Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 14 Dec 2016 20:46:58 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481748015to6naoddc13p7cb.htm/, Retrieved Fri, 01 Nov 2024 03:42:38 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299718, Retrieved Fri, 01 Nov 2024 03:42:38 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact113
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2016-12-14 19:46:58] [c4ef4c70482680cab119953cba46aca4] [Current]
Feedback Forum

Post a new message
Dataseries X:
10	3	4	3	4
13	5	5	5	4
14	5	4	4	4
13	5	5	5	5
14	5	4	3	3
14	5	5	5	4
12	5	5	5	5
11	5	5	4	4
12	4	4	3	4
14	3	4	4	3
13	4	4	4	4
13	5	5	4	5
12	4	5	5	4
12	4	5	4	4
13	5	5	4	5
13	5	5	4	3
12	5	5	4	5
13	5	5	5	5
10	5	5	4	5
14	4	5	4	3
10	4	4	4	4
10	5	5	4	4
14	4	4	5	3
14	5	4	4	4
13	5	5	5	5
12	5	5	5	4
12	2	2	1	2
12	4	4	3	5
10	4	5	3	4
14	5	5	4	4
8	5	5	3	4
11	5	5	5	4
10	4	4	4	4
14	4	5	3	1
12	4	4	4	4
14	4	4	3	1
13	4	5	4	4
13	5	4	4	4
13	4	5	4	4
12	4	5	4	3
10	4	4	4	4
14	4	3	3	4
11	4	4	4	4
10	2	4	4	3
13	4	5	4	3
12	4	3	3	4
13	5	5	5	4
11	4	5	4	5
10	4	3	3	4
14	5	5	3	5
7	5	4	3	3
13	5	4	4	4
15	2	5	4	2
13	5	4	5	5
14	5	5	4	4
13	5	4	4	2
11	4	4	4	3
14	5	5	5	4
12	5	4	5	4
13	4	4	4	3
14	5	5	5	5
13	5	5	5	2
12	5	5	5	4
10	5	5	5	5
12	5	5	4	4
9	4	4	5	4
12	5	5	4	4
13	5	4	4	4
13	5	5	5	5
11	5	4	4	3
12	4	4	3	3
11	4	4	3	4
12	5	5	5	5
12	5	5	3	4
13	4	5	4	4
8	5	4	5	4
13	5	5	5	5
8	4	4	4	4
13	4	4	5	5
12	4	4	4	3
15	5	4	5	4
14	5	5	5	5
11	4	4	4	2
10	5	4	4	2
14	5	4	4	4
10	5	4	5	4
15	5	5	5	5
11	5	3	5	4
12	5	4	4	3
13	3	3	3	2
12	3	4	4	4
9	4	5	4	5
14	3	5	3	5
14	5	5	4	4
12	5	4	4	2
15	5	4	4	4
11	5	5	5	4
12	4	4	4	4
11	2	4	5	3




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time8 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299718&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]8 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299718&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299718&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time8 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
TVDCSUM[t] = + 10.1358 + 0.10176ITH1[t] + 0.438919ITH2[t] + 0.118707ITH3[t] -0.222245ITH4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
TVDCSUM[t] =  +  10.1358 +  0.10176ITH1[t] +  0.438919ITH2[t] +  0.118707ITH3[t] -0.222245ITH4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299718&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]TVDCSUM[t] =  +  10.1358 +  0.10176ITH1[t] +  0.438919ITH2[t] +  0.118707ITH3[t] -0.222245ITH4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299718&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299718&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
TVDCSUM[t] = + 10.1358 + 0.10176ITH1[t] + 0.438919ITH2[t] + 0.118707ITH3[t] -0.222245ITH4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+10.14 1.375+7.3710e+00 6.506e-11 3.253e-11
ITH1+0.1018 0.2577+3.9490e-01 0.6938 0.3469
ITH2+0.4389 0.3104+1.4140e+00 0.1606 0.08032
ITH3+0.1187 0.2642+4.4930e-01 0.6542 0.3271
ITH4-0.2222 0.2069-1.0740e+00 0.2855 0.1427

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +10.14 &  1.375 & +7.3710e+00 &  6.506e-11 &  3.253e-11 \tabularnewline
ITH1 & +0.1018 &  0.2577 & +3.9490e-01 &  0.6938 &  0.3469 \tabularnewline
ITH2 & +0.4389 &  0.3104 & +1.4140e+00 &  0.1606 &  0.08032 \tabularnewline
ITH3 & +0.1187 &  0.2642 & +4.4930e-01 &  0.6542 &  0.3271 \tabularnewline
ITH4 & -0.2222 &  0.2069 & -1.0740e+00 &  0.2855 &  0.1427 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299718&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+10.14[/C][C] 1.375[/C][C]+7.3710e+00[/C][C] 6.506e-11[/C][C] 3.253e-11[/C][/ROW]
[ROW][C]ITH1[/C][C]+0.1018[/C][C] 0.2577[/C][C]+3.9490e-01[/C][C] 0.6938[/C][C] 0.3469[/C][/ROW]
[ROW][C]ITH2[/C][C]+0.4389[/C][C] 0.3104[/C][C]+1.4140e+00[/C][C] 0.1606[/C][C] 0.08032[/C][/ROW]
[ROW][C]ITH3[/C][C]+0.1187[/C][C] 0.2642[/C][C]+4.4930e-01[/C][C] 0.6542[/C][C] 0.3271[/C][/ROW]
[ROW][C]ITH4[/C][C]-0.2222[/C][C] 0.2069[/C][C]-1.0740e+00[/C][C] 0.2855[/C][C] 0.1427[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299718&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299718&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+10.14 1.375+7.3710e+00 6.506e-11 3.253e-11
ITH1+0.1018 0.2577+3.9490e-01 0.6938 0.3469
ITH2+0.4389 0.3104+1.4140e+00 0.1606 0.08032
ITH3+0.1187 0.2642+4.4930e-01 0.6542 0.3271
ITH4-0.2222 0.2069-1.0740e+00 0.2855 0.1427







Multiple Linear Regression - Regression Statistics
Multiple R 0.1983
R-squared 0.03933
Adjusted R-squared-0.001549
F-TEST (value) 0.9621
F-TEST (DF numerator)4
F-TEST (DF denominator)94
p-value 0.4321
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.702
