Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationThu, 15 Dec 2016 10:50:16 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/15/t1481795474q1peqa3a9sro5m9.htm/, Retrieved Fri, 01 Nov 2024 03:28:31 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299799, Retrieved Fri, 01 Nov 2024 03:28:31 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact114
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [Loess F1] [2016-12-15 09:50:16] [10299735033611e1e2dae6371997f8c9] [Current]
Feedback Forum

Post a new message
Dataseries X:
7235.6
7268.3
7271.3
7327.4
7339.5
7303.2
7300.7
7311.8
7329
7330.8
7328.6
7346.5
7356.9
7385.7
7394.9
7422.8
7446.6
7441.2
7476.1
7461.6
7450.2
7483.8
7479.7
7509.3
7518.6
7495.4
7507.5
7533.8
7544.7
7564.7
7573.6
7604.6
7605.6
7619.9
7661
7664.1
7663.9
7652.1
7632.8
7677.7
7677.3
7727
7746.4
7771.2
7781.2
7819.4
7819.1
7849.1
7757.8
7823
7825.6
7827
7884.7
7912
7897
7881.1
7885.8
7891.3
7920.9
7946.3
7952.3
8001.9
8007.9
8028.1
8012.5
8069.6
8082.7
8110.6
8129
8149.4
8139.7
8162.4
8207.7
8215.5
8244.6
8269
8245.6
8244.6
8287.6
8284.3
8290.6
8325
8344.2
8353.6
8367.8
8334.6
8330.2
8368.2
8384.7
8351.4
8411.4
8442.8
8443.1
8462.6
8508.5
8522.7
8559.6
8556.7
8618.9
8613.2
8634
8653.4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299799&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299799&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299799&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal10210103
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 1021 & 0 & 103 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299799&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]1021[/C][C]0[/C][C]103[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299799&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299799&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal10210103
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
17235.67209.42017850953-5.009452023097377266.78927351357-26.1798214904675
27268.37267.54492275228-5.584421038214347274.63949828593-0.755077247719782
37271.37267.65858262483-7.548305683134217282.4897230583-3.64141737516911
47327.47359.915816390554.411813607504497290.4723700019532.5158163905471
57339.57378.739717697761.805265356651117298.4550169455939.2397176977584
67303.27301.07159604118-1.469393257912627306.79779721674-2.12840395882449
77300.77281.945687357564.313735154554727315.14057748788-18.7543126424398
87311.87297.875305772532.158829611730587323.56586461574-13.9246942274722
973297331.75492206425-5.746073807853367331.99115174362.75492206425497
107330.87319.457074295581.482711490957657340.66021421346-11.3429257044154
117328.67305.184231945842.686491370842857349.32927668332-23.4157680541612
127346.57323.459303837538.498793600042857361.04190256243-23.0406961624694
137356.97346.05492358156-5.009452023097377372.75452844153-10.8450764184372
147385.77391.18190756947-5.584421038214347385.802513468745.48190756947315
157394.97398.49780718719-7.548305683134217398.850498495953.59780718718685
167422.87429.527753339864.411813607504497411.660433052646.72775333985828
177446.67466.924367034021.805265356651117424.4703676093320.3243670340216
187441.27447.13913984383-1.469393257912627436.730253414085.93913984382925
197476.17498.896125626614.313735154554727448.9901392188422.7961256266071
207461.67461.6661645772.158829611730587459.375005811270.0661645770032919
217450.27436.38620140416-5.746073807853367469.75987240369-13.813798595841
227483.87487.388649392741.482711490957657478.72863911633.58864939274372
237479.77469.016102800252.686491370842857487.6974058289-10.6838971997468
247509.37513.163786019928.498793600042857496.937420380043.86378601991601
257518.67536.03201709192-5.009452023097377506.1774349311817.4320170919191
267495.47479.31431251865-5.584421038214347517.07010851956-16.0856874813489
277507.57494.58552357519-7.548305683134217527.96278210795-12.9144764248131
287533.87522.64970546314.411813607504497540.53848092939-11.1502945368966
297544.77534.480554892511.805265356651117553.11417975084-10.2194451074874
307564.77564.33228430762-1.469393257912627566.53710895029-0.367715692381353
317573.67562.926226695694.313735154554727579.96003814975-10.6737733043065
327604.67614.157514682742.158829611730587592.883655705539.55751468273866
337605.67611.13880054654-5.746073807853367605.807273261315.53880054654292
347619.97620.549318691621.482711490957657617.767969817420.649318691620465
3576617689.584842255622.686491370842857629.7286663735328.5848422556237
367664.17677.868129303838.498793600042857641.8330770961213.768129303834
377663.97678.87196420438-5.009452023097377653.9374878187214.9719642043819
387652.17642.47426446176-5.584421038214347667.31015657646-9.62573553824041
397632.87592.46548034894-7.548305683134217680.68282533419-40.33451965106
407677.77655.728353233194.411813607504497695.2598331593-21.9716467668086
417677.37642.957893658941.805265356651117709.83684098441-34.3421063410642
4277277731.05971576713-1.469393257912627724.409677490784.05971576713364
437746.47749.50375084834.313735154554727738.982513997153.10375084829866
