030.193883835285157
738207.78215.1582714792317.7880990243858-12.90635254043441.87984379279055
748215.58216.5472220718316.66612804982131.06331642715275-0.722191626412156
758244.68242.2772183417517.2869418886341.070774983559680.414174236317689
7682698266.9132910122417.79039121294811.071196707745820.335773953154329
778245.68249.4046378298115.37220712964581.07257152660101-1.6126226193342
788244.68246.106190800614.09315947507841.07347326111501-0.852952488659012
798287.68283.331502655515.67784715905531.072397040089871.05677395704252
808284.38285.1428926103914.72791271467131.07300036237463-0.63348001494473
818290.68290.7823622383614.10529980118191.07336866784669-0.415200844373273
8283258321.6159443041715.25128896082381.072737625578930.764225163760987
838344.28342.367492098915.62809063710621.072544498085920.251277889287958
848353.68353.1911255794315.29895526177691.07270151784224-0.219490917238987
858367.88377.6274028265815.9231110783457-11.08044658564070.429836042424499
868334.68340.7595354449112.31238886975910.697828930907678-2.33599184149152
878330.28332.3758919367210.89484378308630.683002912852513-0.945684607215285
888368.28364.5725251951112.35416121774980.6840019319772970.973244974120301
898384.78383.1555925011412.78089012407220.6837707416998940.284565167906323
908351.48356.2041342793210.05891723639530.685561873587359-1.81514117726272
918411.48405.3197730354812.73459785164010.6838694136155311.78427904363698
928442.88439.1959105258414.18295019320310.6830129044809030.965839411169606
938443.18443.7473859737313.52312372552940.683376321259921-0.440009850089592
948462.68461.3527325476413.80278552544540.6832329393566550.186495144436429
958508.58503.8526548271415.76874537546390.6822947526790891.31102360414198
968522.78521.7268596711715.9129843799370.6822306839486930.0961877732075247
978559.68562.0679081396217.5826495417694-5.820929697818961.14508815217645
988556.78558.9823341432916.16901084904960.421536357415445-0.917929447423516
998618.98613.1984258273418.77501393562020.4456882575214331.73849180676971
1008613.28615.0881785467917.61825159344260.445005499698139-0.771455888879427
10186348633.4520049384917.66932961388390.4449800570555570.0340613922853111
1028653.48652.7324785452317.77970603361970.4449138042406740.0736041353117209

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 7235.6 & 7235.6 & 0 & 0 & 0 \tabularnewline
2 & 7268.3 & 7264.91553116204 & 1.72671934062319 & 1.67572331315037 & 0.861156989869521 \tabularnewline
3 & 7271.3 & 7269.21769062283 & 1.78042615153699 & 1.70703879681038 & 0.121870237070786 \tabularnewline
4 & 7327.4 & 7318.42028426027 & 2.72748424104195 & 1.99479844853269 & 2.25176772128521 \tabularnewline
5 & 7339.5 & 7335.34929319066 & 3.06565708714426 & 2.0681947628257 & 0.672389768764826 \tabularnewline
6 & 7303.2 & 7306.01768861221 & 2.15709086236113 & 1.90871943903928 & -1.52929629555993 \tabularnewline
7 & 7300.7 & 7300.01461033842 & 1.8951960765026 & 1.86997237677802 & -0.384091644205923 \tabularnewline
8 & 7311.8 & 7308.88961204614 & 2.14560595009265 & 1.9018897331611 & 0.32764270381325 \tabularnewline
9 & 7329 & 7325.0242826295 & 2.69641305475869 & 1.96329009446149 & 0.65500064925461 \tabularnewline
10 & 7330.8 & 7328.69327936331 & 2.73783095035807 & 1.9673739632537 & 0.0454310659463686 \tabularnewline
11 & 7328.6 & 7327.24667201597 & 2.54737760704951 & 1.95061618673543 & -0.195035544049031 \tabularnewline
12 & 7346.5 & 7342.66886569525 & 3.16756941634331 & 1.99965556251915 & 0.59888746863635 \tabularnewline
13 & 7356.9 & 7365.42746971233 & 3.41688527489879 & -11.2767678338903 & 1.09832439958536 \tabularnewline
14 & 7385.7 & 7382.87955541278 & 4.34938459289388 & 1.38411486825441 & 0.549343418218877 \tabularnewline
15 & 7394.9 & 7392.72065906404 & 4.65292250516126 & 1.40935914075688 & 0.253471891591301 \tabularnewline
16 & 7422.8 & 7418.39683800204 & 5.81905320826993 & 1.44644365223239 & 0.970810919884834 \tabularnewline
17 & 7446.6 & 7442.55494188568 & 6.86257303423529 & 1.47080200560747 & 0.845784575085643 \tabularnewline
18 & 7441.2 & 7440.92879410384 & 6.36745281605574 & 1.46056167812036 & -0.391065786614066 \tabularnewline
19 & 7476.1 & 7471.26035229509 & 7.79585497309991 & 1.48759121529717 & 1.10293527092623 \tabularnewline
20 & 7461.6 & 7462.44948471817 & 6.78722923140319 & 1.47002353449845 & -0.763662127854603 \tabularnewline
21 & 7450.2 & 7451.25596781968 & 5.67727103436431 & 1.4521918887867 & -0.826219877233032 \tabularnewline
22 & 7483.8 & 7479.22163120713 & 7.07259949240035 & 1.4728955713826 & 1.02346979622339 \tabularnewline
23 & 7479.7 & 7479.21817592133 & 6.62420117763182 & 1.46674386380755 & -0.324735387601547 \tabularnewline