Sum Squared Residuals 272.3

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.1983 \tabularnewline
R-squared &  0.03933 \tabularnewline
Adjusted R-squared & -0.001549 \tabularnewline
F-TEST (value) &  0.9621 \tabularnewline
F-TEST (DF numerator) & 4 \tabularnewline
F-TEST (DF denominator) & 94 \tabularnewline
p-value &  0.4321 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.702 \tabularnewline
Sum Squared Residuals &  272.3 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299718&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.1983[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.03933[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.001549[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.9621[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]4[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]94[/C][/ROW]
[ROW][C]p-value[/C][C] 0.4321[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.702[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 272.3[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299718&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299718&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.1983
R-squared 0.03933
Adjusted R-squared-0.001549
F-TEST (value) 0.9621
F-TEST (DF numerator)4
F-TEST (DF denominator)94
p-value 0.4321
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.702
Sum Squared Residuals 272.3







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 10 11.66-1.664
2 13 12.54 0.4563
3 14 11.99 2.014
4 13 12.32 0.6785
5 14 12.09 1.91
6 14 12.54 1.456
7 12 12.32-0.3215
8 11 12.43-1.425
9 12 11.77 0.2344
10 14 12 1.995
11 13 11.88 1.116
12 13 12.2 0.7972
13 12 12.44-0.442
14 12 12.32-0.3232
15 13 12.2 0.7972
16 13 12.65 0.3527
17 12 12.2-0.2028
18 13 12.32 0.6785
19 10 12.2-2.203
20 14 12.55 1.455
21 10 11.88-1.884
22 10 12.43-2.425
23 14 12.23 1.775
24 14 11.99 2.014
25 13 12.32 0.6785
26 12 12.54-0.5437
27 12 10.89 1.109
28 12 11.54 0.4566
29 10 12.2-2.205
30 14 12.43 1.575
31 8 12.31-4.306
32 11 12.54-1.544
33 10 11.88-1.884
34 14 12.87 1.129
35 12 11.88 0.1157
36 14 12.43 1.568
37 13 12.32 0.6768
38 13 11.99 1.014
39 13 12.32 0.6768
40 12 12.55-0.5455
41 10 11.88-1.884
42 14 11.33 2.673
43 11 11.88-0.8843
44 10 11.9-1.903
45 13 12.55 0.4545
46 12 11.33 0.6733
47 13 12.54 0.4563
48 11 12.1-1.101
49 10 11.33-1.327
50 14 12.08 1.916
51 7 12.09-5.09
52 13 11.99 1.014
53 15 12.56 2.436
54 13 11.88 1.117
55 14 12.43 1.575
56 13 12.43 0.5694
57 11 12.11-1.107
58 14 12.54 1.456
59 12 12.1-0.1048
60 13 12.11 0.8934
61 14 12.32 1.679
62 13 12.99 0.0118
63 12 12.54-0.5437
64 10 12.32-2.321
65 12 12.43-0.425
66 9 12-3.003
67 12 12.43-0.425
68 13 11.99 1.014
69 13 12.32 0.6785
70 11 12.21-1.208
71 12 11.99 0.01213
72 11 11.77-0.7656
73 12 12.32-0.3215
74 12 12.31-0.3063
75 13 12.32 0.6768
76 8 12.1-4.105
77 13 12.32 0.6785
78 8 11.88-3.884
79 13 11.78 1.219
80 12 12.11-0.1066
81 15 12.1 2.895
82 14 12.32 1.679
83 11 12.33-1.329
84 10 12.43-2.431
85 14 11.99 2.014
86 10 12.1-2.105
87 15 12.32 2.679
88 11 11.67-0.6659
89 12 12.21-0.2083
90 13 11.67 1.331
91 12 11.78 0.2174
92 9 12.1-3.101
93 14 11.88 2.119
94 14 12.43 1.575
95 12 12.43-0.4306
96 15 11.99 3.014
97 11 12.54-1.544
98 12 11.88 0.1157
99 11 12.02-1.022

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  10 &  11.66 & -1.664 \tabularnewline
2 &  13 &  12.54 &  0.4563 \tabularnewline
3 &  14 &  11.99 &  2.014 \tabularnewline
4 &  13 &  12.32 &  0.6785 \tabularnewline
5 &  14 &  12.09 &  1.91 \tabularnewline
6 &  14 &  12.54 &  1.456 \tabularnewline
7 &  12 &  12.32 & -0.3215 \tabularnewline
8 &  11 &  12.43 & -1.425 \tabularnewline
9 &  12 &  11.77 &  0.2344 \tabularnewline
10 &  14 &  12 &  1.995 \tabularnewline
11 &  13 &  11.88 &  1.116 \tabularnewline
12 &  13 &  12.2 &  0.7972 \tabularnewline
13 &  12 &  12.44 & -0.442 \tabularnewline
14 &  12 &  12.32 & -0.3232 \tabularnewline
15 &  13 &  12.2 &  0.7972 \tabularnewline
16 &  13 &  12.65 &  0.3527 \tabularnewline
17 &  12 &  12.2 & -0.2028 \tabularnewline
18 &  13 &  12.32 &  0.6785 \tabularnewline
19 &  10 &  12.2 & -2.203 \tabularnewline
20 &  14 &  12.55 &  1.455 \tabularnewline
21 &  10 &  11.88 & -1.884 \tabularnewline
22 &  10 &  12.43 & -2.425 \tabularnewline
23 &  14 &  12.23 &  1.775 \tabularnewline
24 &  14 &  11.99 &  2.014 \tabularnewline
25 &  13 &  12.32 &  0.6785 \tabularnewline
26 &  12 &  12.54 & -0.5437 \tabularnewline
27 &  12 &  10.89 &  1.109 \tabularnewline
28 &  12 &  11.54 &  0.4566 \tabularnewline
29 &  10 &  12.2 & -2.205 \tabularnewline
30 &  14 &  12.43 &  1.575 \tabularnewline