447771.27786.85611803092.158829611730587753.3850523573615.6561180309045
457781.27800.35848309027-5.746073807853367767.7875907175819.1584830902702
467819.47855.387258593651.482711490957657781.9300299153935.9872585936509
477819.17839.441039515962.686491370842857796.072469113220.3410395159581
487849.17880.71331471168.498793600042857808.9878916883531.6133147116043
497757.87698.70613775959-5.009452023097377821.90331426351-59.0938622404101
5078237819.43756412027-5.584421038214347832.14685691794-3.56243587972676
517825.67816.35790611076-7.548305683134217842.39039957237-9.2420938892401
5278277798.367642050624.411813607504497851.22054434188-28.6323579493828
537884.77907.544045531971.805265356651117860.0506891113822.8440455319678
5479127954.74391275128-1.469393257912627870.7254805066342.7439127512798
5578977908.285992943564.313735154554727881.4002719018911.2859929435599
567881.17865.098159655372.158829611730587894.9430107329-16.0018403446347
577885.87868.86032424393-5.746073807853367908.48574956392-16.9396757560698
587891.37858.645234542951.482711490957657922.4720539661-32.6547654570531
597920.97902.655150260892.686491370842857936.45835836827-18.2448497391124
607946.37932.559516322058.498793600042857951.54169007791-13.7404836779488
617952.37942.98443023555-5.009452023097377966.62502178754-9.31556976444608
628001.98024.44821828643-5.584421038214347984.9362027517922.5482182864271
638007.98020.1009219671-7.548305683134218003.2473837160312.2009219671045
648028.18028.729994231644.411813607504498023.058192160850.629994231641831
658012.57980.325734037671.805265356651118042.86900060568-32.1742659623296
668069.68078.62230734559-1.469393257912628062.047085912329.02230734559271
678082.78079.861093626484.313735154554728081.22517121896-2.8389063735176
688110.68118.558852259022.158829611730588100.482318129257.95885225901475
6981298144.00660876831-5.746073807853368119.7394650395515.0066087683063
708149.48158.406382521181.482711490957658138.910905987869.00638252117733
718139.78118.631161692972.686491370842858158.08234693618-21.0688383070265
728162.48140.929610224018.498793600042858175.37159617594-21.4703897759873
738207.78227.74860660739-5.009452023097378192.6608454157120.0486066073918
748215.58228.69759416715-5.584421038214348207.8868268710613.1975941671535
758244.68273.63549735672-7.548305683134218223.1128083264229.0354973567191
7682698295.722107730934.411813607504498237.8660786615726.7221077309296
778245.68236.775385646631.805265356651118252.61934899672-8.824614353367
788244.68224.19451390262-1.469393257912628266.4748793553-20.4054860973829
798287.68290.555855131574.313735154554728280.330409713882.95585513156948
808284.38274.954524739792.158829611730588291.48664564848-9.34547526020651
818290.68284.30319222478-5.746073807853368302.64288158308-6.29680777522299
8283258336.07145087761.482711490957658312.4458376314411.0714508775982
838344.28363.464714949352.686491370842858322.2487936798119.2647149493478
848353.68366.488823755548.498793600042858332.2123826444212.8888237555384
858367.88398.43348041407-5.009452023097378342.1759716090330.6334804140697
868334.68321.89439056386-5.584421038214348352.89003047435-12.705609436136
878330.28304.34421634346-7.548305683134218363.60408933968-25.8557836565415
888368.28356.279480114834.411813607504498375.70870627766-11.9205198851669
898384.78379.78141142771.805265356651118387.81332321565-4.91858857230181
908351.48301.44144248389-1.469393257912628402.82795077402-49.9585575161127
918411.48400.643686513054.313735154554728417.8425783324-10.7563134869542
928442.88446.304704238032.158829611730588437.136466150243.50470423803381
938443.18435.51571983978-5.746073807853368456.43035396807-7.58428016021935
948462.68444.517298810191.482711490957658479.19998969886-18.0827011898145
958508.58512.343883199522.686491370842858501.969625429643.84388319951904
968522.78512.300964947018.498793600042858524.60024145295-10.3990350529912
978559.68576.97859454684-5.009452023097378547.2308574762617.3785945468389
988556.78548.90856274649-5.584421038214348570.07585829173-7.79143725351059
998618.98652.42744657594-7.548305683134218592.9208591071933.527446575943
1008613.28606.073136920334.411813607504498615.91504947216-7.12686307966578
10186348627.285494806221.805265356651118638.90923983713-6.71450519378413
1028653.48646.35400373977-1.469393257912628661.91538951814-7.045996260229

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 7235.6 & 7209.42017850953 & -5.00945202309737 & 7266.78927351357 & -26.1798214904675 \tabularnewline
2 & 7268.3 & 7267.54492275228 & -5.58442103821434 & 7274.63949828593 & -0.755077247719782 \tabularnewline
3 & 7271.3 & 7267.65858262483 & -7.54830568313421 & 7282.4897230583 & -3.64141737516911 \tabularnewline
4 & 7327.4 & 7359.91581639055 & 4.41181360750449 & 7290.47237000195 & 32.5158163905471 \tabularnewline
5 & 7339.5 & 7378.73971769776 & 1.80526535665111 & 7298.45501694559 & 39.2397176977584 \tabularnewline
6 & 7303.2 & 7301.07159604118 & -1.46939325791262 & 7306.79779721674 & -2.12840395882449 \tabularnewline
7 & 7300.7 & 7281.94568735756 & 4.31373515455472 & 7315.14057748788 & -18.7543126424398 \tabularnewline