24 & 7509.3 & 7505.13465776446 & 7.85963614150654 & 1.4824299276215 & 0.884900200220405 \tabularnewline
25 & 7518.6 & 7528.58706555493 & 8.72931781011828 & -12.118716577698 & 0.787359628803446 \tabularnewline
26 & 7495.4 & 7499.28953483874 & 6.0863518415494 & 0.483735295479921 & -1.58015049034257 \tabularnewline
27 & 7507.5 & 7506.81368173222 & 6.18125640171513 & 0.487221621087416 & 0.0658376254786613 \tabularnewline
28 & 7533.8 & 7530.82879323997 & 7.35701061547286 & 0.497798069095399 & 0.81668855875933 \tabularnewline
29 & 7544.7 & 7543.46819562177 & 7.70680280231096 & 0.499571356224294 & 0.24180356346704 \tabularnewline
30 & 7564.7 & 7562.61240566268 & 8.46756580975722 & 0.502828279893165 & 0.5234176682227 \tabularnewline
31 & 7573.6 & 7572.85135199797 & 8.58585666353166 & 0.50329210391322 & 0.0810480401070347 \tabularnewline
32 & 7604.6 & 7601.33643798013 & 9.91927691960377 & 0.508140126358991 & 0.910309271379739 \tabularnewline
33 & 7605.6 & 7605.84245620023 & 9.55546115792713 & 0.506911217498031 & -0.247595855341195 \tabularnewline
34 & 7619.9 & 7618.90672834141 & 9.79189050120351 & 0.507653511799956 & 0.160466700435838 \tabularnewline
35 & 7661 & 7656.62291504852 & 11.6776757311706 & 0.513157760800219 & 1.27689430958908 \tabularnewline
36 & 7664.1 & 7664.16038718796 & 11.3975388313698 & 0.512397472239511 & -0.189299145860125 \tabularnewline
37 & 7663.9 & 7670.98687636981 & 11.1002961062832 & -6.46381606664264 & -0.223145916439443 \tabularnewline
38 & 7652.1 & 7655.10413420879 & 9.23439324356523 & 0.265824970014137 & -1.15192103231895 \tabularnewline
39 & 7632.8 & 7636.43396973427 & 7.33420277527577 & 0.221275030508066 & -1.27567185790638 \tabularnewline
40 & 7677.7 & 7673.37713593177 & 9.34867548959904 & 0.228396952303046 & 1.35347858397876 \tabularnewline
41 & 7677.3 & 7677.75864813222 & 9.01048895190058 & 0.228090552861572 & -0.227013362064685 \tabularnewline
42 & 7727 & 7721.91234446517 & 11.4051189813058 & 0.229365382426689 & 1.60604063521817 \tabularnewline
43 & 7746.4 & 7744.6093661637 & 12.1750944345955 & 0.229715611849882 & 0.516018154106605 \tabularnewline
44 & 7771.2 & 7769.24725143748 & 13.0254434873062 & 0.230071022094687 & 0.56950695984588 \tabularnewline
45 & 7781.2 & 7781.12815626453 & 12.9473080057059 & 0.230040687672191 & -0.0523000392386982 \tabularnewline
46 & 7819.4 & 7816.12225854699 & 14.4531091066068 & 0.230584547725803 & 1.00741032813852 \tabularnewline
47 & 7819.1 & 7820.29103028974 & 13.750400215955 & 0.230348372589097 & -0.469924435735366 \tabularnewline
48 & 7849.1 & 7847.06892520679 & 14.6408579478849 & 0.23062687993828 & 0.595257076930222 \tabularnewline
49 & 7757.8 & 7782.09563457651 & 9.28024025050106 & -13.4274146693038 & -3.82392943117775 \tabularnewline
50 & 7823 & 7818.18154091691 & 11.121836079985 & 1.47398628580597 & 1.16170269608903 \tabularnewline
51 & 7825.6 & 7824.75912341609 & 10.8108260816296 & 1.46853045324887 & -0.207674904937884 \tabularnewline
52 & 7827 & 7826.75131453615 & 10.2074292248053 & 1.46745071993406 & -0.40296170009431 \tabularnewline
53 & 7884.7 & 7877.61509705043 & 12.9895633530623 & 1.46681700842454 & 1.85751169730553 \tabularnewline
54 & 7912 & 7908.11424733344 & 14.1879223656993 & 1.46626712972106 & 0.799961021709851 \tabularnewline
55 & 7897 & 7898.78286879642 & 12.5780497371736 & 1.4670064834832 & -1.07452026930841 \tabularnewline
56 & 7881.1 & 7883.48412944362 & 10.6696959768036 & 1.46783021682314 & -1.27359533616824 \tabularnewline
57 & 7885.8 & 7885.52433117851 & 10.0788911017743 & 1.46806789476248 & -0.394251111179899 \tabularnewline
58 & 7891.3 & 7890.53246175672 & 9.73169983583308 & 1.46819791917308 & -0.231664654071361 \tabularnewline
59 & 7920.9 & 7917.1051819029 & 10.8848773577288 & 1.46779594802019 & 0.769403833233623 \tabularnewline
60 & 7946.3 & 7942.78784400107 & 11.898210658405 & 1.46746718280256 & 0.676055061635618 \tabularnewline
61 & 7952.3 & 7965.72067995014 & 12.6485288477314 & -14.9298165031494 & 0.524905952359574 \tabularnewline
62 & 8001.9 & 7997.9067153669 & 13.9866862628357 & 1.51044854730371 & 0.854793529892532 \tabularnewline
63 & 8007.9 & 8007.06163497858 & 13.6557656594888 & 1.50574962167288 & -0.220795941353722 \tabularnewline
64 & 8028.1 & 8025.88039768107 & 14.0093911988806 & 1.50614909858884 & 0.235898296279859 \tabularnewline
65 & 8012.5 & 8014.50093891557 & 12.2704088043634 & 1.50705853413031 & -1.15989263914098 \tabularnewline
66 & 8069.6 & 8063.07819357196 & 14.7572642197454 & 1.50533742307394 & 1.65865994899072 \tabularnewline
67 & 8082.7 & 8080.78698916853 & 14.9594350434691 & 1.50520177653747 & 0.134839282231821 \tabularnewline
