Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationWed, 14 Dec 2016 22:25:52 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481751060uyvn1x9m8fwc4fd.htm/, Retrieved Fri, 01 Nov 2024 03:45:06 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299731, Retrieved Fri, 01 Nov 2024 03:45:06 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact81
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [] [2016-12-14 21:25:52] [6deb082de88ded72ec069288c69f9f98] [Current]
Feedback Forum

Post a new message
Dataseries X:
5410.4
5432.2
5452.9
5477.6
5472.5
5454.9
5446
5010.6
5395.9
5360
5336.9
5333.9
5329.6
5345.7
5353.8
5377.2
5334.1
5351.1
5001
5246.4
5230
5115.8
4972.6
5077.6
5056.9
5070.7
4799.3
5076
5021.5
5026.4
4981.9
4936.6
4901.8
4853.8
4839.2
4821.3
4840.5
4847.6
4832.3
4814.7
4806.4
4803.4
4770.3
4723.4
4667.1
4636.8
4613.2
4605.3
4590.4
4595.4
4600.1
4543.3
4596.4
4575.4
4547.9
4503.7
4446.3
4401.4
4354.3
4336.3
4300.9
4304.1
4273.2
4279.9
4243.1
4199.1
4177.6
4141.7
4088.3
4021.4
3981.2
3937.2
3893.1
3864.7
3847.8
3840.8
3828.4
3798.6
3773
3737.8
3699
3674
3648.8
3645.6
3331
3674.7
3714.5
3739.7
3759.7
3708.6
3717.3
3705.3
3612.8
3665
3670.8
3687.6
3708.2
3737.2
3748.7
3785.3
3787.1
3785.8
3749.7
3716.3
3650
3096.9
3703.2
3716
3736.9
3771.9
3704
3824.2
3733.5
3827.5
3827.6
3696.5
3675.8
3757.5
3753.3
3418.7
3772.9




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299731&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299731&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299731&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.391151156030447
beta0.0905130432648442
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.391151156030447 \tabularnewline
beta & 0.0905130432648442 \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299731&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.391151156030447[/C][/ROW]
[ROW][C]beta[/C][C]0.0905130432648442[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299731&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299731&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.391151156030447
beta0.0905130432648442
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
35452.95454-1.10000000000036
45477.65475.330789018712.26921098129242
55472.55498.05978859204-25.5597885920433
65454.95508.99851686048-54.0985168604775
754465506.85896945493-60.8589694549337
85010.65499.92039511486-489.320395114856
95395.95308.0646017967787.8353982032331
1053605345.0737134091514.9262865908522
115336.95354.09279618154-17.1927961815381
125333.95349.93976400093-16.0397640009351
135329.65345.66986537069-16.0698653706886
145345.75340.819250517474.88074948252688
155353.85344.336292312299.46370768770612
165377.25349.981019278227.2189807217965
175334.15363.53441027289-29.4344102728928
185351.15353.88565773962-2.78565773961509
1950015354.5619713557-353.561971355698
205246.45205.5141168280440.885883171959
2152305212.2025319101617.7974680898351
225115.85210.4899933124-94.6899933124032
234972.65161.42542296892-188.825422968919
245077.65068.854442061048.74555793895706
255056.95053.873208928573.02679107142467
265070.75036.7622348879633.9377651120358
274799.35032.94366626717-233.643666267174
2850764916.18832529683159.811674703165
295021.54958.9915133129962.5084866870075
305026.44965.9475149105460.4524850894559
314981.94974.239585906437.66041409356876
324936.64962.15318876008-25.5531887600782
334901.84936.17056017327-34.3705601732745
344853.84905.52214157706-51.7221415770564
354839.24866.25544659516-27.0554465951573
364821.34835.67927922327-14.3792792232734
374840.54809.5523213234230.9476786765772
384847.64802.2507357333545.3492642666461
394832.34802.1879051138330.1120948861708
404814.74797.2311351606717.4688648393276
414806.44787.9474237671518.452576232854
424803.44779.7017924259123.6982075740907
434770.34774.34701386012-4.04701386011584
444723.44757.99637823804-34.5963782380386
454667.14728.47146350921-61.3714635092128
464636.84686.30063065306-49.5006306530631
474613.24647.02055352913-33.8205535291327
484605.34612.67636430094-7.37636430094244
494590.44588.414695381421.98530461857627
504595.44567.8851423657527.5148576342535
514600.14558.3156472904541.7843527095501