8 & 7311.8 & 7297.87530577253 & 2.15882961173058 & 7323.56586461574 & -13.9246942274722 \tabularnewline
9 & 7329 & 7331.75492206425 & -5.74607380785336 & 7331.9911517436 & 2.75492206425497 \tabularnewline
10 & 7330.8 & 7319.45707429558 & 1.48271149095765 & 7340.66021421346 & -11.3429257044154 \tabularnewline
11 & 7328.6 & 7305.18423194584 & 2.68649137084285 & 7349.32927668332 & -23.4157680541612 \tabularnewline
12 & 7346.5 & 7323.45930383753 & 8.49879360004285 & 7361.04190256243 & -23.0406961624694 \tabularnewline
13 & 7356.9 & 7346.05492358156 & -5.00945202309737 & 7372.75452844153 & -10.8450764184372 \tabularnewline
14 & 7385.7 & 7391.18190756947 & -5.58442103821434 & 7385.80251346874 & 5.48190756947315 \tabularnewline
15 & 7394.9 & 7398.49780718719 & -7.54830568313421 & 7398.85049849595 & 3.59780718718685 \tabularnewline
16 & 7422.8 & 7429.52775333986 & 4.41181360750449 & 7411.66043305264 & 6.72775333985828 \tabularnewline
17 & 7446.6 & 7466.92436703402 & 1.80526535665111 & 7424.47036760933 & 20.3243670340216 \tabularnewline
18 & 7441.2 & 7447.13913984383 & -1.46939325791262 & 7436.73025341408 & 5.93913984382925 \tabularnewline
19 & 7476.1 & 7498.89612562661 & 4.31373515455472 & 7448.99013921884 & 22.7961256266071 \tabularnewline
20 & 7461.6 & 7461.666164577 & 2.15882961173058 & 7459.37500581127 & 0.0661645770032919 \tabularnewline
21 & 7450.2 & 7436.38620140416 & -5.74607380785336 & 7469.75987240369 & -13.813798595841 \tabularnewline
22 & 7483.8 & 7487.38864939274 & 1.48271149095765 & 7478.7286391163 & 3.58864939274372 \tabularnewline
23 & 7479.7 & 7469.01610280025 & 2.68649137084285 & 7487.6974058289 & -10.6838971997468 \tabularnewline
24 & 7509.3 & 7513.16378601992 & 8.49879360004285 & 7496.93742038004 & 3.86378601991601 \tabularnewline
25 & 7518.6 & 7536.03201709192 & -5.00945202309737 & 7506.17743493118 & 17.4320170919191 \tabularnewline
26 & 7495.4 & 7479.31431251865 & -5.58442103821434 & 7517.07010851956 & -16.0856874813489 \tabularnewline
27 & 7507.5 & 7494.58552357519 & -7.54830568313421 & 7527.96278210795 & -12.9144764248131 \tabularnewline
28 & 7533.8 & 7522.6497054631 & 4.41181360750449 & 7540.53848092939 & -11.1502945368966 \tabularnewline
29 & 7544.7 & 7534.48055489251 & 1.80526535665111 & 7553.11417975084 & -10.2194451074874 \tabularnewline
30 & 7564.7 & 7564.33228430762 & -1.46939325791262 & 7566.53710895029 & -0.367715692381353 \tabularnewline
31 & 7573.6 & 7562.92622669569 & 4.31373515455472 & 7579.96003814975 & -10.6737733043065 \tabularnewline
32 & 7604.6 & 7614.15751468274 & 2.15882961173058 & 7592.88365570553 & 9.55751468273866 \tabularnewline
33 & 7605.6 & 7611.13880054654 & -5.74607380785336 & 7605.80727326131 & 5.53880054654292 \tabularnewline
34 & 7619.9 & 7620.54931869162 & 1.48271149095765 & 7617.76796981742 & 0.649318691620465 \tabularnewline
35 & 7661 & 7689.58484225562 & 2.68649137084285 & 7629.72866637353 & 28.5848422556237 \tabularnewline
36 & 7664.1 & 7677.86812930383 & 8.49879360004285 & 7641.83307709612 & 13.768129303834 \tabularnewline
37 & 7663.9 & 7678.87196420438 & -5.00945202309737 & 7653.93748781872 & 14.9719642043819 \tabularnewline
38 & 7652.1 & 7642.47426446176 & -5.58442103821434 & 7667.31015657646 & -9.62573553824041 \tabularnewline
39 & 7632.8 & 7592.46548034894 & -7.54830568313421 & 7680.68282533419 & -40.33451965106 \tabularnewline
40 & 7677.7 & 7655.72835323319 & 4.41181360750449 & 7695.2598331593 & -21.9716467668086 \tabularnewline
41 & 7677.3 & 7642.95789365894 & 1.80526535665111 & 7709.83684098441 & -34.3421063410642 \tabularnewline
42 & 7727 & 7731.05971576713 & -1.46939325791262 & 7724.40967749078 & 4.05971576713364 \tabularnewline
43 & 7746.4 & 7749.5037508483 & 4.31373515455472 & 7738.98251399715 & 3.10375084829866 \tabularnewline
44 & 7771.2 & 7786.8561180309 & 2.15882961173058 & 7753.38505235736 & 15.6561180309045 \tabularnewline
45 & 7781.2 & 7800.35848309027 & -5.74607380785336 & 7767.78759071758 & 19.1584830902702 \tabularnewline
46 & 7819.4 & 7855.38725859365 & 1.48271149095765 & 7781.93002991539 & 35.9872585936509 \tabularnewline
47 & 7819.1 & 7839.44103951596 & 2.68649137084285 & 7796.0724691132 & 20.3410395159581 \tabularnewline
48 & 7849.1 & 7880.7133147116 & 8.49879360004285 & 7808.98789168835 & 31.6133147116043 \tabularnewline
49 & 7757.8 & 7698.70613775959 & -5.00945202309737 & 7821.90331426351 & -59.0938622404101 \tabularnewline
50 & 7823 & 7819.43756412027 & -5.58442103821434 & 7832.14685691794 & -3.56243587972676 \tabularnewline
51 & 7825.6 & 7816.35790611076 & -7.54830568313421 & 7842.39039957237 & -9.2420938892401 \tabularnewline
52 & 7827 & 7798.36764205062 & 4.41181360750449 & 7851.22054434188 & -28.6323579493828 \tabularnewline
53 & 7884.7 & 7907.54404553197 & 1.80526535665111 & 7860.05068911138 & 22.8440455319678 \tabularnewline
54 & 7912 & 7954.74391275128 & -1.46939325791262 & 7870.72548050663 & 42.7439127512798 \tabularnewline
55 & 7897 & 7908.28599294356 & 4.31373515455472 & 7881.40027190189 & 11.2859929435599 \tabularnewline
56 & 7881.1 & 7865.09815965537 & 2.15882961173058 & 7894.9430107329 & -16.0018403446347 \tabularnewline