68 & 8110.6 & 8107.47480571919 & 15.7628079876122 & 1.50469726234068 & 0.535806602799526 \tabularnewline
69 & 8129 & 8126.9785683026 & 16.01906079222 & 1.5045473603124 & 0.170904467322461 \tabularnewline
70 & 8149.4 & 8147.30101687637 & 16.3138440992086 & 1.50438683854459 & 0.196599506203819 \tabularnewline
71 & 8139.7 & 8141.28073471607 & 14.7839307546227 & 1.50516228113324 & -1.02033273476409 \tabularnewline
72 & 8162.4 & 8160.30859228126 & 15.0746478396513 & 1.50502512989403 & 0.193883835285157 \tabularnewline
73 & 8207.7 & 8215.15827147923 & 17.7880990243858 & -12.9063525404344 & 1.87984379279055 \tabularnewline
74 & 8215.5 & 8216.54722207183 & 16.6661280498213 & 1.06331642715275 & -0.722191626412156 \tabularnewline
75 & 8244.6 & 8242.27721834175 & 17.286941888634 & 1.07077498355968 & 0.414174236317689 \tabularnewline
76 & 8269 & 8266.91329101224 & 17.7903912129481 & 1.07119670774582 & 0.335773953154329 \tabularnewline
77 & 8245.6 & 8249.40463782981 & 15.3722071296458 & 1.07257152660101 & -1.6126226193342 \tabularnewline
78 & 8244.6 & 8246.1061908006 & 14.0931594750784 & 1.07347326111501 & -0.852952488659012 \tabularnewline
79 & 8287.6 & 8283.3315026555 & 15.6778471590553 & 1.07239704008987 & 1.05677395704252 \tabularnewline
80 & 8284.3 & 8285.14289261039 & 14.7279127146713 & 1.07300036237463 & -0.63348001494473 \tabularnewline
81 & 8290.6 & 8290.78236223836 & 14.1052998011819 & 1.07336866784669 & -0.415200844373273 \tabularnewline
82 & 8325 & 8321.61594430417 & 15.2512889608238 & 1.07273762557893 & 0.764225163760987 \tabularnewline
83 & 8344.2 & 8342.3674920989 & 15.6280906371062 & 1.07254449808592 & 0.251277889287958 \tabularnewline
84 & 8353.6 & 8353.19112557943 & 15.2989552617769 & 1.07270151784224 & -0.219490917238987 \tabularnewline
85 & 8367.8 & 8377.62740282658 & 15.9231110783457 & -11.0804465856407 & 0.429836042424499 \tabularnewline
86 & 8334.6 & 8340.75953544491 & 12.3123888697591 & 0.697828930907678 & -2.33599184149152 \tabularnewline
87 & 8330.2 & 8332.37589193672 & 10.8948437830863 & 0.683002912852513 & -0.945684607215285 \tabularnewline
88 & 8368.2 & 8364.57252519511 & 12.3541612177498 & 0.684001931977297 & 0.973244974120301 \tabularnewline
89 & 8384.7 & 8383.15559250114 & 12.7808901240722 & 0.683770741699894 & 0.284565167906323 \tabularnewline
90 & 8351.4 & 8356.20413427932 & 10.0589172363953 & 0.685561873587359 & -1.81514117726272 \tabularnewline
91 & 8411.4 & 8405.31977303548 & 12.7345978516401 & 0.683869413615531 & 1.78427904363698 \tabularnewline
92 & 8442.8 & 8439.19591052584 & 14.1829501932031 & 0.683012904480903 & 0.965839411169606 \tabularnewline
93 & 8443.1 & 8443.74738597373 & 13.5231237255294 & 0.683376321259921 & -0.440009850089592 \tabularnewline
94 & 8462.6 & 8461.35273254764 & 13.8027855254454 & 0.683232939356655 & 0.186495144436429 \tabularnewline
95 & 8508.5 & 8503.85265482714 & 15.7687453754639 & 0.682294752679089 & 1.31102360414198 \tabularnewline
96 & 8522.7 & 8521.72685967117 & 15.912984379937 & 0.682230683948693 & 0.0961877732075247 \tabularnewline
97 & 8559.6 & 8562.06790813962 & 17.5826495417694 & -5.82092969781896 & 1.14508815217645 \tabularnewline
98 & 8556.7 & 8558.98233414329 & 16.1690108490496 & 0.421536357415445 & -0.917929447423516 \tabularnewline
99 & 8618.9 & 8613.19842582734 & 18.7750139356202 & 0.445688257521433 & 1.73849180676971 \tabularnewline
100 & 8613.2 & 8615.08817854679 & 17.6182515934426 & 0.445005499698139 & -0.771455888879427 \tabularnewline
101 & 8634 & 8633.45200493849 & 17.6693296138839 & 0.444980057055557 & 0.0340613922853111 \tabularnewline
102 & 8653.4 & 8652.73247854523 & 17.7797060336197 & 0.444913804240674 & 0.0736041353117209 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299818&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]7235.6[/C][C]7235.6[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]7268.3[/C][C]7264.91553116204[/C][C]1.72671934062319[/C][C]1.67572331315037[/C][C]0.861156989869521[/C][/ROW]
[ROW][C]3[/C][C]7271.3[/C][C]7269.21769062283[/C][C]1.78042615153699[/C][C]1.70703879681038[/C][C]0.121870237070786[/C][/ROW]
[ROW][C]4[/C][C]7327.4[/C][C]7318.42028426027[/C][C]2.72748424104195[/C][C]1.99479844853269[/C][C]2.25176772128521[/C][/ROW]
[ROW][C]5[/C][C]7339.5[/C][C]7335.34929319066[/C][C]3.06565708714426[/C][C]2.0681947628257[/C][C]0.672389768764826[/C][/ROW]
[ROW][C]6[/C][C]7303.2[/C][C]7306.01768861221[/C][C]2.15709086236113[/C][C]1.90871943903928[/C][C]-1.52929629555993[/C][/ROW]
[ROW][C]7[/C][C]7300.7[/C][C]7300.01461033842[/C][C]1.8951960765026[/C][C]1.86997237677802[/C][C]-0.384091644205923[/C][/ROW]
[ROW][C]8[/C][C]7311.8[/C][C]7308.88961204614[/C][C]2.14560595009265[/C][C]1.9018897331611[/C][C]0.32764270381325[/C][/ROW]
