Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_pairs.wasp
Title produced by softwareKendall tau Correlation Matrix
Date of computationThu, 15 Dec 2016 10:50:27 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/15/t1481795713f8soojkpfgojlmj.htm/, Retrieved Fri, 01 Nov 2024 03:41:14 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299803, Retrieved Fri, 01 Nov 2024 03:41:14 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact120
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Kendall tau Correlation Matrix] [correlatie matrices ] [2016-12-15 09:50:27] [8263efc94e08b372ab727a2b95bd56b1] [Current]
Feedback Forum

Post a new message
Dataseries X:
13	4	2	3
13	3	2	4
14	4	2	3
11	4	4	4
12	3	3	3
14	4	1	2
12	2	3	2
12	4	1	1
12	2	4	1
13	4	2	4
14	4	5	1
12	3	2	3
17	4	4	5
15	3	4	2
14	3	3	2
11	2	1	2
15	4	5	3
9	4	3	3
11	3	3	3
13	5	2	5
12	3	2	3
14	4	1	2
12	4	2	4
14	2	2	2
13	4	3	2
14	3	2	4
14	2	2	2
14	4	3	5
14	4	1	2
12	3	1	1
11	2	2	4
15	5	5	1
10	2	2	3
15	3	3	4
14	4	1	3
12	3	1	2
14	3	4	5
14	3	2	2
12	4	2	2
12	3	2	4
12	4	2	2
13	4	2	3
13	4	5	1
15	4	4	4
12	3	2	3
12	2	2	2
13	5	5	5
12	3	2	3
8	4	3	3
12	5	2	4
14	2	2	2
13	4	4	3
9	5	1	4
14	5	5	2
12	3	3	2
12	3	1	1
17	4	2	1
13	4	3	3
10	3	4	3
12	3	2	2
15	5	2	2
13	4	4	3
13	4	2	4
14	4	4	3
11	2	2	2
14	2	3	4
14	4	4	4
15	4	4	4
16	5	2	5
12	4	4	2
14	4	2	3
12	3	3	2
15	1	1	1
14	3	2	4
14	4	4	3
12	1	1	2
14	2	1	3
12	4	1	2
12	4	1	1
14	3	1	3
14	2	3	3
15	2	1	1
12	3	1	1
16	2	5	3
10	5	4	4
12	3	3	3
13	4	4	1
15	2	3	4
11	4	3	4
11	5	5	4
12	4	1	2
12	2	1	1
12	3	3	3
15	3	2	2
12	3	3	3
11	3	3	2
16	1	2	1
12	3	4	2
11	3	3	2
16	4	2	3
14	4	2	1
13	2	2	1
14	4	3	3
14	3	1	1
12	4	3	3
14	3	3	3
14	4	3	4
12	4	3	4
12	2	3	4
12	4	4	4
13	4	4	3
16	4	3	4
13	3	1	3
11	3	2	1
15	4	1	3
13	4	2	4
10	4	1	5
16	3	2	2
12	3	1	3
12	3	4	3
12	2	2	3
13	4	2	1
12	2	1	4
14	3	2	3
11	4	3	4
14	2	2	2
14	3	3	3
12	3	3	3
12	2	2	2
14	4	3	3
12	3	2	1
13	4	4	4
14	2	1	3
12	3	4	3
17	5	2	5
12	2	3	2
16	3	3	1
12	2	2	1
12	4	2	3
12	4	2	1
14	4	3	3
14	2	3	3
14	3	3	3
13	3	2	3
15	4	4	2
11	3	1	2
13	5	2	4
14	3	3	3
15	4	3	4
11	4	1	2
12	4	3	3
11	5	3	4
12	5	1	1
12	4	1	4
14	4	3	1
11	3	3	2
15	4	4	4
12	2	1	2
15	4	3	1
11	3	1	1
12	3	2	4
12	5	2	4
11	5	3	3
14	5	3	3
13	3	3	3
12	1	3	4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299803&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299803&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299803&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Correlations for all pairs of data series (method=kendall)
GWsomSN1SN2SN4
GWsom10.0590.1070.01
SN10.05910.180.232
SN20.1070.1810.205
SN40.010.2320.2051

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series (method=kendall) \tabularnewline
  & GWsom & SN1 & SN2 & SN4 \tabularnewline
GWsom & 1 & 0.059 & 0.107 & 0.01 \tabularnewline
SN1 & 0.059 & 1 & 0.18 & 0.232 \tabularnewline
SN2 & 0.107 & 0.18 & 1 & 0.205 \tabularnewline
SN4 & 0.01 & 0.232 & 0.205 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299803&T=1

[TABLE]
[ROW][C]Correlations for all pairs of data series (method=kendall)[/C][/ROW]
[ROW][C] [/C][C]GWsom[/C][C]SN1[/C][C]SN2[/C][C]SN4[/C][/ROW]
[ROW][C]GWsom[/C][C]1[/C][C]0.059[/C][C]0.107[/C][C]0.01[/C][/ROW]
[ROW][C]SN1[/C][C]0.059[/C][C]1[/C][C]0.18[/C][C]0.232[/C][/ROW]
[ROW][C]SN2[/C][C]0.107[/C][C]0.18[/C][C]1[/C][C]0.205[/C][/ROW]
[ROW][C]SN4[/C][C]0.01[/C][C]0.232[/C][C]0.205[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299803&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299803&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series (method=kendall)
GWsomSN1SN2SN4
GWsom10.0590.1070.01
SN10.05910.180.232
SN20.1070.1810.205
SN40.010.2320.2051







Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
GWsom;SN10.02740.06820.0588
p-value(0.7257)(0.3827)(0.3573)
GWsom;SN20.13260.13130.1073
p-value(0.0886)(0.0917)(0.0891)
GWsom;SN40.00990.01310.0096
p-value(0.899)(0.8665)(0.8785)
SN1;SN20.23220.20770.1799
p-value(0.0026)(0.0072)(0.0058)
SN1;SN40.27340.26820.2316
p-value(4e-04)(5e-04)(4e-04)
SN2;SN40.21810.24510.2055
p-value(0.0048)(0.0015)(0.0014)

\begin{tabular}{lllllllll}
\hline
Correlations for all pairs of data series with p-values \tabularnewline
pair & Pearson r & Spearman rho & Kendall tau \tabularnewline
GWsom;SN1 & 0.0274 & 0.0682 & 0.0588 \tabularnewline
p-value & (0.7257) & (0.3827) & (0.3573) \tabularnewline
GWsom;SN2 & 0.1326 & 0.1313 & 0.1073 \tabularnewline
p-value & (0.0886) & (0.0917) & (0.0891) \tabularnewline
GWsom;SN4 & 0.0099 & 0.0131 & 0.0096 \tabularnewline
p-value & (0.899) & (0.8665) & (0.8785) \tabularnewline
SN1;SN2 & 0.2322 & 0.2077 & 0.1799 \tabularnewline
p-value & (0.0026) & (0.0072) & (0.0058) \tabularnewline
SN1;SN4 & 0.2734 & 0.2682 & 0.2316 \tabularnewline
p-value & (4e-04) & (5e-04) & (4e-04) \tabularnewline
SN2;SN4 & 0.2181 & 0.2451 & 0.2055 \tabularnewline
p-value & (0.0048) & (0.0015) & (0.0014) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299803&T=2

[TABLE]
[ROW][C]Correlations for all pairs of data series with p-values[/C][/ROW]
[ROW][C]pair[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]GWsom;SN1[/C][C]0.0274[/C][C]0.0682[/C][C]0.0588[/C][/ROW]
[ROW][C]p-value[/C][C](0.7257)[/C][C](0.3827)[/C][C](0.3573)[/C][/ROW]
[ROW][C]GWsom;SN2[/C][C]0.1326[/C][C]0.1313[/C][C]0.1073[/C][/ROW]
[ROW][C]p-value[/C][C](0.0886)[/C][C](0.0917)[/C][C](0.0891)[/C][/ROW]
[ROW][C]GWsom;SN4[/C][C]0.0099[/C][C]0.0131[/C][C]0.0096[/C][/ROW]
[ROW][C]p-value[/C][C](0.899)[/C][C](0.8665)[/C][C](0.8785)[/C][/ROW]
[ROW][C]SN1;SN2[/C][C]0.2322[/C][C]0.2077[/C][C]0.1799[/C][/ROW]
[ROW][C]p-value[/C][C](0.0026)[/C][C](0.0072)[/C][C](0.0058)[/C][/ROW]
[ROW][C]SN1;SN4[/C][C]0.2734[/C][C]0.2682[/C][C]0.2316[/C][/ROW]
[ROW][C]p-value[/C][C](4e-04)[/C][C](5e-04)[/C][C](4e-04)[/C][/ROW]
[ROW][C]SN2;SN4[/C][C]0.2181[/C][C]0.2451[/C][C]0.2055[/C][/ROW]
[ROW][C]p-value[/C][C](0.0048)[/C][C](0.0015)[/C][C](0.0014)[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299803&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299803&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Correlations for all pairs of data series with p-values
pairPearson rSpearman rhoKendall tau
GWsom;SN10.02740.06820.0588
p-value(0.7257)(0.3827)(0.3573)
GWsom;SN20.13260.13130.1073
p-value(0.0886)(0.0917)(0.0891)
GWsom;SN40.00990.01310.0096
p-value(0.899)(0.8665)(0.8785)
SN1;SN20.23220.20770.1799
p-value(0.0026)(0.0072)(0.0058)
SN1;SN40.27340.26820.2316
p-value(4e-04)(5e-04)(4e-04)
SN2;SN40.21810.24510.2055
p-value(0.0048)(0.0015)(0.0014)







Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.50.50.5
0.020.50.50.5
0.030.50.50.5
0.040.50.50.5
0.050.50.50.5
0.060.50.50.5
0.070.50.50.5
0.080.50.50.5
0.090.670.50.67
0.10.670.670.67