31 &  8 &  12.31 & -4.306 \tabularnewline
32 &  11 &  12.54 & -1.544 \tabularnewline
33 &  10 &  11.88 & -1.884 \tabularnewline
34 &  14 &  12.87 &  1.129 \tabularnewline
35 &  12 &  11.88 &  0.1157 \tabularnewline
36 &  14 &  12.43 &  1.568 \tabularnewline
37 &  13 &  12.32 &  0.6768 \tabularnewline
38 &  13 &  11.99 &  1.014 \tabularnewline
39 &  13 &  12.32 &  0.6768 \tabularnewline
40 &  12 &  12.55 & -0.5455 \tabularnewline
41 &  10 &  11.88 & -1.884 \tabularnewline
42 &  14 &  11.33 &  2.673 \tabularnewline
43 &  11 &  11.88 & -0.8843 \tabularnewline
44 &  10 &  11.9 & -1.903 \tabularnewline
45 &  13 &  12.55 &  0.4545 \tabularnewline
46 &  12 &  11.33 &  0.6733 \tabularnewline
47 &  13 &  12.54 &  0.4563 \tabularnewline
48 &  11 &  12.1 & -1.101 \tabularnewline
49 &  10 &  11.33 & -1.327 \tabularnewline
50 &  14 &  12.08 &  1.916 \tabularnewline
51 &  7 &  12.09 & -5.09 \tabularnewline
52 &  13 &  11.99 &  1.014 \tabularnewline
53 &  15 &  12.56 &  2.436 \tabularnewline
54 &  13 &  11.88 &  1.117 \tabularnewline
55 &  14 &  12.43 &  1.575 \tabularnewline
56 &  13 &  12.43 &  0.5694 \tabularnewline
57 &  11 &  12.11 & -1.107 \tabularnewline
58 &  14 &  12.54 &  1.456 \tabularnewline
59 &  12 &  12.1 & -0.1048 \tabularnewline
60 &  13 &  12.11 &  0.8934 \tabularnewline
61 &  14 &  12.32 &  1.679 \tabularnewline
62 &  13 &  12.99 &  0.0118 \tabularnewline
63 &  12 &  12.54 & -0.5437 \tabularnewline
64 &  10 &  12.32 & -2.321 \tabularnewline
65 &  12 &  12.43 & -0.425 \tabularnewline
66 &  9 &  12 & -3.003 \tabularnewline
67 &  12 &  12.43 & -0.425 \tabularnewline
68 &  13 &  11.99 &  1.014 \tabularnewline
69 &  13 &  12.32 &  0.6785 \tabularnewline
70 &  11 &  12.21 & -1.208 \tabularnewline
71 &  12 &  11.99 &  0.01213 \tabularnewline
72 &  11 &  11.77 & -0.7656 \tabularnewline
73 &  12 &  12.32 & -0.3215 \tabularnewline
74 &  12 &  12.31 & -0.3063 \tabularnewline
75 &  13 &  12.32 &  0.6768 \tabularnewline
76 &  8 &  12.1 & -4.105 \tabularnewline
77 &  13 &  12.32 &  0.6785 \tabularnewline
78 &  8 &  11.88 & -3.884 \tabularnewline
79 &  13 &  11.78 &  1.219 \tabularnewline
80 &  12 &  12.11 & -0.1066 \tabularnewline
81 &  15 &  12.1 &  2.895 \tabularnewline
82 &  14 &  12.32 &  1.679 \tabularnewline
83 &  11 &  12.33 & -1.329 \tabularnewline
84 &  10 &  12.43 & -2.431 \tabularnewline
85 &  14 &  11.99 &  2.014 \tabularnewline
86 &  10 &  12.1 & -2.105 \tabularnewline
87 &  15 &  12.32 &  2.679 \tabularnewline
88 &  11 &  11.67 & -0.6659 \tabularnewline
89 &  12 &  12.21 & -0.2083 \tabularnewline
90 &  13 &  11.67 &  1.331 \tabularnewline
91 &  12 &  11.78 &  0.2174 \tabularnewline
92 &  9 &  12.1 & -3.101 \tabularnewline
93 &  14 &  11.88 &  2.119 \tabularnewline
94 &  14 &  12.43 &  1.575 \tabularnewline
95 &  12 &  12.43 & -0.4306 \tabularnewline
96 &  15 &  11.99 &  3.014 \tabularnewline
97 &  11 &  12.54 & -1.544 \tabularnewline
98 &  12 &  11.88 &  0.1157 \tabularnewline
99 &  11 &  12.02 & -1.022 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299718&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 10[/C][C] 11.66[/C][C]-1.664[/C][/ROW]
[ROW][C]2[/C][C] 13[/C][C] 12.54[/C][C] 0.4563[/C][/ROW]
[ROW][C]3[/C][C] 14[/C][C] 11.99[/C][C] 2.014[/C][/ROW]
[ROW][C]4[/C][C] 13[/C][C] 12.32[/C][C] 0.6785[/C][/ROW]
[ROW][C]5[/C][C] 14[/C][C] 12.09[/C][C] 1.91[/C][/ROW]
[ROW][C]6[/C][C] 14[/C][C] 12.54[/C][C] 1.456[/C][/ROW]
[ROW][C]7[/C][C] 12[/C][C] 12.32[/C][C]-0.3215[/C][/ROW]
[ROW][C]8[/C][C] 11[/C][C] 12.43[/C][C]-1.425[/C][/ROW]
[ROW][C]9[/C][C] 12[/C][C] 11.77[/C][C] 0.2344[/C][/ROW]
[ROW][C]10[/C][C] 14[/C][C] 12[/C][C] 1.995[/C][/ROW]
[ROW][C]11[/C][C] 13[/C][C] 11.88[/C][C] 1.116[/C][/ROW]
[ROW][C]12[/C][C] 13[/C][C] 12.2[/C][C] 0.7972[/C][/ROW]
[ROW][C]13[/C][C] 12[/C][C] 12.44[/C][C]-0.442[/C][/ROW]
[ROW][C]14[/C][C] 12[/C][C] 12.32[/C][C]-0.3232[/C][/ROW]
[ROW][C]15[/C][C] 13[/C][C] 12.2[/C][C] 0.7972[/C][/ROW]
[ROW][C]16[/C][C] 13[/C][C] 12.65[/C][C] 0.3527[/C][/ROW]
[ROW][C]17[/C][C] 12[/C][C] 12.2[/C][C]-0.2028[/C][/ROW]
[ROW][C]18[/C][C] 13[/C][C] 12.32[/C][C] 0.6785[/C][/ROW]
[ROW][C]19[/C][C] 10[/C][C] 12.2[/C][C]-2.203[/C][/ROW]
[ROW][C]20[/C][C] 14[/C][C] 12.55[/C][C] 1.455[/C][/ROW]
[ROW][C]21[/C][C] 10[/C][C] 11.88[/C][C]-1.884[/C][/ROW]
[ROW][C]22[/C][C] 10[/C][C] 12.43[/C][C]-2.425[/C][/ROW]
[ROW][C]23[/C][C] 14[/C][C] 12.23[/C][C] 1.775[/C][/ROW]
[ROW][C]24[/C][C] 14[/C][C] 11.99[/C][C] 2.014[/C][/ROW]
[ROW][C]25[/C][C] 13[/C][C] 12.32[/C][C] 0.6785[/C][/ROW]
[ROW][C]26[/C][C] 12[/C][C] 12.54[/C][C]-0.5437[/C][/ROW]
[ROW][C]27[/C][C] 12[/C][C] 10.89[/C][C] 1.109[/C][/ROW]