[ROW][C]9[/C][C]7329[/C][C]7325.0242826295[/C][C]2.69641305475869[/C][C]1.96329009446149[/C][C]0.65500064925461[/C][/ROW]
[ROW][C]10[/C][C]7330.8[/C][C]7328.69327936331[/C][C]2.73783095035807[/C][C]1.9673739632537[/C][C]0.0454310659463686[/C][/ROW]
[ROW][C]11[/C][C]7328.6[/C][C]7327.24667201597[/C][C]2.54737760704951[/C][C]1.95061618673543[/C][C]-0.195035544049031[/C][/ROW]
[ROW][C]12[/C][C]7346.5[/C][C]7342.66886569525[/C][C]3.16756941634331[/C][C]1.99965556251915[/C][C]0.59888746863635[/C][/ROW]
[ROW][C]13[/C][C]7356.9[/C][C]7365.42746971233[/C][C]3.41688527489879[/C][C]-11.2767678338903[/C][C]1.09832439958536[/C][/ROW]
[ROW][C]14[/C][C]7385.7[/C][C]7382.87955541278[/C][C]4.34938459289388[/C][C]1.38411486825441[/C][C]0.549343418218877[/C][/ROW]
[ROW][C]15[/C][C]7394.9[/C][C]7392.72065906404[/C][C]4.65292250516126[/C][C]1.40935914075688[/C][C]0.253471891591301[/C][/ROW]
[ROW][C]16[/C][C]7422.8[/C][C]7418.39683800204[/C][C]5.81905320826993[/C][C]1.44644365223239[/C][C]0.970810919884834[/C][/ROW]
[ROW][C]17[/C][C]7446.6[/C][C]7442.55494188568[/C][C]6.86257303423529[/C][C]1.47080200560747[/C][C]0.845784575085643[/C][/ROW]
[ROW][C]18[/C][C]7441.2[/C][C]7440.92879410384[/C][C]6.36745281605574[/C][C]1.46056167812036[/C][C]-0.391065786614066[/C][/ROW]
[ROW][C]19[/C][C]7476.1[/C][C]7471.26035229509[/C][C]7.79585497309991[/C][C]1.48759121529717[/C][C]1.10293527092623[/C][/ROW]
[ROW][C]20[/C][C]7461.6[/C][C]7462.44948471817[/C][C]6.78722923140319[/C][C]1.47002353449845[/C][C]-0.763662127854603[/C][/ROW]
[ROW][C]21[/C][C]7450.2[/C][C]7451.25596781968[/C][C]5.67727103436431[/C][C]1.4521918887867[/C][C]-0.826219877233032[/C][/ROW]
[ROW][C]22[/C][C]7483.8[/C][C]7479.22163120713[/C][C]7.07259949240035[/C][C]1.4728955713826[/C][C]1.02346979622339[/C][/ROW]
[ROW][C]23[/C][C]7479.7[/C][C]7479.21817592133[/C][C]6.62420117763182[/C][C]1.46674386380755[/C][C]-0.324735387601547[/C][/ROW]
[ROW][C]24[/C][C]7509.3[/C][C]7505.13465776446[/C][C]7.85963614150654[/C][C]1.4824299276215[/C][C]0.884900200220405[/C][/ROW]
[ROW][C]25[/C][C]7518.6[/C][C]7528.58706555493[/C][C]8.72931781011828[/C][C]-12.118716577698[/C][C]0.787359628803446[/C][/ROW]
[ROW][C]26[/C][C]7495.4[/C][C]7499.28953483874[/C][C]6.0863518415494[/C][C]0.483735295479921[/C][C]-1.58015049034257[/C][/ROW]
[ROW][C]27[/C][C]7507.5[/C][C]7506.81368173222[/C][C]6.18125640171513[/C][C]0.487221621087416[/C][C]0.0658376254786613[/C][/ROW]
[ROW][C]28[/C][C]7533.8[/C][C]7530.82879323997[/C][C]7.35701061547286[/C][C]0.497798069095399[/C][C]0.81668855875933[/C][/ROW]
[ROW][C]29[/C][C]7544.7[/C][C]7543.46819562177[/C][C]7.70680280231096[/C][C]0.499571356224294[/C][C]0.24180356346704[/C][/ROW]
[ROW][C]30[/C][C]7564.7[/C][C]7562.61240566268[/C][C]8.46756580975722[/C][C]0.502828279893165[/C][C]0.5234176682227[/C][/ROW]
[ROW][C]31[/C][C]7573.6[/C][C]7572.85135199797[/C][C]8.58585666353166[/C][C]0.50329210391322[/C][C]0.0810480401070347[/C][/ROW]
[ROW][C]32[/C][C]7604.6[/C][C]7601.33643798013[/C][C]9.91927691960377[/C][C]0.508140126358991[/C][C]0.910309271379739[/C][/ROW]
[ROW][C]33[/C][C]7605.6[/C][C]7605.84245620023[/C][C]9.55546115792713[/C][C]0.506911217498031[/C][C]-0.247595855341195[/C][/ROW]
[ROW][C]34[/C][C]7619.9[/C][C]7618.90672834141[/C][C]9.79189050120351[/C][C]0.507653511799956[/C][C]0.160466700435838[/C][/ROW]
[ROW][C]35[/C][C]7661[/C][C]7656.62291504852[/C][C]11.6776757311706[/C][C]0.513157760800219[/C][C]1.27689430958908[/C][/ROW]
[ROW][C]36[/C][C]7664.1[/C][C]7664.16038718796[/C][C]11.3975388313698[/C][C]0.512397472239511[/C][C]-0.189299145860125[/C][/ROW]
[ROW][C]37[/C][C]7663.9[/C][C]7670.98687636981[/C][C]11.1002961062832[/C][C]-6.46381606664264[/C][C]-0.223145916439443[/C][/ROW]
[ROW][C]38[/C][C]7652.1[/C][C]7655.10413420879[/C][C]9.23439324356523[/C][C]0.265824970014137[/C][C]-1.15192103231895[/C][/ROW]
[ROW][C]39[/C][C]7632.8[/C][C]7636.43396973427[/C][C]7.33420277527577[/C][C]0.221275030508066[/C][C]-1.27567185790638[/C][/ROW]
[ROW][C]40[/C][C]7677.7[/C][C]7673.37713593177[/C][C]9.34867548959904[/C][C]0.228396952303046[/C][C]1.35347858397876[/C][/ROW]
[ROW][C]41[/C][C]7677.3[/C][C]7677.75864813222[/C][C]9.01048895190058[/C][C]0.228090552861572[/C][C]-0.227013362064685[/C][/ROW]
[ROW][C]42[/C][C]7727[/C][C]7721.91234446517[/C][C]11.4051189813058[/C][C]0.229365382426689[/C][C]1.60604063521817[/C][/ROW]
[ROW][C]43[/C][C]7746.4[/C][C]7744.6093661637[/C][C]12.1750944345955[/C][C]0.229715611849882[/C][C]0.516018154106605[/C][/ROW]
[ROW][C]44[/C][C]7771.2[/C][C]7769.24725143748[/C][C]13.0254434873062[/C][C]0.230071022094687[/C][C]0.56950695984588[/C][/ROW]