524543.34555.80702669582-12.5070266958228
534596.44531.6194679903264.7805320096813
544575.44539.9565354108135.4434645891915
554547.94538.07322539329.82677460680316
564503.74526.5178273698-22.817827369804
574446.34501.38560676149-55.085606761485
584401.44461.6815406127-60.2815406127047
594354.34417.81085429772-63.5108542977196
604336.34370.42846203723-34.1284620372317
614300.94333.33073279894-32.4307327989427
624304.14295.748885521288.35111447871714
634273.24274.41457015926-1.21457015925535
644279.94249.2956252090330.6043747909689
654243.14237.706223260265.39377673974195
664199.14216.44662952962-17.3466295296193
674177.64185.67795464302-8.07795464302126
684141.74158.24873847299-16.5487384729895
694088.34126.92026921987-38.6202692198667
704021.44085.59117231633-64.191172316333
713981.24031.9873447708-50.7873447708021
723937.23981.82835041358-44.6283504135831
733893.13932.49841913786-39.3984191378568
743864.73883.81930880443-19.1193088044292
753847.83842.395490530025.4045094699768
763840.83810.7555348986230.0444651013754
773828.43789.8172290972238.5827709027808
783798.63773.5846867630125.0153132369906
7937733752.9308668703120.069133129693
803737.83731.052876149666.74712385033718
8136993704.20284317092-5.20284317092319
8236743672.494363853021.5056361469783
833648.83643.463219941525.33678005847878
843645.63616.1195772634729.4804227365348
8533313599.26348151528-268.263481515281
863674.73456.44683759986218.253162400137
873714.53511.65883778183202.84116221817
883739.73568.02386188464171.67613811536
893759.73618.27672110411141.423278895888
903708.63661.703129044646.8968709554006
913717.33669.8157732649547.48422673505
923705.33679.8393073080725.4606926919287
933612.83682.14972808183-69.3497280818256
9436653644.9196658706220.0803341293804
953670.83643.3812056795127.4187943204893
963687.63645.6839353883941.9160646116056
973708.23655.1412972821953.0587027178121
983737.23670.8356201999766.3643798000298
993748.73694.0840572748354.6159427251682
1003785.33714.6707178174270.6292821825755
1013787.13744.0215935898543.0784064101476
1023785.83764.1210724817421.6789275182578
1033749.73776.61764731929-26.9176473192879
1043716.33769.15261576676-52.8526157667579
10536503749.6718824373-99.6718824373006
1063096.93708.34892744083-611.448927440832
1073703.23445.19587970597258.004120294029
10837163531.26484721214184.735152787865
1093736.93595.21498873099141.685011269007
1103771.93647.34227365203124.557726347968
11137043697.180078084276.81992191572681
1123824.23701.20605863973122.993941360271
1133733.53755.02815332543-21.5281533254274
1143827.53751.5580748021775.9419251978261
1153827.63788.902199469738.6978005303008
1163696.53813.04830954193-116.548309541929
1173675.83772.34341502977-96.5434150297697
1183757.53736.0454078887721.4545921112335
1193753.33746.662042069026.63795793098006
1203418.73751.71814479242-333.01814479242
1213772.93612.12710213697160.77289786303

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
3 & 5452.9 & 5454 & -1.10000000000036 \tabularnewline
4 & 5477.6 & 5475.33078901871 & 2.26921098129242 \tabularnewline
5 & 5472.5 & 5498.05978859204 & -25.5597885920433 \tabularnewline
6 & 5454.9 & 5508.99851686048 & -54.0985168604775 \tabularnewline
7 & 5446 & 5506.85896945493 & -60.8589694549337 \tabularnewline
8 & 5010.6 & 5499.92039511486 & -489.320395114856 \tabularnewline
9 & 5395.9 & 5308.06460179677 & 87.8353982032331 \tabularnewline
10 & 5360 & 5345.07371340915 & 14.9262865908522 \tabularnewline
11 & 5336.9 & 5354.09279618154 & -17.1927961815381 \tabularnewline
12 & 5333.9 & 5349.93976400093 & -16.0397640009351 \tabularnewline
13 & 5329.6 & 5345.66986537069 & -16.0698653706886 \tabularnewline
14 & 5345.7 & 5340.81925051747 & 4.88074948252688 \tabularnewline
15 & 5353.8 & 5344.33629231229 & 9.46370768770612 \tabularnewline
16 & 5377.2 & 5349.9810192782 & 27.2189807217965 \tabularnewline
17 & 5334.1 & 5363.53441027289 & -29.4344102728928 \tabularnewline
18 & 5351.1 & 5353.88565773962 & -2.78565773961509 \tabularnewline
19 & 5001 & 5354.5619713557 & -353.561971355698 \tabularnewline
20 & 5246.4 & 5205.51411682804 & 40.885883171959 \tabularnewline
21 & 5230 & 5212.20253191016 & 17.7974680898351 \tabularnewline
22 & 5115.8 & 5210.4899933124 & -94.6899933124032 \tabularnewline