[ROW][C]28[/C][C] 12[/C][C] 11.54[/C][C] 0.4566[/C][/ROW]
[ROW][C]29[/C][C] 10[/C][C] 12.2[/C][C]-2.205[/C][/ROW]
[ROW][C]30[/C][C] 14[/C][C] 12.43[/C][C] 1.575[/C][/ROW]
[ROW][C]31[/C][C] 8[/C][C] 12.31[/C][C]-4.306[/C][/ROW]
[ROW][C]32[/C][C] 11[/C][C] 12.54[/C][C]-1.544[/C][/ROW]
[ROW][C]33[/C][C] 10[/C][C] 11.88[/C][C]-1.884[/C][/ROW]
[ROW][C]34[/C][C] 14[/C][C] 12.87[/C][C] 1.129[/C][/ROW]
[ROW][C]35[/C][C] 12[/C][C] 11.88[/C][C] 0.1157[/C][/ROW]
[ROW][C]36[/C][C] 14[/C][C] 12.43[/C][C] 1.568[/C][/ROW]
[ROW][C]37[/C][C] 13[/C][C] 12.32[/C][C] 0.6768[/C][/ROW]
[ROW][C]38[/C][C] 13[/C][C] 11.99[/C][C] 1.014[/C][/ROW]
[ROW][C]39[/C][C] 13[/C][C] 12.32[/C][C] 0.6768[/C][/ROW]
[ROW][C]40[/C][C] 12[/C][C] 12.55[/C][C]-0.5455[/C][/ROW]
[ROW][C]41[/C][C] 10[/C][C] 11.88[/C][C]-1.884[/C][/ROW]
[ROW][C]42[/C][C] 14[/C][C] 11.33[/C][C] 2.673[/C][/ROW]
[ROW][C]43[/C][C] 11[/C][C] 11.88[/C][C]-0.8843[/C][/ROW]
[ROW][C]44[/C][C] 10[/C][C] 11.9[/C][C]-1.903[/C][/ROW]
[ROW][C]45[/C][C] 13[/C][C] 12.55[/C][C] 0.4545[/C][/ROW]
[ROW][C]46[/C][C] 12[/C][C] 11.33[/C][C] 0.6733[/C][/ROW]
[ROW][C]47[/C][C] 13[/C][C] 12.54[/C][C] 0.4563[/C][/ROW]
[ROW][C]48[/C][C] 11[/C][C] 12.1[/C][C]-1.101[/C][/ROW]
[ROW][C]49[/C][C] 10[/C][C] 11.33[/C][C]-1.327[/C][/ROW]
[ROW][C]50[/C][C] 14[/C][C] 12.08[/C][C] 1.916[/C][/ROW]
[ROW][C]51[/C][C] 7[/C][C] 12.09[/C][C]-5.09[/C][/ROW]
[ROW][C]52[/C][C] 13[/C][C] 11.99[/C][C] 1.014[/C][/ROW]
[ROW][C]53[/C][C] 15[/C][C] 12.56[/C][C] 2.436[/C][/ROW]
[ROW][C]54[/C][C] 13[/C][C] 11.88[/C][C] 1.117[/C][/ROW]
[ROW][C]55[/C][C] 14[/C][C] 12.43[/C][C] 1.575[/C][/ROW]
[ROW][C]56[/C][C] 13[/C][C] 12.43[/C][C] 0.5694[/C][/ROW]
[ROW][C]57[/C][C] 11[/C][C] 12.11[/C][C]-1.107[/C][/ROW]
[ROW][C]58[/C][C] 14[/C][C] 12.54[/C][C] 1.456[/C][/ROW]
[ROW][C]59[/C][C] 12[/C][C] 12.1[/C][C]-0.1048[/C][/ROW]
[ROW][C]60[/C][C] 13[/C][C] 12.11[/C][C] 0.8934[/C][/ROW]
[ROW][C]61[/C][C] 14[/C][C] 12.32[/C][C] 1.679[/C][/ROW]
[ROW][C]62[/C][C] 13[/C][C] 12.99[/C][C] 0.0118[/C][/ROW]
[ROW][C]63[/C][C] 12[/C][C] 12.54[/C][C]-0.5437[/C][/ROW]
[ROW][C]64[/C][C] 10[/C][C] 12.32[/C][C]-2.321[/C][/ROW]
[ROW][C]65[/C][C] 12[/C][C] 12.43[/C][C]-0.425[/C][/ROW]
[ROW][C]66[/C][C] 9[/C][C] 12[/C][C]-3.003[/C][/ROW]
[ROW][C]67[/C][C] 12[/C][C] 12.43[/C][C]-0.425[/C][/ROW]
[ROW][C]68[/C][C] 13[/C][C] 11.99[/C][C] 1.014[/C][/ROW]
[ROW][C]69[/C][C] 13[/C][C] 12.32[/C][C] 0.6785[/C][/ROW]
[ROW][C]70[/C][C] 11[/C][C] 12.21[/C][C]-1.208[/C][/ROW]
[ROW][C]71[/C][C] 12[/C][C] 11.99[/C][C] 0.01213[/C][/ROW]
[ROW][C]72[/C][C] 11[/C][C] 11.77[/C][C]-0.7656[/C][/ROW]
[ROW][C]73[/C][C] 12[/C][C] 12.32[/C][C]-0.3215[/C][/ROW]
[ROW][C]74[/C][C] 12[/C][C] 12.31[/C][C]-0.3063[/C][/ROW]
[ROW][C]75[/C][C] 13[/C][C] 12.32[/C][C] 0.6768[/C][/ROW]
[ROW][C]76[/C][C] 8[/C][C] 12.1[/C][C]-4.105[/C][/ROW]
[ROW][C]77[/C][C] 13[/C][C] 12.32[/C][C] 0.6785[/C][/ROW]
[ROW][C]78[/C][C] 8[/C][C] 11.88[/C][C]-3.884[/C][/ROW]
[ROW][C]79[/C][C] 13[/C][C] 11.78[/C][C] 1.219[/C][/ROW]
[ROW][C]80[/C][C] 12[/C][C] 12.11[/C][C]-0.1066[/C][/ROW]
[ROW][C]81[/C][C] 15[/C][C] 12.1[/C][C] 2.895[/C][/ROW]
[ROW][C]82[/C][C] 14[/C][C] 12.32[/C][C] 1.679[/C][/ROW]
[ROW][C]83[/C][C] 11[/C][C] 12.33[/C][C]-1.329[/C][/ROW]
[ROW][C]84[/C][C] 10[/C][C] 12.43[/C][C]-2.431[/C][/ROW]
[ROW][C]85[/C][C] 14[/C][C] 11.99[/C][C] 2.014[/C][/ROW]
[ROW][C]86[/C][C] 10[/C][C] 12.1[/C][C]-2.105[/C][/ROW]
[ROW][C]87[/C][C] 15[/C][C] 12.32[/C][C] 2.679[/C][/ROW]
[ROW][C]88[/C][C] 11[/C][C] 11.67[/C][C]-0.6659[/C][/ROW]
[ROW][C]89[/C][C] 12[/C][C] 12.21[/C][C]-0.2083[/C][/ROW]
[ROW][C]90[/C][C] 13[/C][C] 11.67[/C][C] 1.331[/C][/ROW]
[ROW][C]91[/C][C] 12[/C][C] 11.78[/C][C] 0.2174[/C][/ROW]
[ROW][C]92[/C][C] 9[/C][C] 12.1[/C][C]-3.101[/C][/ROW]
[ROW][C]93[/C][C] 14[/C][C] 11.88[/C][C] 2.119[/C][/ROW]
[ROW][C]94[/C][C] 14[/C][C] 12.43[/C][C] 1.575[/C][/ROW]
[ROW][C]95[/C][C] 12[/C][C] 12.43[/C][C]-0.4306[/C][/ROW]
[ROW][C]96[/C][C] 15[/C][C] 11.99[/C][C] 3.014[/C][/ROW]
[ROW][C]97[/C][C] 11[/C][C] 12.54[/C][C]-1.544[/C][/ROW]
[ROW][C]98[/C][C] 12[/C][C] 11.88[/C][C] 0.1157[/C][/ROW]
[ROW][C]99[/C][C] 11[/C][C] 12.02[/C][C]-1.022[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299718&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299718&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 10 11.66-1.664
2 13 12.54 0.4563
3 14 11.99 2.014
4 13 12.32 0.6785
5 14 12.09 1.91
6 14 12.54 1.456
7 12 12.32-0.3215
8 11 12.43-1.425
9 12 11.77 0.2344
10 14 12 1.995
11 13 11.88 1.116
12 13 12.2 0.7972
13 12 12.44-0.442
14 12 12.32-0.3232
15 13 12.2 0.7972
16 13 12.65 0.3527
17 12 12.2-0.2028
18 13 12.32 0.6785
19 10 12.2-2.203
20 14 12.55 1.455
21 10 11.88-1.884