[ROW][C]45[/C][C]7781.2[/C][C]7781.12815626453[/C][C]12.9473080057059[/C][C]0.230040687672191[/C][C]-0.0523000392386982[/C][/ROW]
[ROW][C]46[/C][C]7819.4[/C][C]7816.12225854699[/C][C]14.4531091066068[/C][C]0.230584547725803[/C][C]1.00741032813852[/C][/ROW]
[ROW][C]47[/C][C]7819.1[/C][C]7820.29103028974[/C][C]13.750400215955[/C][C]0.230348372589097[/C][C]-0.469924435735366[/C][/ROW]
[ROW][C]48[/C][C]7849.1[/C][C]7847.06892520679[/C][C]14.6408579478849[/C][C]0.23062687993828[/C][C]0.595257076930222[/C][/ROW]
[ROW][C]49[/C][C]7757.8[/C][C]7782.09563457651[/C][C]9.28024025050106[/C][C]-13.4274146693038[/C][C]-3.82392943117775[/C][/ROW]
[ROW][C]50[/C][C]7823[/C][C]7818.18154091691[/C][C]11.121836079985[/C][C]1.47398628580597[/C][C]1.16170269608903[/C][/ROW]
[ROW][C]51[/C][C]7825.6[/C][C]7824.75912341609[/C][C]10.8108260816296[/C][C]1.46853045324887[/C][C]-0.207674904937884[/C][/ROW]
[ROW][C]52[/C][C]7827[/C][C]7826.75131453615[/C][C]10.2074292248053[/C][C]1.46745071993406[/C][C]-0.40296170009431[/C][/ROW]
[ROW][C]53[/C][C]7884.7[/C][C]7877.61509705043[/C][C]12.9895633530623[/C][C]1.46681700842454[/C][C]1.85751169730553[/C][/ROW]
[ROW][C]54[/C][C]7912[/C][C]7908.11424733344[/C][C]14.1879223656993[/C][C]1.46626712972106[/C][C]0.799961021709851[/C][/ROW]
[ROW][C]55[/C][C]7897[/C][C]7898.78286879642[/C][C]12.5780497371736[/C][C]1.4670064834832[/C][C]-1.07452026930841[/C][/ROW]
[ROW][C]56[/C][C]7881.1[/C][C]7883.48412944362[/C][C]10.6696959768036[/C][C]1.46783021682314[/C][C]-1.27359533616824[/C][/ROW]
[ROW][C]57[/C][C]7885.8[/C][C]7885.52433117851[/C][C]10.0788911017743[/C][C]1.46806789476248[/C][C]-0.394251111179899[/C][/ROW]
[ROW][C]58[/C][C]7891.3[/C][C]7890.53246175672[/C][C]9.73169983583308[/C][C]1.46819791917308[/C][C]-0.231664654071361[/C][/ROW]
[ROW][C]59[/C][C]7920.9[/C][C]7917.1051819029[/C][C]10.8848773577288[/C][C]1.46779594802019[/C][C]0.769403833233623[/C][/ROW]
[ROW][C]60[/C][C]7946.3[/C][C]7942.78784400107[/C][C]11.898210658405[/C][C]1.46746718280256[/C][C]0.676055061635618[/C][/ROW]
[ROW][C]61[/C][C]7952.3[/C][C]7965.72067995014[/C][C]12.6485288477314[/C][C]-14.9298165031494[/C][C]0.524905952359574[/C][/ROW]
[ROW][C]62[/C][C]8001.9[/C][C]7997.9067153669[/C][C]13.9866862628357[/C][C]1.51044854730371[/C][C]0.854793529892532[/C][/ROW]
[ROW][C]63[/C][C]8007.9[/C][C]8007.06163497858[/C][C]13.6557656594888[/C][C]1.50574962167288[/C][C]-0.220795941353722[/C][/ROW]
[ROW][C]64[/C][C]8028.1[/C][C]8025.88039768107[/C][C]14.0093911988806[/C][C]1.50614909858884[/C][C]0.235898296279859[/C][/ROW]
[ROW][C]65[/C][C]8012.5[/C][C]8014.50093891557[/C][C]12.2704088043634[/C][C]1.50705853413031[/C][C]-1.15989263914098[/C][/ROW]
[ROW][C]66[/C][C]8069.6[/C][C]8063.07819357196[/C][C]14.7572642197454[/C][C]1.50533742307394[/C][C]1.65865994899072[/C][/ROW]
[ROW][C]67[/C][C]8082.7[/C][C]8080.78698916853[/C][C]14.9594350434691[/C][C]1.50520177653747[/C][C]0.134839282231821[/C][/ROW]
[ROW][C]68[/C][C]8110.6[/C][C]8107.47480571919[/C][C]15.7628079876122[/C][C]1.50469726234068[/C][C]0.535806602799526[/C][/ROW]
[ROW][C]69[/C][C]8129[/C][C]8126.9785683026[/C][C]16.01906079222[/C][C]1.5045473603124[/C][C]0.170904467322461[/C][/ROW]
[ROW][C]70[/C][C]8149.4[/C][C]8147.30101687637[/C][C]16.3138440992086[/C][C]1.50438683854459[/C][C]0.196599506203819[/C][/ROW]
[ROW][C]71[/C][C]8139.7[/C][C]8141.28073471607[/C][C]14.7839307546227[/C][C]1.50516228113324[/C][C]-1.02033273476409[/C][/ROW]
[ROW][C]72[/C][C]8162.4[/C][C]8160.30859228126[/C][C]15.0746478396513[/C][C]1.50502512989403[/C][C]0.193883835285157[/C][/ROW]
[ROW][C]73[/C][C]8207.7[/C][C]8215.15827147923[/C][C]17.7880990243858[/C][C]-12.9063525404344[/C][C]1.87984379279055[/C][/ROW]
[ROW][C]74[/C][C]8215.5[/C][C]8216.54722207183[/C][C]16.6661280498213[/C][C]1.06331642715275[/C][C]-0.722191626412156[/C][/ROW]
[ROW][C]75[/C][C]8244.6[/C][C]8242.27721834175[/C][C]17.286941888634[/C][C]1.07077498355968[/C][C]0.414174236317689[/C][/ROW]
[ROW][C]76[/C][C]8269[/C][C]8266.91329101224[/C][C]17.7903912129481[/C][C]1.07119670774582[/C][C]0.335773953154329[/C][/ROW]
[ROW][C]77[/C][C]8245.6[/C][C]8249.40463782981[/C][C]15.3722071296458[/C][C]1.07257152660101[/C][C]-1.6126226193342[/C][/ROW]
[ROW][C]78[/C][C]8244.6[/C][C]8246.1061908006[/C][C]14.0931594750784[/C][C]1.07347326111501[/C][C]-0.852952488659012[/C][/ROW]
[ROW][C]79[/C][C]8287.6[/C][C]8283.3315026555[/C][C]15.6778471590553[/C][C]1.07239704008987[/C][C]1.05677395704252[/C][/ROW]
[ROW][C]80[/C][C]8284.3[/C][C]8285.14289261039[/C][C]14.7279127146713[/C][C]1.07300036237463[/C][C]-0.63348001494473[/C][/ROW]
[ROW][C]81[/C][C]8290.6[/C][C]8290.78236223836[/C][C]14.1052998011819[/C][C]1.07336866784669[/C][C]-0.415200844373273[/C][/ROW]