23 & 4972.6 & 5161.42542296892 & -188.825422968919 \tabularnewline
24 & 5077.6 & 5068.85444206104 & 8.74555793895706 \tabularnewline
25 & 5056.9 & 5053.87320892857 & 3.02679107142467 \tabularnewline
26 & 5070.7 & 5036.76223488796 & 33.9377651120358 \tabularnewline
27 & 4799.3 & 5032.94366626717 & -233.643666267174 \tabularnewline
28 & 5076 & 4916.18832529683 & 159.811674703165 \tabularnewline
29 & 5021.5 & 4958.99151331299 & 62.5084866870075 \tabularnewline
30 & 5026.4 & 4965.94751491054 & 60.4524850894559 \tabularnewline
31 & 4981.9 & 4974.23958590643 & 7.66041409356876 \tabularnewline
32 & 4936.6 & 4962.15318876008 & -25.5531887600782 \tabularnewline
33 & 4901.8 & 4936.17056017327 & -34.3705601732745 \tabularnewline
34 & 4853.8 & 4905.52214157706 & -51.7221415770564 \tabularnewline
35 & 4839.2 & 4866.25544659516 & -27.0554465951573 \tabularnewline
36 & 4821.3 & 4835.67927922327 & -14.3792792232734 \tabularnewline
37 & 4840.5 & 4809.55232132342 & 30.9476786765772 \tabularnewline
38 & 4847.6 & 4802.25073573335 & 45.3492642666461 \tabularnewline
39 & 4832.3 & 4802.18790511383 & 30.1120948861708 \tabularnewline
40 & 4814.7 & 4797.23113516067 & 17.4688648393276 \tabularnewline
41 & 4806.4 & 4787.94742376715 & 18.452576232854 \tabularnewline
42 & 4803.4 & 4779.70179242591 & 23.6982075740907 \tabularnewline
43 & 4770.3 & 4774.34701386012 & -4.04701386011584 \tabularnewline
44 & 4723.4 & 4757.99637823804 & -34.5963782380386 \tabularnewline
45 & 4667.1 & 4728.47146350921 & -61.3714635092128 \tabularnewline
46 & 4636.8 & 4686.30063065306 & -49.5006306530631 \tabularnewline
47 & 4613.2 & 4647.02055352913 & -33.8205535291327 \tabularnewline
48 & 4605.3 & 4612.67636430094 & -7.37636430094244 \tabularnewline
49 & 4590.4 & 4588.41469538142 & 1.98530461857627 \tabularnewline
50 & 4595.4 & 4567.88514236575 & 27.5148576342535 \tabularnewline
51 & 4600.1 & 4558.31564729045 & 41.7843527095501 \tabularnewline
52 & 4543.3 & 4555.80702669582 & -12.5070266958228 \tabularnewline
53 & 4596.4 & 4531.61946799032 & 64.7805320096813 \tabularnewline
54 & 4575.4 & 4539.95653541081 & 35.4434645891915 \tabularnewline
55 & 4547.9 & 4538.0732253932 & 9.82677460680316 \tabularnewline
56 & 4503.7 & 4526.5178273698 & -22.817827369804 \tabularnewline
57 & 4446.3 & 4501.38560676149 & -55.085606761485 \tabularnewline
58 & 4401.4 & 4461.6815406127 & -60.2815406127047 \tabularnewline
59 & 4354.3 & 4417.81085429772 & -63.5108542977196 \tabularnewline
60 & 4336.3 & 4370.42846203723 & -34.1284620372317 \tabularnewline
61 & 4300.9 & 4333.33073279894 & -32.4307327989427 \tabularnewline
62 & 4304.1 & 4295.74888552128 & 8.35111447871714 \tabularnewline
63 & 4273.2 & 4274.41457015926 & -1.21457015925535 \tabularnewline
64 & 4279.9 & 4249.29562520903 & 30.6043747909689 \tabularnewline
65 & 4243.1 & 4237.70622326026 & 5.39377673974195 \tabularnewline
66 & 4199.1 & 4216.44662952962 & -17.3466295296193 \tabularnewline
67 & 4177.6 & 4185.67795464302 & -8.07795464302126 \tabularnewline
68 & 4141.7 & 4158.24873847299 & -16.5487384729895 \tabularnewline
69 & 4088.3 & 4126.92026921987 & -38.6202692198667 \tabularnewline
70 & 4021.4 & 4085.59117231633 & -64.191172316333 \tabularnewline
71 & 3981.2 & 4031.9873447708 & -50.7873447708021 \tabularnewline
72 & 3937.2 & 3981.82835041358 & -44.6283504135831 \tabularnewline
73 & 3893.1 & 3932.49841913786 & -39.3984191378568 \tabularnewline
74 & 3864.7 & 3883.81930880443 & -19.1193088044292 \tabularnewline
75 & 3847.8 & 3842.39549053002 & 5.4045094699768 \tabularnewline
76 & 3840.8 & 3810.75553489862 & 30.0444651013754 \tabularnewline
77 & 3828.4 & 3789.81722909722 & 38.5827709027808 \tabularnewline
78 & 3798.6 & 3773.58468676301 & 25.0153132369906 \tabularnewline
79 & 3773 & 3752.93086687031 & 20.069133129693 \tabularnewline
80 & 3737.8 & 3731.05287614966 & 6.74712385033718 \tabularnewline
81 & 3699 & 3704.20284317092 & -5.20284317092319 \tabularnewline
82 & 3674 & 3672.49436385302 & 1.5056361469783 \tabularnewline
83 & 3648.8 & 3643.46321994152 & 5.33678005847878 \tabularnewline
84 & 3645.6 & 3616.11957726347 & 29.4804227365348 \tabularnewline
85 & 3331 & 3599.26348151528 & -268.263481515281 \tabularnewline