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Correlation Tests \tabularnewline
Number of significant by total number of Correlations \tabularnewline
Type I error & Pearson r & Spearman rho & Kendall tau \tabularnewline
0.01 & 0.5 & 0.5 & 0.5 \tabularnewline
0.02 & 0.5 & 0.5 & 0.5 \tabularnewline
0.03 & 0.5 & 0.5 & 0.5 \tabularnewline
0.04 & 0.5 & 0.5 & 0.5 \tabularnewline
0.05 & 0.5 & 0.5 & 0.5 \tabularnewline
0.06 & 0.5 & 0.5 & 0.5 \tabularnewline
0.07 & 0.5 & 0.5 & 0.5 \tabularnewline
0.08 & 0.5 & 0.5 & 0.5 \tabularnewline
0.09 & 0.67 & 0.5 & 0.67 \tabularnewline
0.1 & 0.67 & 0.67 & 0.67 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299803&T=3

[TABLE]
[ROW][C]Meta Analysis of Correlation Tests[/C][/ROW]
[ROW][C]Number of significant by total number of Correlations[/C][/ROW]
[ROW][C]Type I error[/C][C]Pearson r[/C][C]Spearman rho[/C][C]Kendall tau[/C][/ROW]
[ROW][C]0.01[/C][C]0.5[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.02[/C][C]0.5[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.03[/C][C]0.5[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.04[/C][C]0.5[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.05[/C][C]0.5[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.06[/C][C]0.5[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.07[/C][C]0.5[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.08[/C][C]0.5[/C][C]0.5[/C][C]0.5[/C][/ROW]
[ROW][C]0.09[/C][C]0.67[/C][C]0.5[/C][C]0.67[/C][/ROW]
[ROW][C]0.1[/C][C]0.67[/C][C]0.67[/C][C]0.67[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299803&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299803&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Correlation Tests
Number of significant by total number of Correlations
Type I errorPearson rSpearman rhoKendall tau
0.010.50.50.5
0.020.50.50.5
0.030.50.50.5
0.040.50.50.5
0.050.50.50.5
0.060.50.50.5
0.070.50.50.5
0.080.50.50.5
0.090.670.50.67
0.10.670.670.67



Parameters (Session):
par1 = kendall ;
Parameters (R input):
par1 = kendall ;
R code (references can be found in the software module):
panel.tau <- function(x, y, digits=2, prefix='', cex.cor)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
rr <- cor.test(x, y, method=par1)
r <- round(rr$p.value,2)
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep='')
if(missing(cex.cor)) cex <- 0.5/strwidth(txt)
text(0.5, 0.5, txt, cex = cex)
}
panel.hist <- function(x, ...)
{
usr <- par('usr'); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col='grey', ...)
}
x <- na.omit(x)
y <- t(na.omit(t(y)))
bitmap(file='test1.png')
pairs(t(y),diag.panel=panel.hist, upper.panel=panel.smooth, lower.panel=panel.tau, main=main)
dev.off()
load(file='createtable')
n <- length(y[,1])
print(n)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,paste('Correlations for all pairs of data series (method=',par1,')',sep=''),n+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ',header=TRUE)
for (i in 1:n) {
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
}
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,dimnames(t(x))[[2]][i],header=TRUE)
for (j in 1:n) {
r <- cor.test(y[i,],y[j,],method=par1)
a<-table.element(a,round(r$estimate,3))
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
ncorrs <- (n*n -n)/2
mycorrs <- array(0, dim=c(10,3))
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Correlations for all pairs of data series with p-values',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'pair',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
cor.test(y[1,],y[2,],method=par1)
for (i in 1:(n-1))
{
for (j in (i+1):n)
{
a<-table.row.start(a)
dum <- paste(dimnames(t(x))[[2]][i],';',dimnames(t(x))[[2]][j],sep='')
a<-table.element(a,dum,header=TRUE)
rp <- cor.test(y[i,],y[j,],method='pearson')
a<-table.element(a,round(rp$estimate,4))
rs <- cor.test(y[i,],y[j,],method='spearman')
a<-table.element(a,round(rs$estimate,4))
rk <- cor.test(y[i,],y[j,],method='kendall')
a<-table.element(a,round(rk$estimate,4))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-value',header=T)
a<-table.element(a,paste('(',round(rp$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rs$p.value,4),')',sep=''))
a<-table.element(a,paste('(',round(rk$p.value,4),')',sep=''))
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
if (rp$p.value < iiid100) mycorrs[iii, 1] = mycorrs[iii, 1] + 1
if (rs$p.value < iiid100) mycorrs[iii, 2] = mycorrs[iii, 2] + 1
if (rk$p.value < iiid100) mycorrs[iii, 3] = mycorrs[iii, 3] + 1
}
}
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Correlation Tests',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Number of significant by total number of Correlations',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Type I error',1,TRUE)
a<-table.element(a,'Pearson r',1,TRUE)
a<-table.element(a,'Spearman rho',1,TRUE)
a<-table.element(a,'Kendall tau',1,TRUE)
a<-table.row.end(a)
for (iii in 1:10) {
iiid100 <- iii / 100
a<-table.row.start(a)
a<-table.element(a,round(iiid100,2),header=T)
a<-table.element(a,round(mycorrs[iii,1]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,2]/ncorrs,2))
a<-table.element(a,round(mycorrs[iii,3]/ncorrs,2))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')