57 & 7885.8 & 7868.86032424393 & -5.74607380785336 & 7908.48574956392 & -16.9396757560698 \tabularnewline
58 & 7891.3 & 7858.64523454295 & 1.48271149095765 & 7922.4720539661 & -32.6547654570531 \tabularnewline
59 & 7920.9 & 7902.65515026089 & 2.68649137084285 & 7936.45835836827 & -18.2448497391124 \tabularnewline
60 & 7946.3 & 7932.55951632205 & 8.49879360004285 & 7951.54169007791 & -13.7404836779488 \tabularnewline
61 & 7952.3 & 7942.98443023555 & -5.00945202309737 & 7966.62502178754 & -9.31556976444608 \tabularnewline
62 & 8001.9 & 8024.44821828643 & -5.58442103821434 & 7984.93620275179 & 22.5482182864271 \tabularnewline
63 & 8007.9 & 8020.1009219671 & -7.54830568313421 & 8003.24738371603 & 12.2009219671045 \tabularnewline
64 & 8028.1 & 8028.72999423164 & 4.41181360750449 & 8023.05819216085 & 0.629994231641831 \tabularnewline
65 & 8012.5 & 7980.32573403767 & 1.80526535665111 & 8042.86900060568 & -32.1742659623296 \tabularnewline
66 & 8069.6 & 8078.62230734559 & -1.46939325791262 & 8062.04708591232 & 9.02230734559271 \tabularnewline
67 & 8082.7 & 8079.86109362648 & 4.31373515455472 & 8081.22517121896 & -2.8389063735176 \tabularnewline
68 & 8110.6 & 8118.55885225902 & 2.15882961173058 & 8100.48231812925 & 7.95885225901475 \tabularnewline
69 & 8129 & 8144.00660876831 & -5.74607380785336 & 8119.73946503955 & 15.0066087683063 \tabularnewline
70 & 8149.4 & 8158.40638252118 & 1.48271149095765 & 8138.91090598786 & 9.00638252117733 \tabularnewline
71 & 8139.7 & 8118.63116169297 & 2.68649137084285 & 8158.08234693618 & -21.0688383070265 \tabularnewline
72 & 8162.4 & 8140.92961022401 & 8.49879360004285 & 8175.37159617594 & -21.4703897759873 \tabularnewline
73 & 8207.7 & 8227.74860660739 & -5.00945202309737 & 8192.66084541571 & 20.0486066073918 \tabularnewline
74 & 8215.5 & 8228.69759416715 & -5.58442103821434 & 8207.88682687106 & 13.1975941671535 \tabularnewline
75 & 8244.6 & 8273.63549735672 & -7.54830568313421 & 8223.11280832642 & 29.0354973567191 \tabularnewline
76 & 8269 & 8295.72210773093 & 4.41181360750449 & 8237.86607866157 & 26.7221077309296 \tabularnewline
77 & 8245.6 & 8236.77538564663 & 1.80526535665111 & 8252.61934899672 & -8.824614353367 \tabularnewline
78 & 8244.6 & 8224.19451390262 & -1.46939325791262 & 8266.4748793553 & -20.4054860973829 \tabularnewline
79 & 8287.6 & 8290.55585513157 & 4.31373515455472 & 8280.33040971388 & 2.95585513156948 \tabularnewline
80 & 8284.3 & 8274.95452473979 & 2.15882961173058 & 8291.48664564848 & -9.34547526020651 \tabularnewline
81 & 8290.6 & 8284.30319222478 & -5.74607380785336 & 8302.64288158308 & -6.29680777522299 \tabularnewline
82 & 8325 & 8336.0714508776 & 1.48271149095765 & 8312.44583763144 & 11.0714508775982 \tabularnewline
83 & 8344.2 & 8363.46471494935 & 2.68649137084285 & 8322.24879367981 & 19.2647149493478 \tabularnewline
84 & 8353.6 & 8366.48882375554 & 8.49879360004285 & 8332.21238264442 & 12.8888237555384 \tabularnewline
85 & 8367.8 & 8398.43348041407 & -5.00945202309737 & 8342.17597160903 & 30.6334804140697 \tabularnewline
86 & 8334.6 & 8321.89439056386 & -5.58442103821434 & 8352.89003047435 & -12.705609436136 \tabularnewline
87 & 8330.2 & 8304.34421634346 & -7.54830568313421 & 8363.60408933968 & -25.8557836565415 \tabularnewline
88 & 8368.2 & 8356.27948011483 & 4.41181360750449 & 8375.70870627766 & -11.9205198851669 \tabularnewline
89 & 8384.7 & 8379.7814114277 & 1.80526535665111 & 8387.81332321565 & -4.91858857230181 \tabularnewline
90 & 8351.4 & 8301.44144248389 & -1.46939325791262 & 8402.82795077402 & -49.9585575161127 \tabularnewline
91 & 8411.4 & 8400.64368651305 & 4.31373515455472 & 8417.8425783324 & -10.7563134869542 \tabularnewline
92 & 8442.8 & 8446.30470423803 & 2.15882961173058 & 8437.13646615024 & 3.50470423803381 \tabularnewline
93 & 8443.1 & 8435.51571983978 & -5.74607380785336 & 8456.43035396807 & -7.58428016021935 \tabularnewline
94 & 8462.6 & 8444.51729881019 & 1.48271149095765 & 8479.19998969886 & -18.0827011898145 \tabularnewline
95 & 8508.5 & 8512.34388319952 & 2.68649137084285 & 8501.96962542964 & 3.84388319951904 \tabularnewline
96 & 8522.7 & 8512.30096494701 & 8.49879360004285 & 8524.60024145295 & -10.3990350529912 \tabularnewline
97 & 8559.6 & 8576.97859454684 & -5.00945202309737 & 8547.23085747626 & 17.3785945468389 \tabularnewline
98 & 8556.7 & 8548.90856274649 & -5.58442103821434 & 8570.07585829173 & -7.79143725351059 \tabularnewline
99 & 8618.9 & 8652.42744657594 & -7.54830568313421 & 8592.92085910719 & 33.527446575943 \tabularnewline
100 & 8613.2 & 8606.07313692033 & 4.41181360750449 & 8615.91504947216 & -7.12686307966578 \tabularnewline
101 & 8634 & 8627.28549480622 & 1.80526535665111 & 8638.90923983713 & -6.71450519378413 \tabularnewline
102 & 8653.4 & 8646.35400373977 & -1.46939325791262 & 8661.91538951814 & -7.045996260229 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299799&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]7235.6[/C][C]7209.42017850953[/C][C]-5.00945202309737[/C][C]7266.78927351357[/C][C]-26.1798214904675[/C][/ROW]
[ROW][C]2[/C][C]7268.3[/C][C]7267.54492275228[/C][C]-5.58442103821434[/C][C]7274.63949828593[/C][C]-0.755077247719782[/C][/ROW]