86 & 3674.7 & 3456.44683759986 & 218.253162400137 \tabularnewline
87 & 3714.5 & 3511.65883778183 & 202.84116221817 \tabularnewline
88 & 3739.7 & 3568.02386188464 & 171.67613811536 \tabularnewline
89 & 3759.7 & 3618.27672110411 & 141.423278895888 \tabularnewline
90 & 3708.6 & 3661.7031290446 & 46.8968709554006 \tabularnewline
91 & 3717.3 & 3669.81577326495 & 47.48422673505 \tabularnewline
92 & 3705.3 & 3679.83930730807 & 25.4606926919287 \tabularnewline
93 & 3612.8 & 3682.14972808183 & -69.3497280818256 \tabularnewline
94 & 3665 & 3644.91966587062 & 20.0803341293804 \tabularnewline
95 & 3670.8 & 3643.38120567951 & 27.4187943204893 \tabularnewline
96 & 3687.6 & 3645.68393538839 & 41.9160646116056 \tabularnewline
97 & 3708.2 & 3655.14129728219 & 53.0587027178121 \tabularnewline
98 & 3737.2 & 3670.83562019997 & 66.3643798000298 \tabularnewline
99 & 3748.7 & 3694.08405727483 & 54.6159427251682 \tabularnewline
100 & 3785.3 & 3714.67071781742 & 70.6292821825755 \tabularnewline
101 & 3787.1 & 3744.02159358985 & 43.0784064101476 \tabularnewline
102 & 3785.8 & 3764.12107248174 & 21.6789275182578 \tabularnewline
103 & 3749.7 & 3776.61764731929 & -26.9176473192879 \tabularnewline
104 & 3716.3 & 3769.15261576676 & -52.8526157667579 \tabularnewline
105 & 3650 & 3749.6718824373 & -99.6718824373006 \tabularnewline
106 & 3096.9 & 3708.34892744083 & -611.448927440832 \tabularnewline
107 & 3703.2 & 3445.19587970597 & 258.004120294029 \tabularnewline
108 & 3716 & 3531.26484721214 & 184.735152787865 \tabularnewline
109 & 3736.9 & 3595.21498873099 & 141.685011269007 \tabularnewline
110 & 3771.9 & 3647.34227365203 & 124.557726347968 \tabularnewline
111 & 3704 & 3697.18007808427 & 6.81992191572681 \tabularnewline
112 & 3824.2 & 3701.20605863973 & 122.993941360271 \tabularnewline
113 & 3733.5 & 3755.02815332543 & -21.5281533254274 \tabularnewline
114 & 3827.5 & 3751.55807480217 & 75.9419251978261 \tabularnewline
115 & 3827.6 & 3788.9021994697 & 38.6978005303008 \tabularnewline
116 & 3696.5 & 3813.04830954193 & -116.548309541929 \tabularnewline
117 & 3675.8 & 3772.34341502977 & -96.5434150297697 \tabularnewline
118 & 3757.5 & 3736.04540788877 & 21.4545921112335 \tabularnewline
119 & 3753.3 & 3746.66204206902 & 6.63795793098006 \tabularnewline
120 & 3418.7 & 3751.71814479242 & -333.01814479242 \tabularnewline
121 & 3772.9 & 3612.12710213697 & 160.77289786303 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299731&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]3[/C][C]5452.9[/C][C]5454[/C][C]-1.10000000000036[/C][/ROW]
[ROW][C]4[/C][C]5477.6[/C][C]5475.33078901871[/C][C]2.26921098129242[/C][/ROW]
[ROW][C]5[/C][C]5472.5[/C][C]5498.05978859204[/C][C]-25.5597885920433[/C][/ROW]
[ROW][C]6[/C][C]5454.9[/C][C]5508.99851686048[/C][C]-54.0985168604775[/C][/ROW]
[ROW][C]7[/C][C]5446[/C][C]5506.85896945493[/C][C]-60.8589694549337[/C][/ROW]
[ROW][C]8[/C][C]5010.6[/C][C]5499.92039511486[/C][C]-489.320395114856[/C][/ROW]
[ROW][C]9[/C][C]5395.9[/C][C]5308.06460179677[/C][C]87.8353982032331[/C][/ROW]
[ROW][C]10[/C][C]5360[/C][C]5345.07371340915[/C][C]14.9262865908522[/C][/ROW]
[ROW][C]11[/C][C]5336.9[/C][C]5354.09279618154[/C][C]-17.1927961815381[/C][/ROW]
[ROW][C]12[/C][C]5333.9[/C][C]5349.93976400093[/C][C]-16.0397640009351[/C][/ROW]
[ROW][C]13[/C][C]5329.6[/C][C]5345.66986537069[/C][C]-16.0698653706886[/C][/ROW]
[ROW][C]14[/C][C]5345.7[/C][C]5340.81925051747[/C][C]4.88074948252688[/C][/ROW]
[ROW][C]15[/C][C]5353.8[/C][C]5344.33629231229[/C][C]9.46370768770612[/C][/ROW]
[ROW][C]16[/C][C]5377.2[/C][C]5349.9810192782[/C][C]27.2189807217965[/C][/ROW]
[ROW][C]17[/C][C]5334.1[/C][C]5363.53441027289[/C][C]-29.4344102728928[/C][/ROW]
[ROW][C]18[/C][C]5351.1[/C][C]5353.88565773962[/C][C]-2.78565773961509[/C][/ROW]
[ROW][C]19[/C][C]5001[/C][C]5354.5619713557[/C][C]-353.561971355698[/C][/ROW]
[ROW][C]20[/C][C]5246.4[/C][C]5205.51411682804[/C][C]40.885883171959[/C][/ROW]
[ROW][C]21[/C][C]5230[/C][C]5212.20253191016[/C][C]17.7974680898351[/C][/ROW]
[ROW][C]22[/C][C]5115.8[/C][C]5210.4899933124[/C][C]-94.6899933124032[/C][/ROW]
[ROW][C]23[/C][C]4972.6[/C][C]5161.42542296892[/C][C]-188.825422968919[/C][/ROW]
[ROW][C]24[/C][C]5077.6[/C][C]5068.85444206104[/C][C]8.74555793895706[/C][/ROW]