22 10 12.43-2.425
23 14 12.23 1.775
24 14 11.99 2.014
25 13 12.32 0.6785
26 12 12.54-0.5437
27 12 10.89 1.109
28 12 11.54 0.4566
29 10 12.2-2.205
30 14 12.43 1.575
31 8 12.31-4.306
32 11 12.54-1.544
33 10 11.88-1.884
34 14 12.87 1.129
35 12 11.88 0.1157
36 14 12.43 1.568
37 13 12.32 0.6768
38 13 11.99 1.014
39 13 12.32 0.6768
40 12 12.55-0.5455
41 10 11.88-1.884
42 14 11.33 2.673
43 11 11.88-0.8843
44 10 11.9-1.903
45 13 12.55 0.4545
46 12 11.33 0.6733
47 13 12.54 0.4563
48 11 12.1-1.101
49 10 11.33-1.327
50 14 12.08 1.916
51 7 12.09-5.09
52 13 11.99 1.014
53 15 12.56 2.436
54 13 11.88 1.117
55 14 12.43 1.575
56 13 12.43 0.5694
57 11 12.11-1.107
58 14 12.54 1.456
59 12 12.1-0.1048
60 13 12.11 0.8934
61 14 12.32 1.679
62 13 12.99 0.0118
63 12 12.54-0.5437
64 10 12.32-2.321
65 12 12.43-0.425
66 9 12-3.003
67 12 12.43-0.425
68 13 11.99 1.014
69 13 12.32 0.6785
70 11 12.21-1.208
71 12 11.99 0.01213
72 11 11.77-0.7656
73 12 12.32-0.3215
74 12 12.31-0.3063
75 13 12.32 0.6768
76 8 12.1-4.105
77 13 12.32 0.6785
78 8 11.88-3.884
79 13 11.78 1.219
80 12 12.11-0.1066
81 15 12.1 2.895
82 14 12.32 1.679
83 11 12.33-1.329
84 10 12.43-2.431
85 14 11.99 2.014
86 10 12.1-2.105
87 15 12.32 2.679
88 11 11.67-0.6659
89 12 12.21-0.2083
90 13 11.67 1.331
91 12 11.78 0.2174
92 9 12.1-3.101
93 14 11.88 2.119
94 14 12.43 1.575
95 12 12.43-0.4306
96 15 11.99 3.014
97 11 12.54-1.544
98 12 11.88 0.1157
99 11 12.02-1.022







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.09295 0.1859 0.907
9 0.04766 0.09531 0.9523
10 0.01983 0.03965 0.9802
11 0.008623 0.01725 0.9914
12 0.06214 0.1243 0.9379
13 0.03369 0.06738 0.9663
14 0.02141 0.04281 0.9786
15 0.02101 0.04203 0.979
16 0.01049 0.02097 0.9895
17 0.004976 0.009953 0.995
18 0.002303 0.004606 0.9977
19 0.005118 0.01024 0.9949
20 0.006709 0.01342 0.9933
21 0.03093 0.06186 0.9691
22 0.07104 0.1421 0.929
23 0.05259 0.1052 0.9474
24 0.04095 0.08191 0.959
25 0.02805 0.0561 0.972
26 0.02441 0.04882 0.9756
27 0.01614 0.03227 0.9839
28 0.01196 0.02393 0.988
29 0.009615 0.01923 0.9904
30 0.01068 0.02136 0.9893
31 0.06649 0.133 0.9335
32 0.08637 0.1727 0.9136
33 0.1354 0.2708 0.8646
34 0.1204 0.2408 0.8796
35 0.09226 0.1845 0.9077
36 0.07759 0.1552 0.9224
37 0.06965 0.1393 0.9303
38 0.05258 0.1052 0.9474
39 0.04498 0.08995 0.955
40 0.03313 0.06627 0.9669
41 0.04742 0.09485 0.9526
42 0.06177 0.1235 0.9382
43 0.05478 0.1096 0.9452
44 0.05579 0.1116 0.9442
45 0.04255 0.08511 0.9574
46 0.03282 0.06564 0.9672
47 0.02313 0.04625 0.9769
48 0.01881 0.03762 0.9812
49 0.02123 0.04246 0.9788
50 0.03423 0.06847 0.9658
51 0.3545 0.7089 0.6455
52 0.3116 0.6232 0.6884
53 0.3917 0.7835 0.6083
54 0.3486 0.6972 0.6514
55 0.3358 0.6715 0.6642
56 0.2978 0.5956 0.7022
57 0.2743 0.5485 0.7257
58 0.2606 0.5213 0.7394
59 0.22 0.4399 0.78
60 0.1923 0.3846 0.8077
61 0.1881 0.3761 0.8119
62 0.1741 0.3482 0.8259
63 0.1413 0.2826 0.8587
64 0.1728 0.3456 0.8272
65 0.1375 0.2751 0.8625
66 0.2129 0.4259 0.7871
67 0.1718 0.3437 0.8282
68 0.1407 0.2815 0.8593
69 0.1108 0.2217 0.8892
70 0.09451 0.189 0.9055
71 0.06941 0.1388 0.9306
72 0.05946 0.1189 0.9405
73 0.04276 0.08552 0.9572
74 0.03434 0.06867 0.9657
75 0.02427 0.04855 0.9757
76 0.1081 0.2161 0.8919
77 0.07965 0.1593 0.9203
78 0.3199 0.6399 0.6801
79 0.2631 0.5263 0.7369
80 0.2021 0.4042 0.7979
81 0.305 0.6099 0.695
82 0.2978 0.5955 0.7022
83 0.2365 0.473 0.7635
84 0.2691 0.5383 0.7309
85 0.232 0.4641 0.768
86 0.2314 0.4628 0.7686
87 0.4421 0.8841 0.5579
88 0.3449 0.6898 0.6551
89 0.2571 0.5142 0.7429
90 0.1879 0.3758 0.8121
91 0.105 0.21 0.895

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
8 &  0.09295 &  0.1859 &  0.907 \tabularnewline
9 &  0.04766 &  0.09531 &  0.9523 \tabularnewline
10 &  0.01983 &  0.03965 &  0.9802 \tabularnewline
11 &  0.008623 &  0.01725 &  0.9914 \tabularnewline
12 &  0.06214 &  0.1243 &  0.9379 \tabularnewline
13 &  0.03369 &  0.06738 &  0.9663 \tabularnewline
14 &  0.02141 &  0.04281 &  0.9786 \tabularnewline
15 &  0.02101 &  0.04203 &  0.979 \tabularnewline
16 &  0.01049 &  0.02097 &  0.9895 \tabularnewline
17 &  0.004976 &  0.009953 &  0.995 \tabularnewline
18 &  0.002303 &  0.004606 &  0.9977 \tabularnewline
19 &  0.005118 &  0.01024 &  0.9949 \tabularnewline
20 &  0.006709 &  0.01342 &  0.9933 \tabularnewline
21 &  0.03093 &  0.06186 &  0.9691 \tabularnewline
22 &  0.07104 &  0.1421 &  0.929 \tabularnewline
23 &  0.05259 &  0.1052 &  0.9474 \tabularnewline
24 &  0.04095 &  0.08191 &  0.959 \tabularnewline
25 &  0.02805 &  0.0561 &  0.972 \tabularnewline
26 &  0.02441 &  0.04882 &  0.9756 \tabularnewline
27 &  0.01614 &  0.03227 &  0.9839 \tabularnewline