[ROW][C]3[/C][C]7271.3[/C][C]7267.65858262483[/C][C]-7.54830568313421[/C][C]7282.4897230583[/C][C]-3.64141737516911[/C][/ROW]
[ROW][C]4[/C][C]7327.4[/C][C]7359.91581639055[/C][C]4.41181360750449[/C][C]7290.47237000195[/C][C]32.5158163905471[/C][/ROW]
[ROW][C]5[/C][C]7339.5[/C][C]7378.73971769776[/C][C]1.80526535665111[/C][C]7298.45501694559[/C][C]39.2397176977584[/C][/ROW]
[ROW][C]6[/C][C]7303.2[/C][C]7301.07159604118[/C][C]-1.46939325791262[/C][C]7306.79779721674[/C][C]-2.12840395882449[/C][/ROW]
[ROW][C]7[/C][C]7300.7[/C][C]7281.94568735756[/C][C]4.31373515455472[/C][C]7315.14057748788[/C][C]-18.7543126424398[/C][/ROW]
[ROW][C]8[/C][C]7311.8[/C][C]7297.87530577253[/C][C]2.15882961173058[/C][C]7323.56586461574[/C][C]-13.9246942274722[/C][/ROW]
[ROW][C]9[/C][C]7329[/C][C]7331.75492206425[/C][C]-5.74607380785336[/C][C]7331.9911517436[/C][C]2.75492206425497[/C][/ROW]
[ROW][C]10[/C][C]7330.8[/C][C]7319.45707429558[/C][C]1.48271149095765[/C][C]7340.66021421346[/C][C]-11.3429257044154[/C][/ROW]
[ROW][C]11[/C][C]7328.6[/C][C]7305.18423194584[/C][C]2.68649137084285[/C][C]7349.32927668332[/C][C]-23.4157680541612[/C][/ROW]
[ROW][C]12[/C][C]7346.5[/C][C]7323.45930383753[/C][C]8.49879360004285[/C][C]7361.04190256243[/C][C]-23.0406961624694[/C][/ROW]
[ROW][C]13[/C][C]7356.9[/C][C]7346.05492358156[/C][C]-5.00945202309737[/C][C]7372.75452844153[/C][C]-10.8450764184372[/C][/ROW]
[ROW][C]14[/C][C]7385.7[/C][C]7391.18190756947[/C][C]-5.58442103821434[/C][C]7385.80251346874[/C][C]5.48190756947315[/C][/ROW]
[ROW][C]15[/C][C]7394.9[/C][C]7398.49780718719[/C][C]-7.54830568313421[/C][C]7398.85049849595[/C][C]3.59780718718685[/C][/ROW]
[ROW][C]16[/C][C]7422.8[/C][C]7429.52775333986[/C][C]4.41181360750449[/C][C]7411.66043305264[/C][C]6.72775333985828[/C][/ROW]
[ROW][C]17[/C][C]7446.6[/C][C]7466.92436703402[/C][C]1.80526535665111[/C][C]7424.47036760933[/C][C]20.3243670340216[/C][/ROW]
[ROW][C]18[/C][C]7441.2[/C][C]7447.13913984383[/C][C]-1.46939325791262[/C][C]7436.73025341408[/C][C]5.93913984382925[/C][/ROW]
[ROW][C]19[/C][C]7476.1[/C][C]7498.89612562661[/C][C]4.31373515455472[/C][C]7448.99013921884[/C][C]22.7961256266071[/C][/ROW]
[ROW][C]20[/C][C]7461.6[/C][C]7461.666164577[/C][C]2.15882961173058[/C][C]7459.37500581127[/C][C]0.0661645770032919[/C][/ROW]
[ROW][C]21[/C][C]7450.2[/C][C]7436.38620140416[/C][C]-5.74607380785336[/C][C]7469.75987240369[/C][C]-13.813798595841[/C][/ROW]
[ROW][C]22[/C][C]7483.8[/C][C]7487.38864939274[/C][C]1.48271149095765[/C][C]7478.7286391163[/C][C]3.58864939274372[/C][/ROW]
[ROW][C]23[/C][C]7479.7[/C][C]7469.01610280025[/C][C]2.68649137084285[/C][C]7487.6974058289[/C][C]-10.6838971997468[/C][/ROW]
[ROW][C]24[/C][C]7509.3[/C][C]7513.16378601992[/C][C]8.49879360004285[/C][C]7496.93742038004[/C][C]3.86378601991601[/C][/ROW]
[ROW][C]25[/C][C]7518.6[/C][C]7536.03201709192[/C][C]-5.00945202309737[/C][C]7506.17743493118[/C][C]17.4320170919191[/C][/ROW]
[ROW][C]26[/C][C]7495.4[/C][C]7479.31431251865[/C][C]-5.58442103821434[/C][C]7517.07010851956[/C][C]-16.0856874813489[/C][/ROW]
[ROW][C]27[/C][C]7507.5[/C][C]7494.58552357519[/C][C]-7.54830568313421[/C][C]7527.96278210795[/C][C]-12.9144764248131[/C][/ROW]
[ROW][C]28[/C][C]7533.8[/C][C]7522.6497054631[/C][C]4.41181360750449[/C][C]7540.53848092939[/C][C]-11.1502945368966[/C][/ROW]
[ROW][C]29[/C][C]7544.7[/C][C]7534.48055489251[/C][C]1.80526535665111[/C][C]7553.11417975084[/C][C]-10.2194451074874[/C][/ROW]
[ROW][C]30[/C][C]7564.7[/C][C]7564.33228430762[/C][C]-1.46939325791262[/C][C]7566.53710895029[/C][C]-0.367715692381353[/C][/ROW]
[ROW][C]31[/C][C]7573.6[/C][C]7562.92622669569[/C][C]4.31373515455472[/C][C]7579.96003814975[/C][C]-10.6737733043065[/C][/ROW]
[ROW][C]32[/C][C]7604.6[/C][C]7614.15751468274[/C][C]2.15882961173058[/C][C]7592.88365570553[/C][C]9.55751468273866[/C][/ROW]
[ROW][C]33[/C][C]7605.6[/C][C]7611.13880054654[/C][C]-5.74607380785336[/C][C]7605.80727326131[/C][C]5.53880054654292[/C][/ROW]
[ROW][C]34[/C][C]7619.9[/C][C]7620.54931869162[/C][C]1.48271149095765[/C][C]7617.76796981742[/C][C]0.649318691620465[/C][/ROW]
[ROW][C]35[/C][C]7661[/C][C]7689.58484225562[/C][C]2.68649137084285[/C][C]7629.72866637353[/C][C]28.5848422556237[/C][/ROW]
[ROW][C]36[/C][C]7664.1[/C][C]7677.86812930383[/C][C]8.49879360004285[/C][C]7641.83307709612[/C][C]13.768129303834[/C][/ROW]
[ROW][C]37[/C][C]7663.9[/C][C]7678.87196420438[/C][C]-5.00945202309737[/C][C]7653.93748781872[/C][C]14.9719642043819[/C][/ROW]
[ROW][C]38[/C][C]7652.1[/C][C]7642.47426446176[/C][C]-5.58442103821434[/C][C]7667.31015657646[/C][C]-9.62573553824041[/C][/ROW]
[ROW][C]39[/C][C]7632.8[/C][C]7592.46548034894[/C][C]-7.54830568313421[/C][C]7680.68282533419[/C][C]-40.33451965106[/C][/ROW]
[ROW][C]40[/C][C]7677.7[/C][C]7655.72835323319[/C][C]4.41181360750449[/C][C]7695.2598331593[/C][C]-21.9716467668086[/C][/ROW]
[ROW][C]41[/C][C]7677.3[/C][C]7642.95789365894[/C][C]1.80526535665111[/C][C]7709.83684098441[/C][C]-34.3421063410642[/C][/ROW]
[ROW][C]42[/C][C]7727[/C][C]7731.05971576713[/C][C]-1.46939325791262[/C][C]7724.40967749078[/C][C]4.05971576713364[/C][/ROW]