[ROW][C]25[/C][C]5056.9[/C][C]5053.87320892857[/C][C]3.02679107142467[/C][/ROW]
[ROW][C]26[/C][C]5070.7[/C][C]5036.76223488796[/C][C]33.9377651120358[/C][/ROW]
[ROW][C]27[/C][C]4799.3[/C][C]5032.94366626717[/C][C]-233.643666267174[/C][/ROW]
[ROW][C]28[/C][C]5076[/C][C]4916.18832529683[/C][C]159.811674703165[/C][/ROW]
[ROW][C]29[/C][C]5021.5[/C][C]4958.99151331299[/C][C]62.5084866870075[/C][/ROW]
[ROW][C]30[/C][C]5026.4[/C][C]4965.94751491054[/C][C]60.4524850894559[/C][/ROW]
[ROW][C]31[/C][C]4981.9[/C][C]4974.23958590643[/C][C]7.66041409356876[/C][/ROW]
[ROW][C]32[/C][C]4936.6[/C][C]4962.15318876008[/C][C]-25.5531887600782[/C][/ROW]
[ROW][C]33[/C][C]4901.8[/C][C]4936.17056017327[/C][C]-34.3705601732745[/C][/ROW]
[ROW][C]34[/C][C]4853.8[/C][C]4905.52214157706[/C][C]-51.7221415770564[/C][/ROW]
[ROW][C]35[/C][C]4839.2[/C][C]4866.25544659516[/C][C]-27.0554465951573[/C][/ROW]
[ROW][C]36[/C][C]4821.3[/C][C]4835.67927922327[/C][C]-14.3792792232734[/C][/ROW]
[ROW][C]37[/C][C]4840.5[/C][C]4809.55232132342[/C][C]30.9476786765772[/C][/ROW]
[ROW][C]38[/C][C]4847.6[/C][C]4802.25073573335[/C][C]45.3492642666461[/C][/ROW]
[ROW][C]39[/C][C]4832.3[/C][C]4802.18790511383[/C][C]30.1120948861708[/C][/ROW]
[ROW][C]40[/C][C]4814.7[/C][C]4797.23113516067[/C][C]17.4688648393276[/C][/ROW]
[ROW][C]41[/C][C]4806.4[/C][C]4787.94742376715[/C][C]18.452576232854[/C][/ROW]
[ROW][C]42[/C][C]4803.4[/C][C]4779.70179242591[/C][C]23.6982075740907[/C][/ROW]
[ROW][C]43[/C][C]4770.3[/C][C]4774.34701386012[/C][C]-4.04701386011584[/C][/ROW]
[ROW][C]44[/C][C]4723.4[/C][C]4757.99637823804[/C][C]-34.5963782380386[/C][/ROW]
[ROW][C]45[/C][C]4667.1[/C][C]4728.47146350921[/C][C]-61.3714635092128[/C][/ROW]
[ROW][C]46[/C][C]4636.8[/C][C]4686.30063065306[/C][C]-49.5006306530631[/C][/ROW]
[ROW][C]47[/C][C]4613.2[/C][C]4647.02055352913[/C][C]-33.8205535291327[/C][/ROW]
[ROW][C]48[/C][C]4605.3[/C][C]4612.67636430094[/C][C]-7.37636430094244[/C][/ROW]
[ROW][C]49[/C][C]4590.4[/C][C]4588.41469538142[/C][C]1.98530461857627[/C][/ROW]
[ROW][C]50[/C][C]4595.4[/C][C]4567.88514236575[/C][C]27.5148576342535[/C][/ROW]
[ROW][C]51[/C][C]4600.1[/C][C]4558.31564729045[/C][C]41.7843527095501[/C][/ROW]
[ROW][C]52[/C][C]4543.3[/C][C]4555.80702669582[/C][C]-12.5070266958228[/C][/ROW]
[ROW][C]53[/C][C]4596.4[/C][C]4531.61946799032[/C][C]64.7805320096813[/C][/ROW]
[ROW][C]54[/C][C]4575.4[/C][C]4539.95653541081[/C][C]35.4434645891915[/C][/ROW]
[ROW][C]55[/C][C]4547.9[/C][C]4538.0732253932[/C][C]9.82677460680316[/C][/ROW]
[ROW][C]56[/C][C]4503.7[/C][C]4526.5178273698[/C][C]-22.817827369804[/C][/ROW]
[ROW][C]57[/C][C]4446.3[/C][C]4501.38560676149[/C][C]-55.085606761485[/C][/ROW]
[ROW][C]58[/C][C]4401.4[/C][C]4461.6815406127[/C][C]-60.2815406127047[/C][/ROW]
[ROW][C]59[/C][C]4354.3[/C][C]4417.81085429772[/C][C]-63.5108542977196[/C][/ROW]
[ROW][C]60[/C][C]4336.3[/C][C]4370.42846203723[/C][C]-34.1284620372317[/C][/ROW]
[ROW][C]61[/C][C]4300.9[/C][C]4333.33073279894[/C][C]-32.4307327989427[/C][/ROW]
[ROW][C]62[/C][C]4304.1[/C][C]4295.74888552128[/C][C]8.35111447871714[/C][/ROW]
[ROW][C]63[/C][C]4273.2[/C][C]4274.41457015926[/C][C]-1.21457015925535[/C][/ROW]
[ROW][C]64[/C][C]4279.9[/C][C]4249.29562520903[/C][C]30.6043747909689[/C][/ROW]
[ROW][C]65[/C][C]4243.1[/C][C]4237.70622326026[/C][C]5.39377673974195[/C][/ROW]
[ROW][C]66[/C][C]4199.1[/C][C]4216.44662952962[/C][C]-17.3466295296193[/C][/ROW]
[ROW][C]67[/C][C]4177.6[/C][C]4185.67795464302[/C][C]-8.07795464302126[/C][/ROW]
[ROW][C]68[/C][C]4141.7[/C][C]4158.24873847299[/C][C]-16.5487384729895[/C][/ROW]
[ROW][C]69[/C][C]4088.3[/C][C]4126.92026921987[/C][C]-38.6202692198667[/C][/ROW]
[ROW][C]70[/C][C]4021.4[/C][C]4085.59117231633[/C][C]-64.191172316333[/C][/ROW]
[ROW][C]71[/C][C]3981.2[/C][C]4031.9873447708[/C][C]-50.7873447708021[/C][/ROW]
[ROW][C]72[/C][C]3937.2[/C][C]3981.82835041358[/C][C]-44.6283504135831[/C][/ROW]
[ROW][C]73[/C][C]3893.1[/C][C]3932.49841913786[/C][C]-39.3984191378568[/C][/ROW]
[ROW][C]74[/C][C]3864.7[/C][C]3883.81930880443[/C][C]-19.1193088044292[/C][/ROW]
[ROW][C]75[/C][C]3847.8[/C][C]3842.39549053002[/C][C]5.4045094699768[/C][/ROW]
[ROW][C]76[/C][C]3840.8[/C][C]3810.75553489862[/C][C]30.0444651013754[/C][/ROW]