28 &  0.01196 &  0.02393 &  0.988 \tabularnewline
29 &  0.009615 &  0.01923 &  0.9904 \tabularnewline
30 &  0.01068 &  0.02136 &  0.9893 \tabularnewline
31 &  0.06649 &  0.133 &  0.9335 \tabularnewline
32 &  0.08637 &  0.1727 &  0.9136 \tabularnewline
33 &  0.1354 &  0.2708 &  0.8646 \tabularnewline
34 &  0.1204 &  0.2408 &  0.8796 \tabularnewline
35 &  0.09226 &  0.1845 &  0.9077 \tabularnewline
36 &  0.07759 &  0.1552 &  0.9224 \tabularnewline
37 &  0.06965 &  0.1393 &  0.9303 \tabularnewline
38 &  0.05258 &  0.1052 &  0.9474 \tabularnewline
39 &  0.04498 &  0.08995 &  0.955 \tabularnewline
40 &  0.03313 &  0.06627 &  0.9669 \tabularnewline
41 &  0.04742 &  0.09485 &  0.9526 \tabularnewline
42 &  0.06177 &  0.1235 &  0.9382 \tabularnewline
43 &  0.05478 &  0.1096 &  0.9452 \tabularnewline
44 &  0.05579 &  0.1116 &  0.9442 \tabularnewline
45 &  0.04255 &  0.08511 &  0.9574 \tabularnewline
46 &  0.03282 &  0.06564 &  0.9672 \tabularnewline
47 &  0.02313 &  0.04625 &  0.9769 \tabularnewline
48 &  0.01881 &  0.03762 &  0.9812 \tabularnewline
49 &  0.02123 &  0.04246 &  0.9788 \tabularnewline
50 &  0.03423 &  0.06847 &  0.9658 \tabularnewline
51 &  0.3545 &  0.7089 &  0.6455 \tabularnewline
52 &  0.3116 &  0.6232 &  0.6884 \tabularnewline
53 &  0.3917 &  0.7835 &  0.6083 \tabularnewline
54 &  0.3486 &  0.6972 &  0.6514 \tabularnewline
55 &  0.3358 &  0.6715 &  0.6642 \tabularnewline
56 &  0.2978 &  0.5956 &  0.7022 \tabularnewline
57 &  0.2743 &  0.5485 &  0.7257 \tabularnewline
58 &  0.2606 &  0.5213 &  0.7394 \tabularnewline
59 &  0.22 &  0.4399 &  0.78 \tabularnewline
60 &  0.1923 &  0.3846 &  0.8077 \tabularnewline
61 &  0.1881 &  0.3761 &  0.8119 \tabularnewline
62 &  0.1741 &  0.3482 &  0.8259 \tabularnewline
63 &  0.1413 &  0.2826 &  0.8587 \tabularnewline
64 &  0.1728 &  0.3456 &  0.8272 \tabularnewline
65 &  0.1375 &  0.2751 &  0.8625 \tabularnewline
66 &  0.2129 &  0.4259 &  0.7871 \tabularnewline
67 &  0.1718 &  0.3437 &  0.8282 \tabularnewline
68 &  0.1407 &  0.2815 &  0.8593 \tabularnewline
69 &  0.1108 &  0.2217 &  0.8892 \tabularnewline
70 &  0.09451 &  0.189 &  0.9055 \tabularnewline
71 &  0.06941 &  0.1388 &  0.9306 \tabularnewline
72 &  0.05946 &  0.1189 &  0.9405 \tabularnewline
73 &  0.04276 &  0.08552 &  0.9572 \tabularnewline
74 &  0.03434 &  0.06867 &  0.9657 \tabularnewline
75 &  0.02427 &  0.04855 &  0.9757 \tabularnewline
76 &  0.1081 &  0.2161 &  0.8919 \tabularnewline
77 &  0.07965 &  0.1593 &  0.9203 \tabularnewline
78 &  0.3199 &  0.6399 &  0.6801 \tabularnewline
79 &  0.2631 &  0.5263 &  0.7369 \tabularnewline
80 &  0.2021 &  0.4042 &  0.7979 \tabularnewline
81 &  0.305 &  0.6099 &  0.695 \tabularnewline
82 &  0.2978 &  0.5955 &  0.7022 \tabularnewline
83 &  0.2365 &  0.473 &  0.7635 \tabularnewline
84 &  0.2691 &  0.5383 &  0.7309 \tabularnewline
85 &  0.232 &  0.4641 &  0.768 \tabularnewline
86 &  0.2314 &  0.4628 &  0.7686 \tabularnewline
87 &  0.4421 &  0.8841 &  0.5579 \tabularnewline
88 &  0.3449 &  0.6898 &  0.6551 \tabularnewline
89 &  0.2571 &  0.5142 &  0.7429 \tabularnewline
90 &  0.1879 &  0.3758 &  0.8121 \tabularnewline
91 &  0.105 &  0.21 &  0.895 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299718&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]8[/C][C] 0.09295[/C][C] 0.1859[/C][C] 0.907[/C][/ROW]
[ROW][C]9[/C][C] 0.04766[/C][C] 0.09531[/C][C] 0.9523[/C][/ROW]
[ROW][C]10[/C][C] 0.01983[/C][C] 0.03965[/C][C] 0.9802[/C][/ROW]
[ROW][C]11[/C][C] 0.008623[/C][C] 0.01725[/C][C] 0.9914[/C][/ROW]
[ROW][C]12[/C][C] 0.06214[/C][C] 0.1243[/C][C] 0.9379[/C][/ROW]
[ROW][C]13[/C][C] 0.03369[/C][C] 0.06738[/C][C] 0.9663[/C][/ROW]
[ROW][C]14[/C][C] 0.02141[/C][C] 0.04281[/C][C] 0.9786[/C][/ROW]
[ROW][C]15[/C][C] 0.02101[/C][C] 0.04203[/C][C] 0.979[/C][/ROW]
[ROW][C]16[/C][C] 0.01049[/C][C] 0.02097[/C][C] 0.9895[/C][/ROW]
[ROW][C]17[/C][C] 0.004976[/C][C] 0.009953[/C][C] 0.995[/C][/ROW]
[ROW][C]18[/C][C] 0.002303[/C][C] 0.004606[/C][C] 0.9977[/C][/ROW]
[ROW][C]19[/C][C] 0.005118[/C][C] 0.01024[/C][C] 0.9949[/C][/ROW]
[ROW][C]20[/C][C] 0.006709[/C][C] 0.01342[/C][C] 0.9933[/C][/ROW]
[ROW][C]21[/C][C] 0.03093[/C][C] 0.06186[/C][C] 0.9691[/C][/ROW]
[ROW][C]22[/C][C] 0.07104[/C][C] 0.1421[/C][C] 0.929[/C][/ROW]
[ROW][C]23[/C][C] 0.05259[/C][C] 0.1052[/C][C] 0.9474[/C][/ROW]
[ROW][C]24[/C][C] 0.04095[/C][C] 0.08191[/C][C] 0.959[/C][/ROW]
[ROW][C]25[/C][C] 0.02805[/C][C] 0.0561[/C][C] 0.972[/C][/ROW]
[ROW][C]26[/C][C] 0.02441[/C][C] 0.04882[/C][C] 0.9756[/C][/ROW]
[ROW][C]27[/C][C] 0.01614[/C][C] 0.03227[/C][C] 0.9839[/C][/ROW]
[ROW][C]28[/C][C] 0.01196[/C][C] 0.02393[/C][C] 0.988[/C][/ROW]