[ROW][C]43[/C][C]7746.4[/C][C]7749.5037508483[/C][C]4.31373515455472[/C][C]7738.98251399715[/C][C]3.10375084829866[/C][/ROW]
[ROW][C]44[/C][C]7771.2[/C][C]7786.8561180309[/C][C]2.15882961173058[/C][C]7753.38505235736[/C][C]15.6561180309045[/C][/ROW]
[ROW][C]45[/C][C]7781.2[/C][C]7800.35848309027[/C][C]-5.74607380785336[/C][C]7767.78759071758[/C][C]19.1584830902702[/C][/ROW]
[ROW][C]46[/C][C]7819.4[/C][C]7855.38725859365[/C][C]1.48271149095765[/C][C]7781.93002991539[/C][C]35.9872585936509[/C][/ROW]
[ROW][C]47[/C][C]7819.1[/C][C]7839.44103951596[/C][C]2.68649137084285[/C][C]7796.0724691132[/C][C]20.3410395159581[/C][/ROW]
[ROW][C]48[/C][C]7849.1[/C][C]7880.7133147116[/C][C]8.49879360004285[/C][C]7808.98789168835[/C][C]31.6133147116043[/C][/ROW]
[ROW][C]49[/C][C]7757.8[/C][C]7698.70613775959[/C][C]-5.00945202309737[/C][C]7821.90331426351[/C][C]-59.0938622404101[/C][/ROW]
[ROW][C]50[/C][C]7823[/C][C]7819.43756412027[/C][C]-5.58442103821434[/C][C]7832.14685691794[/C][C]-3.56243587972676[/C][/ROW]
[ROW][C]51[/C][C]7825.6[/C][C]7816.35790611076[/C][C]-7.54830568313421[/C][C]7842.39039957237[/C][C]-9.2420938892401[/C][/ROW]
[ROW][C]52[/C][C]7827[/C][C]7798.36764205062[/C][C]4.41181360750449[/C][C]7851.22054434188[/C][C]-28.6323579493828[/C][/ROW]
[ROW][C]53[/C][C]7884.7[/C][C]7907.54404553197[/C][C]1.80526535665111[/C][C]7860.05068911138[/C][C]22.8440455319678[/C][/ROW]
[ROW][C]54[/C][C]7912[/C][C]7954.74391275128[/C][C]-1.46939325791262[/C][C]7870.72548050663[/C][C]42.7439127512798[/C][/ROW]
[ROW][C]55[/C][C]7897[/C][C]7908.28599294356[/C][C]4.31373515455472[/C][C]7881.40027190189[/C][C]11.2859929435599[/C][/ROW]
[ROW][C]56[/C][C]7881.1[/C][C]7865.09815965537[/C][C]2.15882961173058[/C][C]7894.9430107329[/C][C]-16.0018403446347[/C][/ROW]
[ROW][C]57[/C][C]7885.8[/C][C]7868.86032424393[/C][C]-5.74607380785336[/C][C]7908.48574956392[/C][C]-16.9396757560698[/C][/ROW]
[ROW][C]58[/C][C]7891.3[/C][C]7858.64523454295[/C][C]1.48271149095765[/C][C]7922.4720539661[/C][C]-32.6547654570531[/C][/ROW]
[ROW][C]59[/C][C]7920.9[/C][C]7902.65515026089[/C][C]2.68649137084285[/C][C]7936.45835836827[/C][C]-18.2448497391124[/C][/ROW]
[ROW][C]60[/C][C]7946.3[/C][C]7932.55951632205[/C][C]8.49879360004285[/C][C]7951.54169007791[/C][C]-13.7404836779488[/C][/ROW]
[ROW][C]61[/C][C]7952.3[/C][C]7942.98443023555[/C][C]-5.00945202309737[/C][C]7966.62502178754[/C][C]-9.31556976444608[/C][/ROW]
[ROW][C]62[/C][C]8001.9[/C][C]8024.44821828643[/C][C]-5.58442103821434[/C][C]7984.93620275179[/C][C]22.5482182864271[/C][/ROW]
[ROW][C]63[/C][C]8007.9[/C][C]8020.1009219671[/C][C]-7.54830568313421[/C][C]8003.24738371603[/C][C]12.2009219671045[/C][/ROW]
[ROW][C]64[/C][C]8028.1[/C][C]8028.72999423164[/C][C]4.41181360750449[/C][C]8023.05819216085[/C][C]0.629994231641831[/C][/ROW]
[ROW][C]65[/C][C]8012.5[/C][C]7980.32573403767[/C][C]1.80526535665111[/C][C]8042.86900060568[/C][C]-32.1742659623296[/C][/ROW]
[ROW][C]66[/C][C]8069.6[/C][C]8078.62230734559[/C][C]-1.46939325791262[/C][C]8062.04708591232[/C][C]9.02230734559271[/C][/ROW]
[ROW][C]67[/C][C]8082.7[/C][C]8079.86109362648[/C][C]4.31373515455472[/C][C]8081.22517121896[/C][C]-2.8389063735176[/C][/ROW]
[ROW][C]68[/C][C]8110.6[/C][C]8118.55885225902[/C][C]2.15882961173058[/C][C]8100.48231812925[/C][C]7.95885225901475[/C][/ROW]
[ROW][C]69[/C][C]8129[/C][C]8144.00660876831[/C][C]-5.74607380785336[/C][C]8119.73946503955[/C][C]15.0066087683063[/C][/ROW]
[ROW][C]70[/C][C]8149.4[/C][C]8158.40638252118[/C][C]1.48271149095765[/C][C]8138.91090598786[/C][C]9.00638252117733[/C][/ROW]
[ROW][C]71[/C][C]8139.7[/C][C]8118.63116169297[/C][C]2.68649137084285[/C][C]8158.08234693618[/C][C]-21.0688383070265[/C][/ROW]
[ROW][C]72[/C][C]8162.4[/C][C]8140.92961022401[/C][C]8.49879360004285[/C][C]8175.37159617594[/C][C]-21.4703897759873[/C][/ROW]
[ROW][C]73[/C][C]8207.7[/C][C]8227.74860660739[/C][C]-5.00945202309737[/C][C]8192.66084541571[/C][C]20.0486066073918[/C][/ROW]
[ROW][C]74[/C][C]8215.5[/C][C]8228.69759416715[/C][C]-5.58442103821434[/C][C]8207.88682687106[/C][C]13.1975941671535[/C][/ROW]
[ROW][C]75[/C][C]8244.6[/C][C]8273.63549735672[/C][C]-7.54830568313421[/C][C]8223.11280832642[/C][C]29.0354973567191[/C][/ROW]
[ROW][C]76[/C][C]8269[/C][C]8295.72210773093[/C][C]4.41181360750449[/C][C]8237.86607866157[/C][C]26.7221077309296[/C][/ROW]
[ROW][C]77[/C][C]8245.6[/C][C]8236.77538564663[/C][C]1.80526535665111[/C][C]8252.61934899672[/C][C]-8.824614353367[/C][/ROW]
[ROW][C]78[/C][C]8244.6[/C][C]8224.19451390262[/C][C]-1.46939325791262[/C][C]8266.4748793553[/C][C]-20.4054860973829[/C][/ROW]
[ROW][C]79[/C][C]8287.6[/C][C]8290.55585513157[/C][C]4.31373515455472[/C][C]8280.33040971388[/C][C]2.95585513156948[/C][/ROW]
[ROW][C]80[/C][C]8284.3[/C][C]8274.95452473979[/C][C]2.15882961173058[/C][C]8291.48664564848[/C][C]-9.34547526020651[/C][/ROW]
[ROW][C]81[/C][C]8290.6[/C][C]8284.30319222478[/C][C]-5.74607380785336[/C][C]8302.64288158308[/C][C]-6.29680777522299[/C][/ROW]
[ROW][C]82[/C][C]8325[/C][C]8336.0714508776[/C][C]1.48271149095765[/C][C]8312.44583763144[/C][C]11.0714508775982[/C][/ROW]