[ROW][C]77[/C][C]3828.4[/C][C]3789.81722909722[/C][C]38.5827709027808[/C][/ROW]
[ROW][C]78[/C][C]3798.6[/C][C]3773.58468676301[/C][C]25.0153132369906[/C][/ROW]
[ROW][C]79[/C][C]3773[/C][C]3752.93086687031[/C][C]20.069133129693[/C][/ROW]
[ROW][C]80[/C][C]3737.8[/C][C]3731.05287614966[/C][C]6.74712385033718[/C][/ROW]
[ROW][C]81[/C][C]3699[/C][C]3704.20284317092[/C][C]-5.20284317092319[/C][/ROW]
[ROW][C]82[/C][C]3674[/C][C]3672.49436385302[/C][C]1.5056361469783[/C][/ROW]
[ROW][C]83[/C][C]3648.8[/C][C]3643.46321994152[/C][C]5.33678005847878[/C][/ROW]
[ROW][C]84[/C][C]3645.6[/C][C]3616.11957726347[/C][C]29.4804227365348[/C][/ROW]
[ROW][C]85[/C][C]3331[/C][C]3599.26348151528[/C][C]-268.263481515281[/C][/ROW]
[ROW][C]86[/C][C]3674.7[/C][C]3456.44683759986[/C][C]218.253162400137[/C][/ROW]
[ROW][C]87[/C][C]3714.5[/C][C]3511.65883778183[/C][C]202.84116221817[/C][/ROW]
[ROW][C]88[/C][C]3739.7[/C][C]3568.02386188464[/C][C]171.67613811536[/C][/ROW]
[ROW][C]89[/C][C]3759.7[/C][C]3618.27672110411[/C][C]141.423278895888[/C][/ROW]
[ROW][C]90[/C][C]3708.6[/C][C]3661.7031290446[/C][C]46.8968709554006[/C][/ROW]
[ROW][C]91[/C][C]3717.3[/C][C]3669.81577326495[/C][C]47.48422673505[/C][/ROW]
[ROW][C]92[/C][C]3705.3[/C][C]3679.83930730807[/C][C]25.4606926919287[/C][/ROW]
[ROW][C]93[/C][C]3612.8[/C][C]3682.14972808183[/C][C]-69.3497280818256[/C][/ROW]
[ROW][C]94[/C][C]3665[/C][C]3644.91966587062[/C][C]20.0803341293804[/C][/ROW]
[ROW][C]95[/C][C]3670.8[/C][C]3643.38120567951[/C][C]27.4187943204893[/C][/ROW]
[ROW][C]96[/C][C]3687.6[/C][C]3645.68393538839[/C][C]41.9160646116056[/C][/ROW]
[ROW][C]97[/C][C]3708.2[/C][C]3655.14129728219[/C][C]53.0587027178121[/C][/ROW]
[ROW][C]98[/C][C]3737.2[/C][C]3670.83562019997[/C][C]66.3643798000298[/C][/ROW]
[ROW][C]99[/C][C]3748.7[/C][C]3694.08405727483[/C][C]54.6159427251682[/C][/ROW]
[ROW][C]100[/C][C]3785.3[/C][C]3714.67071781742[/C][C]70.6292821825755[/C][/ROW]
[ROW][C]101[/C][C]3787.1[/C][C]3744.02159358985[/C][C]43.0784064101476[/C][/ROW]
[ROW][C]102[/C][C]3785.8[/C][C]3764.12107248174[/C][C]21.6789275182578[/C][/ROW]
[ROW][C]103[/C][C]3749.7[/C][C]3776.61764731929[/C][C]-26.9176473192879[/C][/ROW]
[ROW][C]104[/C][C]3716.3[/C][C]3769.15261576676[/C][C]-52.8526157667579[/C][/ROW]
[ROW][C]105[/C][C]3650[/C][C]3749.6718824373[/C][C]-99.6718824373006[/C][/ROW]
[ROW][C]106[/C][C]3096.9[/C][C]3708.34892744083[/C][C]-611.448927440832[/C][/ROW]
[ROW][C]107[/C][C]3703.2[/C][C]3445.19587970597[/C][C]258.004120294029[/C][/ROW]
[ROW][C]108[/C][C]3716[/C][C]3531.26484721214[/C][C]184.735152787865[/C][/ROW]
[ROW][C]109[/C][C]3736.9[/C][C]3595.21498873099[/C][C]141.685011269007[/C][/ROW]
[ROW][C]110[/C][C]3771.9[/C][C]3647.34227365203[/C][C]124.557726347968[/C][/ROW]
[ROW][C]111[/C][C]3704[/C][C]3697.18007808427[/C][C]6.81992191572681[/C][/ROW]
[ROW][C]112[/C][C]3824.2[/C][C]3701.20605863973[/C][C]122.993941360271[/C][/ROW]
[ROW][C]113[/C][C]3733.5[/C][C]3755.02815332543[/C][C]-21.5281533254274[/C][/ROW]
[ROW][C]114[/C][C]3827.5[/C][C]3751.55807480217[/C][C]75.9419251978261[/C][/ROW]
[ROW][C]115[/C][C]3827.6[/C][C]3788.9021994697[/C][C]38.6978005303008[/C][/ROW]
[ROW][C]116[/C][C]3696.5[/C][C]3813.04830954193[/C][C]-116.548309541929[/C][/ROW]
[ROW][C]117[/C][C]3675.8[/C][C]3772.34341502977[/C][C]-96.5434150297697[/C][/ROW]
[ROW][C]118[/C][C]3757.5[/C][C]3736.04540788877[/C][C]21.4545921112335[/C][/ROW]
[ROW][C]119[/C][C]3753.3[/C][C]3746.66204206902[/C][C]6.63795793098006[/C][/ROW]
[ROW][C]120[/C][C]3418.7[/C][C]3751.71814479242[/C][C]-333.01814479242[/C][/ROW]
[ROW][C]121[/C][C]3772.9[/C][C]3612.12710213697[/C][C]160.77289786303[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299731&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299731&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
35452.95454-1.10000000000036
45477.65475.330789018712.26921098129242
55472.55498.05978859204-25.5597885920433
65454.95508.99851686048-54.0985168604775
754465506.85896945493-60.8589694549337
85010.65499.92039511486-489.320395114856
95395.95308.0646017967787.8353982032331
1053605345.0737134091514.9262865908522
115336.95354.09279618154-17.1927961815381
125333.95349.93976400093-16.0397640009351
135329.65345.66986537069-16.0698653706886