[ROW][C]29[/C][C] 0.009615[/C][C] 0.01923[/C][C] 0.9904[/C][/ROW]
[ROW][C]30[/C][C] 0.01068[/C][C] 0.02136[/C][C] 0.9893[/C][/ROW]
[ROW][C]31[/C][C] 0.06649[/C][C] 0.133[/C][C] 0.9335[/C][/ROW]
[ROW][C]32[/C][C] 0.08637[/C][C] 0.1727[/C][C] 0.9136[/C][/ROW]
[ROW][C]33[/C][C] 0.1354[/C][C] 0.2708[/C][C] 0.8646[/C][/ROW]
[ROW][C]34[/C][C] 0.1204[/C][C] 0.2408[/C][C] 0.8796[/C][/ROW]
[ROW][C]35[/C][C] 0.09226[/C][C] 0.1845[/C][C] 0.9077[/C][/ROW]
[ROW][C]36[/C][C] 0.07759[/C][C] 0.1552[/C][C] 0.9224[/C][/ROW]
[ROW][C]37[/C][C] 0.06965[/C][C] 0.1393[/C][C] 0.9303[/C][/ROW]
[ROW][C]38[/C][C] 0.05258[/C][C] 0.1052[/C][C] 0.9474[/C][/ROW]
[ROW][C]39[/C][C] 0.04498[/C][C] 0.08995[/C][C] 0.955[/C][/ROW]
[ROW][C]40[/C][C] 0.03313[/C][C] 0.06627[/C][C] 0.9669[/C][/ROW]
[ROW][C]41[/C][C] 0.04742[/C][C] 0.09485[/C][C] 0.9526[/C][/ROW]
[ROW][C]42[/C][C] 0.06177[/C][C] 0.1235[/C][C] 0.9382[/C][/ROW]
[ROW][C]43[/C][C] 0.05478[/C][C] 0.1096[/C][C] 0.9452[/C][/ROW]
[ROW][C]44[/C][C] 0.05579[/C][C] 0.1116[/C][C] 0.9442[/C][/ROW]
[ROW][C]45[/C][C] 0.04255[/C][C] 0.08511[/C][C] 0.9574[/C][/ROW]
[ROW][C]46[/C][C] 0.03282[/C][C] 0.06564[/C][C] 0.9672[/C][/ROW]
[ROW][C]47[/C][C] 0.02313[/C][C] 0.04625[/C][C] 0.9769[/C][/ROW]
[ROW][C]48[/C][C] 0.01881[/C][C] 0.03762[/C][C] 0.9812[/C][/ROW]
[ROW][C]49[/C][C] 0.02123[/C][C] 0.04246[/C][C] 0.9788[/C][/ROW]
[ROW][C]50[/C][C] 0.03423[/C][C] 0.06847[/C][C] 0.9658[/C][/ROW]
[ROW][C]51[/C][C] 0.3545[/C][C] 0.7089[/C][C] 0.6455[/C][/ROW]
[ROW][C]52[/C][C] 0.3116[/C][C] 0.6232[/C][C] 0.6884[/C][/ROW]
[ROW][C]53[/C][C] 0.3917[/C][C] 0.7835[/C][C] 0.6083[/C][/ROW]
[ROW][C]54[/C][C] 0.3486[/C][C] 0.6972[/C][C] 0.6514[/C][/ROW]
[ROW][C]55[/C][C] 0.3358[/C][C] 0.6715[/C][C] 0.6642[/C][/ROW]
[ROW][C]56[/C][C] 0.2978[/C][C] 0.5956[/C][C] 0.7022[/C][/ROW]
[ROW][C]57[/C][C] 0.2743[/C][C] 0.5485[/C][C] 0.7257[/C][/ROW]
[ROW][C]58[/C][C] 0.2606[/C][C] 0.5213[/C][C] 0.7394[/C][/ROW]
[ROW][C]59[/C][C] 0.22[/C][C] 0.4399[/C][C] 0.78[/C][/ROW]
[ROW][C]60[/C][C] 0.1923[/C][C] 0.3846[/C][C] 0.8077[/C][/ROW]
[ROW][C]61[/C][C] 0.1881[/C][C] 0.3761[/C][C] 0.8119[/C][/ROW]
[ROW][C]62[/C][C] 0.1741[/C][C] 0.3482[/C][C] 0.8259[/C][/ROW]
[ROW][C]63[/C][C] 0.1413[/C][C] 0.2826[/C][C] 0.8587[/C][/ROW]
[ROW][C]64[/C][C] 0.1728[/C][C] 0.3456[/C][C] 0.8272[/C][/ROW]
[ROW][C]65[/C][C] 0.1375[/C][C] 0.2751[/C][C] 0.8625[/C][/ROW]
[ROW][C]66[/C][C] 0.2129[/C][C] 0.4259[/C][C] 0.7871[/C][/ROW]
[ROW][C]67[/C][C] 0.1718[/C][C] 0.3437[/C][C] 0.8282[/C][/ROW]
[ROW][C]68[/C][C] 0.1407[/C][C] 0.2815[/C][C] 0.8593[/C][/ROW]
[ROW][C]69[/C][C] 0.1108[/C][C] 0.2217[/C][C] 0.8892[/C][/ROW]
[ROW][C]70[/C][C] 0.09451[/C][C] 0.189[/C][C] 0.9055[/C][/ROW]
[ROW][C]71[/C][C] 0.06941[/C][C] 0.1388[/C][C] 0.9306[/C][/ROW]
[ROW][C]72[/C][C] 0.05946[/C][C] 0.1189[/C][C] 0.9405[/C][/ROW]
[ROW][C]73[/C][C] 0.04276[/C][C] 0.08552[/C][C] 0.9572[/C][/ROW]
[ROW][C]74[/C][C] 0.03434[/C][C] 0.06867[/C][C] 0.9657[/C][/ROW]
[ROW][C]75[/C][C] 0.02427[/C][C] 0.04855[/C][C] 0.9757[/C][/ROW]
[ROW][C]76[/C][C] 0.1081[/C][C] 0.2161[/C][C] 0.8919[/C][/ROW]
[ROW][C]77[/C][C] 0.07965[/C][C] 0.1593[/C][C] 0.9203[/C][/ROW]
[ROW][C]78[/C][C] 0.3199[/C][C] 0.6399[/C][C] 0.6801[/C][/ROW]
[ROW][C]79[/C][C] 0.2631[/C][C] 0.5263[/C][C] 0.7369[/C][/ROW]
[ROW][C]80[/C][C] 0.2021[/C][C] 0.4042[/C][C] 0.7979[/C][/ROW]
[ROW][C]81[/C][C] 0.305[/C][C] 0.6099[/C][C] 0.695[/C][/ROW]
[ROW][C]82[/C][C] 0.2978[/C][C] 0.5955[/C][C] 0.7022[/C][/ROW]
[ROW][C]83[/C][C] 0.2365[/C][C] 0.473[/C][C] 0.7635[/C][/ROW]
[ROW][C]84[/C][C] 0.2691[/C][C] 0.5383[/C][C] 0.7309[/C][/ROW]
[ROW][C]85[/C][C] 0.232[/C][C] 0.4641[/C][C] 0.768[/C][/ROW]
[ROW][C]86[/C][C] 0.2314[/C][C] 0.4628[/C][C] 0.7686[/C][/ROW]
[ROW][C]87[/C][C] 0.4421[/C][C] 0.8841[/C][C] 0.5579[/C][/ROW]
[ROW][C]88[/C][C] 0.3449[/C][C] 0.6898[/C][C] 0.6551[/C][/ROW]
[ROW][C]89[/C][C] 0.2571[/C][C] 0.5142[/C][C] 0.7429[/C][/ROW]
[ROW][C]90[/C][C] 0.1879[/C][C] 0.3758[/C][C] 0.8121[/C][/ROW]
[ROW][C]91[/C][C] 0.105[/C][C] 0.21[/C][C] 0.895[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299718&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299718&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
8 0.09295 0.1859 0.907
9 0.04766 0.09531 0.9523
10 0.01983 0.03965 0.9802
11 0.008623 0.01725 0.9914
12 0.06214 0.1243 0.9379
13 0.03369 0.06738 0.9663
14 0.02141 0.04281 0.9786
15 0.02101 0.04203 0.979
16 0.01049 0.02097 0.9895
17 0.004976 0.009953 0.995
18 0.002303 0.004606 0.9977
19 0.005118 0.01024 0.9949
20 0.006709 0.01342 0.9933
21 0.03093 0.06186 0.9691
22 0.07104 0.1421 0.929
23 0.05259 0.1052 0.9474
24 0.04095 0.08191 0.959
25 0.02805 0.0561 0.972