[ROW][C]83[/C][C]8344.2[/C][C]8363.46471494935[/C][C]2.68649137084285[/C][C]8322.24879367981[/C][C]19.2647149493478[/C][/ROW]
[ROW][C]84[/C][C]8353.6[/C][C]8366.48882375554[/C][C]8.49879360004285[/C][C]8332.21238264442[/C][C]12.8888237555384[/C][/ROW]
[ROW][C]85[/C][C]8367.8[/C][C]8398.43348041407[/C][C]-5.00945202309737[/C][C]8342.17597160903[/C][C]30.6334804140697[/C][/ROW]
[ROW][C]86[/C][C]8334.6[/C][C]8321.89439056386[/C][C]-5.58442103821434[/C][C]8352.89003047435[/C][C]-12.705609436136[/C][/ROW]
[ROW][C]87[/C][C]8330.2[/C][C]8304.34421634346[/C][C]-7.54830568313421[/C][C]8363.60408933968[/C][C]-25.8557836565415[/C][/ROW]
[ROW][C]88[/C][C]8368.2[/C][C]8356.27948011483[/C][C]4.41181360750449[/C][C]8375.70870627766[/C][C]-11.9205198851669[/C][/ROW]
[ROW][C]89[/C][C]8384.7[/C][C]8379.7814114277[/C][C]1.80526535665111[/C][C]8387.81332321565[/C][C]-4.91858857230181[/C][/ROW]
[ROW][C]90[/C][C]8351.4[/C][C]8301.44144248389[/C][C]-1.46939325791262[/C][C]8402.82795077402[/C][C]-49.9585575161127[/C][/ROW]
[ROW][C]91[/C][C]8411.4[/C][C]8400.64368651305[/C][C]4.31373515455472[/C][C]8417.8425783324[/C][C]-10.7563134869542[/C][/ROW]
[ROW][C]92[/C][C]8442.8[/C][C]8446.30470423803[/C][C]2.15882961173058[/C][C]8437.13646615024[/C][C]3.50470423803381[/C][/ROW]
[ROW][C]93[/C][C]8443.1[/C][C]8435.51571983978[/C][C]-5.74607380785336[/C][C]8456.43035396807[/C][C]-7.58428016021935[/C][/ROW]
[ROW][C]94[/C][C]8462.6[/C][C]8444.51729881019[/C][C]1.48271149095765[/C][C]8479.19998969886[/C][C]-18.0827011898145[/C][/ROW]
[ROW][C]95[/C][C]8508.5[/C][C]8512.34388319952[/C][C]2.68649137084285[/C][C]8501.96962542964[/C][C]3.84388319951904[/C][/ROW]
[ROW][C]96[/C][C]8522.7[/C][C]8512.30096494701[/C][C]8.49879360004285[/C][C]8524.60024145295[/C][C]-10.3990350529912[/C][/ROW]
[ROW][C]97[/C][C]8559.6[/C][C]8576.97859454684[/C][C]-5.00945202309737[/C][C]8547.23085747626[/C][C]17.3785945468389[/C][/ROW]
[ROW][C]98[/C][C]8556.7[/C][C]8548.90856274649[/C][C]-5.58442103821434[/C][C]8570.07585829173[/C][C]-7.79143725351059[/C][/ROW]
[ROW][C]99[/C][C]8618.9[/C][C]8652.42744657594[/C][C]-7.54830568313421[/C][C]8592.92085910719[/C][C]33.527446575943[/C][/ROW]
[ROW][C]100[/C][C]8613.2[/C][C]8606.07313692033[/C][C]4.41181360750449[/C][C]8615.91504947216[/C][C]-7.12686307966578[/C][/ROW]
[ROW][C]101[/C][C]8634[/C][C]8627.28549480622[/C][C]1.80526535665111[/C][C]8638.90923983713[/C][C]-6.71450519378413[/C][/ROW]
[ROW][C]102[/C][C]8653.4[/C][C]8646.35400373977[/C][C]-1.46939325791262[/C][C]8661.91538951814[/C][C]-7.045996260229[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299799&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299799&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
17235.67209.42017850953-5.009452023097377266.78927351357-26.1798214904675
27268.37267.54492275228-5.584421038214347274.63949828593-0.755077247719782
37271.37267.65858262483-7.548305683134217282.4897230583-3.64141737516911
47327.47359.915816390554.411813607504497290.4723700019532.5158163905471
57339.57378.739717697761.805265356651117298.4550169455939.2397176977584
67303.27301.07159604118-1.469393257912627306.79779721674-2.12840395882449
77300.77281.945687357564.313735154554727315.14057748788-18.7543126424398
87311.87297.875305772532.158829611730587323.56586461574-13.9246942274722
973297331.75492206425-5.746073807853367331.99115174362.75492206425497
107330.87319.457074295581.482711490957657340.66021421346-11.3429257044154
117328.67305.184231945842.686491370842857349.32927668332-23.4157680541612
127346.57323.459303837538.498793600042857361.04190256243-23.0406961624694
137356.97346.05492358156-5.009452023097377372.75452844153-10.8450764184372
147385.77391.18190756947-5.584421038214347385.802513468745.48190756947315
157394.97398.49780718719-7.548305683134217398.850498495953.59780718718685
167422.87429.527753339864.411813607504497411.660433052646.72775333985828
177446.67466.924367034021.805265356651117424.4703676093320.3243670340216
187441.27447.13913984383-1.469393257912627436.730253414085.93913984382925
197476.17498.896125626614.313735154554727448.9901392188422.7961256266071
207461.67461.6661645772.158829611730587459.375005811270.0661645770032919
217450.27436.38620140416-5.746073807853367469.75987240369-13.813798595841
227483.87487.388649392741.482711490957657478.72863911633.58864939274372
237479.77469.016102800252.686491370842857487.6974058289-10.6838971997468
247509.37513.163786019928.498793600042857496.937420380043.86378601991601
257518.67536.03201709192-5.009452023097377506.1774349311817.4320170919191
267495.47479.31431251865-5.584421038214347517.07010851956-16.0856874813489
277507.57494.58552357519-7.548305683134217527.96278210795-12.9144764248131
287533.87522.64970546314.411813607504497540.53848092939-11.1502945368966
297544.77534.480554892511.805265356651117553.11417975084-10.2194451074874
307564.77564.33228430762-1.469393257912627566.53710895029-0.367715692381353
317573.67562.926226695694.313735154554727579.96003814975-10.6737733043065
327604.67614.157514682742.158829611730587592.883655705539.55751468273866
337605.67611.13880054654-5.746073807853367605.807273261315.53880054654292