145345.75340.819250517474.88074948252688
155353.85344.336292312299.46370768770612
165377.25349.981019278227.2189807217965
175334.15363.53441027289-29.4344102728928
185351.15353.88565773962-2.78565773961509
1950015354.5619713557-353.561971355698
205246.45205.5141168280440.885883171959
2152305212.2025319101617.7974680898351
225115.85210.4899933124-94.6899933124032
234972.65161.42542296892-188.825422968919
245077.65068.854442061048.74555793895706
255056.95053.873208928573.02679107142467
265070.75036.7622348879633.9377651120358
274799.35032.94366626717-233.643666267174
2850764916.18832529683159.811674703165
295021.54958.9915133129962.5084866870075
305026.44965.9475149105460.4524850894559
314981.94974.239585906437.66041409356876
324936.64962.15318876008-25.5531887600782
334901.84936.17056017327-34.3705601732745
344853.84905.52214157706-51.7221415770564
354839.24866.25544659516-27.0554465951573
364821.34835.67927922327-14.3792792232734
374840.54809.5523213234230.9476786765772
384847.64802.2507357333545.3492642666461
394832.34802.1879051138330.1120948861708
404814.74797.2311351606717.4688648393276
414806.44787.9474237671518.452576232854
424803.44779.7017924259123.6982075740907
434770.34774.34701386012-4.04701386011584
444723.44757.99637823804-34.5963782380386
454667.14728.47146350921-61.3714635092128
464636.84686.30063065306-49.5006306530631
474613.24647.02055352913-33.8205535291327
484605.34612.67636430094-7.37636430094244
494590.44588.414695381421.98530461857627
504595.44567.8851423657527.5148576342535
514600.14558.3156472904541.7843527095501
524543.34555.80702669582-12.5070266958228
534596.44531.6194679903264.7805320096813
544575.44539.9565354108135.4434645891915
554547.94538.07322539329.82677460680316
564503.74526.5178273698-22.817827369804
574446.34501.38560676149-55.085606761485
584401.44461.6815406127-60.2815406127047
594354.34417.81085429772-63.5108542977196
604336.34370.42846203723-34.1284620372317
614300.94333.33073279894-32.4307327989427
624304.14295.748885521288.35111447871714
634273.24274.41457015926-1.21457015925535
644279.94249.2956252090330.6043747909689
654243.14237.706223260265.39377673974195
664199.14216.44662952962-17.3466295296193
674177.64185.67795464302-8.07795464302126
684141.74158.24873847299-16.5487384729895
694088.34126.92026921987-38.6202692198667
704021.44085.59117231633-64.191172316333
713981.24031.9873447708-50.7873447708021
723937.23981.82835041358-44.6283504135831
733893.13932.49841913786-39.3984191378568
743864.73883.81930880443-19.1193088044292
753847.83842.395490530025.4045094699768
763840.83810.7555348986230.0444651013754
773828.43789.8172290972238.5827709027808
783798.63773.5846867630125.0153132369906
7937733752.9308668703120.069133129693
803737.83731.052876149666.74712385033718
8136993704.20284317092-5.20284317092319
8236743672.494363853021.5056361469783
833648.83643.463219941525.33678005847878
843645.63616.1195772634729.4804227365348
8533313599.26348151528-268.263481515281
863674.73456.44683759986218.253162400137
873714.53511.65883778183202.84116221817
883739.73568.02386188464171.67613811536
893759.73618.27672110411141.423278895888
903708.63661.703129044646.8968709554006
913717.33669.8157732649547.48422673505
923705.33679.8393073080725.4606926919287
933612.83682.14972808183-69.3497280818256
9436653644.9196658706220.0803341293804
953670.83643.3812056795127.4187943204893
963687.63645.6839353883941.9160646116056
973708.23655.1412972821953.0587027178121
983737.23670.8356201999766.3643798000298
993748.73694.0840572748354.6159427251682
1003785.33714.6707178174270.6292821825755
1013787.13744.0215935898543.0784064101476
1023785.83764.1210724817421.6789275182578
1033749.73776.61764731929-26.9176473192879
1043716.33769.15261576676-52.8526157667579
10536503749.6718824373-99.6718824373006
1063096.93708.34892744083-611.448927440832
1073703.23445.19587970597258.004120294029
10837163531.26484721214184.735152787865
1093736.93595.21498873099141.685011269007
1103771.93647.34227365203124.557726347968
11137043697.180078084276.81992191572681
1123824.23701.20605863973122.993941360271
1133733.53755.02815332543-21.5281533254274
1143827.53751.5580748021775.9419251978261
1153827.63788.902199469738.6978005303008