26 0.02441 0.04882 0.9756
27 0.01614 0.03227 0.9839
28 0.01196 0.02393 0.988
29 0.009615 0.01923 0.9904
30 0.01068 0.02136 0.9893
31 0.06649 0.133 0.9335
32 0.08637 0.1727 0.9136
33 0.1354 0.2708 0.8646
34 0.1204 0.2408 0.8796
35 0.09226 0.1845 0.9077
36 0.07759 0.1552 0.9224
37 0.06965 0.1393 0.9303
38 0.05258 0.1052 0.9474
39 0.04498 0.08995 0.955
40 0.03313 0.06627 0.9669
41 0.04742 0.09485 0.9526
42 0.06177 0.1235 0.9382
43 0.05478 0.1096 0.9452
44 0.05579 0.1116 0.9442
45 0.04255 0.08511 0.9574
46 0.03282 0.06564 0.9672
47 0.02313 0.04625 0.9769
48 0.01881 0.03762 0.9812
49 0.02123 0.04246 0.9788
50 0.03423 0.06847 0.9658
51 0.3545 0.7089 0.6455
52 0.3116 0.6232 0.6884
53 0.3917 0.7835 0.6083
54 0.3486 0.6972 0.6514
55 0.3358 0.6715 0.6642
56 0.2978 0.5956 0.7022
57 0.2743 0.5485 0.7257
58 0.2606 0.5213 0.7394
59 0.22 0.4399 0.78
60 0.1923 0.3846 0.8077
61 0.1881 0.3761 0.8119
62 0.1741 0.3482 0.8259
63 0.1413 0.2826 0.8587
64 0.1728 0.3456 0.8272
65 0.1375 0.2751 0.8625
66 0.2129 0.4259 0.7871
67 0.1718 0.3437 0.8282
68 0.1407 0.2815 0.8593
69 0.1108 0.2217 0.8892
70 0.09451 0.189 0.9055
71 0.06941 0.1388 0.9306
72 0.05946 0.1189 0.9405
73 0.04276 0.08552 0.9572
74 0.03434 0.06867 0.9657
75 0.02427 0.04855 0.9757
76 0.1081 0.2161 0.8919
77 0.07965 0.1593 0.9203
78 0.3199 0.6399 0.6801
79 0.2631 0.5263 0.7369
80 0.2021 0.4042 0.7979
81 0.305 0.6099 0.695
82 0.2978 0.5955 0.7022
83 0.2365 0.473 0.7635
84 0.2691 0.5383 0.7309
85 0.232 0.4641 0.768
86 0.2314 0.4628 0.7686
87 0.4421 0.8841 0.5579
88 0.3449 0.6898 0.6551
89 0.2571 0.5142 0.7429
90 0.1879 0.3758 0.8121
91 0.105 0.21 0.895







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level2 0.02381NOK
5% type I error level180.214286NOK
10% type I error level310.369048NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 2 &  0.02381 & NOK \tabularnewline
5% type I error level & 18 & 0.214286 & NOK \tabularnewline
10% type I error level & 31 & 0.369048 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299718&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]2[/C][C] 0.02381[/C][C]NOK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]18[/C][C]0.214286[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]31[/C][C]0.369048[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299718&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299718&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level2 0.02381NOK
5% type I error level180.214286NOK
10% type I error level310.369048NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.99223, df1 = 2, df2 = 92, p-value = 0.3747
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.90285, df1 = 8, df2 = 86, p-value = 0.518
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.8413, df1 = 2, df2 = 92, p-value = 0.1644

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.99223, df1 = 2, df2 = 92, p-value = 0.3747
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.90285, df1 = 8, df2 = 86, p-value = 0.518
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.8413, df1 = 2, df2 = 92, p-value = 0.1644
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299718&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.99223, df1 = 2, df2 = 92, p-value = 0.3747
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.90285, df1 = 8, df2 = 86, p-value = 0.518
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.8413, df1 = 2, df2 = 92, p-value = 0.1644
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299718&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299718&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 0.99223, df1 = 2, df2 = 92, p-value = 0.3747
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.90285, df1 = 8, df2 = 86, p-value = 0.518
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.8413, df1 = 2, df2 = 92, p-value = 0.1644







Variance Inflation Factors (Multicollinearity)
> vif
    ITH1     ITH2     ITH3     ITH4 
1.333552 1.336490 1.373339 1.262235 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
    ITH1     ITH2     ITH3     ITH4 
1.333552 1.336490 1.373339 1.262235 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299718&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
    ITH1     ITH2     ITH3     ITH4 
1.333552 1.336490 1.373339 1.262235 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299718&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299718&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
    ITH1     ITH2     ITH3     ITH4 
1.333552 1.336490 1.373339 1.262235 



Parameters (Session):
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')