[ROW][C]82[/C][C]8325[/C][C]8321.61594430417[/C][C]15.2512889608238[/C][C]1.07273762557893[/C][C]0.764225163760987[/C][/ROW]
[ROW][C]83[/C][C]8344.2[/C][C]8342.3674920989[/C][C]15.6280906371062[/C][C]1.07254449808592[/C][C]0.251277889287958[/C][/ROW]
[ROW][C]84[/C][C]8353.6[/C][C]8353.19112557943[/C][C]15.2989552617769[/C][C]1.07270151784224[/C][C]-0.219490917238987[/C][/ROW]
[ROW][C]85[/C][C]8367.8[/C][C]8377.62740282658[/C][C]15.9231110783457[/C][C]-11.0804465856407[/C][C]0.429836042424499[/C][/ROW]
[ROW][C]86[/C][C]8334.6[/C][C]8340.75953544491[/C][C]12.3123888697591[/C][C]0.697828930907678[/C][C]-2.33599184149152[/C][/ROW]
[ROW][C]87[/C][C]8330.2[/C][C]8332.37589193672[/C][C]10.8948437830863[/C][C]0.683002912852513[/C][C]-0.945684607215285[/C][/ROW]
[ROW][C]88[/C][C]8368.2[/C][C]8364.57252519511[/C][C]12.3541612177498[/C][C]0.684001931977297[/C][C]0.973244974120301[/C][/ROW]
[ROW][C]89[/C][C]8384.7[/C][C]8383.15559250114[/C][C]12.7808901240722[/C][C]0.683770741699894[/C][C]0.284565167906323[/C][/ROW]
[ROW][C]90[/C][C]8351.4[/C][C]8356.20413427932[/C][C]10.0589172363953[/C][C]0.685561873587359[/C][C]-1.81514117726272[/C][/ROW]
[ROW][C]91[/C][C]8411.4[/C][C]8405.31977303548[/C][C]12.7345978516401[/C][C]0.683869413615531[/C][C]1.78427904363698[/C][/ROW]
[ROW][C]92[/C][C]8442.8[/C][C]8439.19591052584[/C][C]14.1829501932031[/C][C]0.683012904480903[/C][C]0.965839411169606[/C][/ROW]
[ROW][C]93[/C][C]8443.1[/C][C]8443.74738597373[/C][C]13.5231237255294[/C][C]0.683376321259921[/C][C]-0.440009850089592[/C][/ROW]
[ROW][C]94[/C][C]8462.6[/C][C]8461.35273254764[/C][C]13.8027855254454[/C][C]0.683232939356655[/C][C]0.186495144436429[/C][/ROW]
[ROW][C]95[/C][C]8508.5[/C][C]8503.85265482714[/C][C]15.7687453754639[/C][C]0.682294752679089[/C][C]1.31102360414198[/C][/ROW]
[ROW][C]96[/C][C]8522.7[/C][C]8521.72685967117[/C][C]15.912984379937[/C][C]0.682230683948693[/C][C]0.0961877732075247[/C][/ROW]
[ROW][C]97[/C][C]8559.6[/C][C]8562.06790813962[/C][C]17.5826495417694[/C][C]-5.82092969781896[/C][C]1.14508815217645[/C][/ROW]
[ROW][C]98[/C][C]8556.7[/C][C]8558.98233414329[/C][C]16.1690108490496[/C][C]0.421536357415445[/C][C]-0.917929447423516[/C][/ROW]
[ROW][C]99[/C][C]8618.9[/C][C]8613.19842582734[/C][C]18.7750139356202[/C][C]0.445688257521433[/C][C]1.73849180676971[/C][/ROW]
[ROW][C]100[/C][C]8613.2[/C][C]8615.08817854679[/C][C]17.6182515934426[/C][C]0.445005499698139[/C][C]-0.771455888879427[/C][/ROW]
[ROW][C]101[/C][C]8634[/C][C]8633.45200493849[/C][C]17.6693296138839[/C][C]0.444980057055557[/C][C]0.0340613922853111[/C][/ROW]
[ROW][C]102[/C][C]8653.4[/C][C]8652.73247854523[/C][C]17.7797060336197[/C][C]0.444913804240674[/C][C]0.0736041353117209[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299818&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299818&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
17235.67235.6000
27268.37264.915531162041.726719340623191.675723313150370.861156989869521
37271.37269.217690622831.780426151536991.707038796810380.121870237070786
47327.47318.420284260272.727484241041951.994798448532692.25176772128521
57339.57335.349293190663.065657087144262.06819476282570.672389768764826
67303.27306.017688612212.157090862361131.90871943903928-1.52929629555993
77300.77300.014610338421.89519607650261.86997237677802-0.384091644205923
87311.87308.889612046142.145605950092651.90188973316110.32764270381325
973297325.02428262952.696413054758691.963290094461490.65500064925461
107330.87328.693279363312.737830950358071.96737396325370.0454310659463686
117328.67327.246672015972.547377607049511.95061618673543-0.195035544049031
127346.57342.668865695253.167569416343311.999655562519150.59888746863635
137356.97365.427469712333.41688527489879-11.27676783389031.09832439958536
147385.77382.879555412784.349384592893881.384114868254410.549343418218877
157394.97392.720659064044.652922505161261.409359140756880.253471891591301
167422.87418.396838002045.819053208269931.446443652232390.970810919884834
177446.67442.554941885686.862573034235291.470802005607470.845784575085643
187441.27440.928794103846.367452816055741.46056167812036-0.391065786614066
197476.17471.260352295097.795854973099911.487591215297171.10293527092623
207461.67462.449484718176.787229231403191.47002353449845-0.763662127854603
217450.27451.255967819685.677271034364311.4521918887867-0.826219877233032
227483.87479.221631207137.072599492400351.47289557138261.02346979622339
237479.77479.218175921336.624201177631821.46674386380755-0.324735387601547
247509.37505.134657764467.859636141506541.48242992762150.884900200220405
257518.67528.587065554938.72931781011828-12.1187165776980.787359628803446