347619.97620.549318691621.482711490957657617.767969817420.649318691620465
3576617689.584842255622.686491370842857629.7286663735328.5848422556237
367664.17677.868129303838.498793600042857641.8330770961213.768129303834
377663.97678.87196420438-5.009452023097377653.9374878187214.9719642043819
387652.17642.47426446176-5.584421038214347667.31015657646-9.62573553824041
397632.87592.46548034894-7.548305683134217680.68282533419-40.33451965106
407677.77655.728353233194.411813607504497695.2598331593-21.9716467668086
417677.37642.957893658941.805265356651117709.83684098441-34.3421063410642
4277277731.05971576713-1.469393257912627724.409677490784.05971576713364
437746.47749.50375084834.313735154554727738.982513997153.10375084829866
447771.27786.85611803092.158829611730587753.3850523573615.6561180309045
457781.27800.35848309027-5.746073807853367767.7875907175819.1584830902702
467819.47855.387258593651.482711490957657781.9300299153935.9872585936509
477819.17839.441039515962.686491370842857796.072469113220.3410395159581
487849.17880.71331471168.498793600042857808.9878916883531.6133147116043
497757.87698.70613775959-5.009452023097377821.90331426351-59.0938622404101
5078237819.43756412027-5.584421038214347832.14685691794-3.56243587972676
517825.67816.35790611076-7.548305683134217842.39039957237-9.2420938892401
5278277798.367642050624.411813607504497851.22054434188-28.6323579493828
537884.77907.544045531971.805265356651117860.0506891113822.8440455319678
5479127954.74391275128-1.469393257912627870.7254805066342.7439127512798
5578977908.285992943564.313735154554727881.4002719018911.2859929435599
567881.17865.098159655372.158829611730587894.9430107329-16.0018403446347
577885.87868.86032424393-5.746073807853367908.48574956392-16.9396757560698
587891.37858.645234542951.482711490957657922.4720539661-32.6547654570531
597920.97902.655150260892.686491370842857936.45835836827-18.2448497391124
607946.37932.559516322058.498793600042857951.54169007791-13.7404836779488
617952.37942.98443023555-5.009452023097377966.62502178754-9.31556976444608
628001.98024.44821828643-5.584421038214347984.9362027517922.5482182864271
638007.98020.1009219671-7.548305683134218003.2473837160312.2009219671045
648028.18028.729994231644.411813607504498023.058192160850.629994231641831
658012.57980.325734037671.805265356651118042.86900060568-32.1742659623296
668069.68078.62230734559-1.469393257912628062.047085912329.02230734559271
678082.78079.861093626484.313735154554728081.22517121896-2.8389063735176
688110.68118.558852259022.158829611730588100.482318129257.95885225901475
6981298144.00660876831-5.746073807853368119.7394650395515.0066087683063
708149.48158.406382521181.482711490957658138.910905987869.00638252117733
718139.78118.631161692972.686491370842858158.08234693618-21.0688383070265
728162.48140.929610224018.498793600042858175.37159617594-21.4703897759873
738207.78227.74860660739-5.009452023097378192.6608454157120.0486066073918
748215.58228.69759416715-5.584421038214348207.8868268710613.1975941671535
758244.68273.63549735672-7.548305683134218223.1128083264229.0354973567191
7682698295.722107730934.411813607504498237.8660786615726.7221077309296
778245.68236.775385646631.805265356651118252.61934899672-8.824614353367
788244.68224.19451390262-1.469393257912628266.4748793553-20.4054860973829
798287.68290.555855131574.313735154554728280.330409713882.95585513156948
808284.38274.954524739792.158829611730588291.48664564848-9.34547526020651
818290.68284.30319222478-5.746073807853368302.64288158308-6.29680777522299
8283258336.07145087761.482711490957658312.4458376314411.0714508775982
838344.28363.464714949352.686491370842858322.2487936798119.2647149493478
848353.68366.488823755548.498793600042858332.2123826444212.8888237555384
858367.88398.43348041407-5.009452023097378342.1759716090330.6334804140697
868334.68321.89439056386-5.584421038214348352.89003047435-12.705609436136
878330.28304.34421634346-7.548305683134218363.60408933968-25.8557836565415
888368.28356.279480114834.411813607504498375.70870627766-11.9205198851669
898384.78379.78141142771.805265356651118387.81332321565-4.91858857230181
908351.48301.44144248389-1.469393257912628402.82795077402-49.9585575161127
918411.48400.643686513054.313735154554728417.8425783324-10.7563134869542
928442.88446.304704238032.158829611730588437.136466150243.50470423803381
938443.18435.51571983978-5.746073807853368456.43035396807-7.58428016021935
948462.68444.517298810191.482711490957658479.19998969886-18.0827011898145
958508.58512.343883199522.686491370842858501.969625429643.84388319951904
968522.78512.300964947018.498793600042858524.60024145295-10.3990350529912
978559.68576.97859454684-5.009452023097378547.2308574762617.3785945468389
988556.78548.90856274649-5.584421038214348570.07585829173-7.79143725351059
998618.98652.42744657594-7.548305683134218592.9208591071933.527446575943
1008613.28606.073136920334.411813607504498615.91504947216-7.12686307966578
10186348627.285494806221.805265356651118638.90923983713-6.71450519378413
1028653.48646.35400373977-1.469393257912628661.91538951814-7.045996260229



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')