1163696.53813.04830954193-116.548309541929
1173675.83772.34341502977-96.5434150297697
1183757.53736.0454078887721.4545921112335
1193753.33746.662042069026.63795793098006
1203418.73751.71814479242-333.01814479242
1213772.93612.12710213697160.77289786303







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1223671.375045588623448.945557611853893.80453356539
1233667.736484182783425.916699385343909.55626898022
1243664.097922776943401.352641873573926.84320368031
1253660.45936137113375.373883058543945.54483968367
1263656.820799965263348.086642293693965.55495763684
1273653.182238559423319.583283205883986.78119391297
1283649.543677153593289.943609697164009.14374461001
1293645.905115747753259.236463683994032.57376781151
1303642.266554341913227.521323138514057.0117855453
1313638.627992936073194.849760778744082.4062250934
1323634.989431530233161.266713105684108.71214995478
1333631.350870124393126.811554985214135.89018526357

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
122 & 3671.37504558862 & 3448.94555761185 & 3893.80453356539 \tabularnewline
123 & 3667.73648418278 & 3425.91669938534 & 3909.55626898022 \tabularnewline
124 & 3664.09792277694 & 3401.35264187357 & 3926.84320368031 \tabularnewline
125 & 3660.4593613711 & 3375.37388305854 & 3945.54483968367 \tabularnewline
126 & 3656.82079996526 & 3348.08664229369 & 3965.55495763684 \tabularnewline
127 & 3653.18223855942 & 3319.58328320588 & 3986.78119391297 \tabularnewline
128 & 3649.54367715359 & 3289.94360969716 & 4009.14374461001 \tabularnewline
129 & 3645.90511574775 & 3259.23646368399 & 4032.57376781151 \tabularnewline
130 & 3642.26655434191 & 3227.52132313851 & 4057.0117855453 \tabularnewline
131 & 3638.62799293607 & 3194.84976077874 & 4082.4062250934 \tabularnewline
132 & 3634.98943153023 & 3161.26671310568 & 4108.71214995478 \tabularnewline
133 & 3631.35087012439 & 3126.81155498521 & 4135.89018526357 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299731&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]122[/C][C]3671.37504558862[/C][C]3448.94555761185[/C][C]3893.80453356539[/C][/ROW]
[ROW][C]123[/C][C]3667.73648418278[/C][C]3425.91669938534[/C][C]3909.55626898022[/C][/ROW]
[ROW][C]124[/C][C]3664.09792277694[/C][C]3401.35264187357[/C][C]3926.84320368031[/C][/ROW]
[ROW][C]125[/C][C]3660.4593613711[/C][C]3375.37388305854[/C][C]3945.54483968367[/C][/ROW]
[ROW][C]126[/C][C]3656.82079996526[/C][C]3348.08664229369[/C][C]3965.55495763684[/C][/ROW]
[ROW][C]127[/C][C]3653.18223855942[/C][C]3319.58328320588[/C][C]3986.78119391297[/C][/ROW]
[ROW][C]128[/C][C]3649.54367715359[/C][C]3289.94360969716[/C][C]4009.14374461001[/C][/ROW]
[ROW][C]129[/C][C]3645.90511574775[/C][C]3259.23646368399[/C][C]4032.57376781151[/C][/ROW]
[ROW][C]130[/C][C]3642.26655434191[/C][C]3227.52132313851[/C][C]4057.0117855453[/C][/ROW]
[ROW][C]131[/C][C]3638.62799293607[/C][C]3194.84976077874[/C][C]4082.4062250934[/C][/ROW]
[ROW][C]132[/C][C]3634.98943153023[/C][C]3161.26671310568[/C][C]4108.71214995478[/C][/ROW]
[ROW][C]133[/C][C]3631.35087012439[/C][C]3126.81155498521[/C][C]4135.89018526357[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299731&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299731&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1223671.375045588623448.945557611853893.80453356539
1233667.736484182783425.916699385343909.55626898022
1243664.097922776943401.352641873573926.84320368031
1253660.45936137113375.373883058543945.54483968367
1263656.820799965263348.086642293693965.55495763684
1273653.182238559423319.583283205883986.78119391297
1283649.543677153593289.943609697164009.14374461001
1293645.905115747753259.236463683994032.57376781151
1303642.266554341913227.521323138514057.0117855453
1313638.627992936073194.849760778744082.4062250934
1323634.989431530233161.266713105684108.71214995478
1333631.350870124393126.811554985214135.89018526357



Parameters (Session):
par1 = 12 ; par2 = Double ; par3 = additive ; par4 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = Double ; par3 = additive ; par4 = 12 ;
R code (references can be found in the software module):
par4 <- '12'
par3 <- 'additive'
par2 <- 'Single'
par1 <- '12'
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')