267495.47499.289534838746.08635184154940.483735295479921-1.58015049034257
277507.57506.813681732226.181256401715130.4872216210874160.0658376254786613
287533.87530.828793239977.357010615472860.4977980690953990.81668855875933
297544.77543.468195621777.706802802310960.4995713562242940.24180356346704
307564.77562.612405662688.467565809757220.5028282798931650.5234176682227
317573.67572.851351997978.585856663531660.503292103913220.0810480401070347
327604.67601.336437980139.919276919603770.5081401263589910.910309271379739
337605.67605.842456200239.555461157927130.506911217498031-0.247595855341195
347619.97618.906728341419.791890501203510.5076535117999560.160466700435838
3576617656.6229150485211.67767573117060.5131577608002191.27689430958908
367664.17664.1603871879611.39753883136980.512397472239511-0.189299145860125
377663.97670.9868763698111.1002961062832-6.46381606664264-0.223145916439443
387652.17655.104134208799.234393243565230.265824970014137-1.15192103231895
397632.87636.433969734277.334202775275770.221275030508066-1.27567185790638
407677.77673.377135931779.348675489599040.2283969523030461.35347858397876
417677.37677.758648132229.010488951900580.228090552861572-0.227013362064685
4277277721.9123444651711.40511898130580.2293653824266891.60604063521817
437746.47744.609366163712.17509443459550.2297156118498820.516018154106605
447771.27769.2472514374813.02544348730620.2300710220946870.56950695984588
457781.27781.1281562645312.94730800570590.230040687672191-0.0523000392386982
467819.47816.1222585469914.45310910660680.2305845477258031.00741032813852
477819.17820.2910302897413.7504002159550.230348372589097-0.469924435735366
487849.17847.0689252067914.64085794788490.230626879938280.595257076930222
497757.87782.095634576519.28024025050106-13.4274146693038-3.82392943117775
5078237818.1815409169111.1218360799851.473986285805971.16170269608903
517825.67824.7591234160910.81082608162961.46853045324887-0.207674904937884
5278277826.7513145361510.20742922480531.46745071993406-0.40296170009431
537884.77877.6150970504312.98956335306231.466817008424541.85751169730553
5479127908.1142473334414.18792236569931.466267129721060.799961021709851
5578977898.7828687964212.57804973717361.4670064834832-1.07452026930841
567881.17883.4841294436210.66969597680361.46783021682314-1.27359533616824
577885.87885.5243311785110.07889110177431.46806789476248-0.394251111179899
587891.37890.532461756729.731699835833081.46819791917308-0.231664654071361
597920.97917.105181902910.88487735772881.467795948020190.769403833233623
607946.37942.7878440010711.8982106584051.467467182802560.676055061635618
617952.37965.7206799501412.6485288477314-14.92981650314940.524905952359574
628001.97997.906715366913.98668626283571.510448547303710.854793529892532
638007.98007.0616349785813.65576565948881.50574962167288-0.220795941353722
648028.18025.8803976810714.00939119888061.506149098588840.235898296279859
658012.58014.5009389155712.27040880436341.50705853413031-1.15989263914098
668069.68063.0781935719614.75726421974541.505337423073941.65865994899072
678082.78080.7869891685314.95943504346911.505201776537470.134839282231821
688110.68107.4748057191915.76280798761221.504697262340680.535806602799526
6981298126.978568302616.019060792221.50454736031240.170904467322461
708149.48147.3010168763716.31384409920861.504386838544590.196599506203819
718139.78141.2807347160714.78393075462271.50516228113324-1.02033273476409
728162.48160.3085922812615.07464783965131.505025129894030.193883835285157
738207.78215.1582714792317.7880990243858-12.90635254043441.87984379279055
748215.58216.5472220718316.66612804982131.06331642715275-0.722191626412156
758244.68242.2772183417517.2869418886341.070774983559680.414174236317689
7682698266.9132910122417.79039121294811.071196707745820.335773953154329
778245.68249.4046378298115.37220712964581.07257152660101-1.6126226193342
788244.68246.106190800614.09315947507841.07347326111501-0.852952488659012
798287.68283.331502655515.67784715905531.072397040089871.05677395704252
808284.38285.1428926103914.72791271467131.07300036237463-0.63348001494473
818290.68290.7823622383614.10529980118191.07336866784669-0.415200844373273
8283258321.6159443041715.25128896082381.072737625578930.764225163760987
838344.28342.367492098915.62809063710621.072544498085920.251277889287958
848353.68353.1911255794315.29895526177691.07270151784224-0.219490917238987
858367.88377.6274028265815.9231110783457-11.08044658564070.429836042424499
868334.68340.7595354449112.31238886975910.697828930907678-2.33599184149152
878330.28332.3758919367210.89484378308630.683002912852513-0.945684607215285
888368.28364.5725251951112.35416121774980.6840019319772970.973244974120301
898384.78383.1555925011412.78089012407220.6837707416998940.284565167906323
908351.48356.2041342793210.05891723639530.685561873587359-1.81514117726272
918411.48405.3197730354812.73459785164010.6838694136155311.78427904363698
928442.88439.1959105258414.18295019320310.6830129044809030.965839411169606
938443.18443.7473859737313.52312372552940.683376321259921-0.440009850089592
948462.68461.3527325476413.80278552544540.6832329393566550.186495144436429
958508.58503.8526548271415.76874537546390.6822947526790891.31102360414198
968522.78521.7268596711715.9129843799370.6822306839486930.0961877732075247
978559.68562.0679081396217.5826495417694-5.820929697818961.14508815217645
988556.78558.9823341432916.16901084904960.421536357415445-0.917929447423516
998618.98613.1984258273418.77501393562020.4456882575214331.73849180676971
1008613.28615.0881785467917.61825159344260.445005499698139-0.771455888879427
10186348633.4520049384917.66932961388390.4449800570555570.0340613922853111
1028653.48652.7324785452317.77970603361970.4449138042406740.0736041353117209







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
18678.313645765888674.449319173693.86432659218741
28695.561828252938693.838036028881.72379222405526
38707.090917252278713.22675288407-6.13583563179301
48733.800911029038732.615469739251.18544128977602
58754.516811933148752.004186594442.51262533870506
68779.363619999718771.392903449637.97071655008824
78788.607776319518790.78162030481-2.17384398529817
88806.052442599918810.17033716-4.11789456008479
98822.135691268518829.55905401518-7.42336274667267
108853.024187801178848.947770870374.07641693080053
118869.373490282488868.336487725561.03700255692077
128885.205820022068887.72520458074-2.51938455868464

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 8678.31364576588 & 8674.44931917369 & 3.86432659218741 \tabularnewline
2 & 8695.56182825293 & 8693.83803602888 & 1.72379222405526 \tabularnewline
3 & 8707.09091725227 & 8713.22675288407 & -6.13583563179301 \tabularnewline
4 & 8733.80091102903 & 8732.61546973925 & 1.18544128977602 \tabularnewline
5 & 8754.51681193314 & 8752.00418659444 & 2.51262533870506 \tabularnewline
6 & 8779.36361999971 & 8771.39290344963 & 7.97071655008824 \tabularnewline
7 & 8788.60777631951 & 8790.78162030481 & -2.17384398529817 \tabularnewline
8 & 8806.05244259991 & 8810.17033716 & -4.11789456008479 \tabularnewline
9 & 8822.13569126851 & 8829.55905401518 & -7.42336274667267 \tabularnewline
10 & 8853.02418780117 & 8848.94777087037 & 4.07641693080053 \tabularnewline
11 & 8869.37349028248 & 8868.33648772556 & 1.03700255692077 \tabularnewline
12 & 8885.20582002206 & 8887.72520458074 & -2.51938455868464 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299818&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]8678.31364576588[/C][C]8674.44931917369[/C][C]3.86432659218741[/C][/ROW]
[ROW][C]2[/C][C]8695.56182825293[/C][C]8693.83803602888[/C][C]1.72379222405526[/C][/ROW]
[ROW][C]3[/C][C]8707.09091725227[/C][C]8713.22675288407[/C][C]-6.13583563179301[/C][/ROW]
[ROW][C]4[/C][C]8733.80091102903[/C][C]8732.61546973925[/C][C]1.18544128977602[/C][/ROW]
[ROW][C]5[/C][C]8754.51681193314[/C][C]8752.00418659444[/C][C]2.51262533870506[/C][/ROW]
[ROW][C]6[/C][C]8779.36361999971[/C][C]8771.39290344963[/C][C]7.97071655008824[/C][/ROW]
[ROW][C]7[/C][C]8788.60777631951[/C][C]8790.78162030481[/C][C]-2.17384398529817[/C][/ROW]
[ROW][C]8[/C][C]8806.05244259991[/C][C]8810.17033716[/C][C]-4.11789456008479[/C][/ROW]
[ROW][C]9[/C][C]8822.13569126851[/C][C]8829.55905401518[/C][C]-7.42336274667267[/C][/ROW]
[ROW][C]10[/C][C]8853.02418780117[/C][C]8848.94777087037[/C][C]4.07641693080053[/C][/ROW]
[ROW][C]11[/C][C]8869.37349028248[/C][C]8868.33648772556[/C][C]1.03700255692077[/C][/ROW]
[ROW][C]12[/C][C]8885.20582002206[/C][C]8887.72520458074[/C][C]-2.51938455868464[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299818&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299818&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
18678.313645765888674.449319173693.86432659218741
28695.561828252938693.838036028881.72379222405526
38707.090917252278713.22675288407-6.13583563179301
48733.800911029038732.615469739251.18544128977602
58754.516811933148752.004186594442.51262533870506
68779.363619999718771.392903449637.97071655008824
78788.607776319518790.78162030481-2.17384398529817
88806.052442599918810.17033716-4.11789456008479
98822.135691268518829.55905401518-7.42336274667267
108853.024187801178848.947770870374.07641693080053
118869.373490282488868.336487725561.03700255692077
128885.205820022068887.72520458074-2.51938455868464



Parameters (Session):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')