Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_One Factor ANOVA.wasp
Title produced by softwareOne-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)
Date of computationWed, 14 Dec 2016 19:14:40 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481739309ym24yjg0bkcthg0.htm/, Retrieved Fri, 01 Nov 2024 03:47:21 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299676, Retrieved Fri, 01 Nov 2024 03:47:21 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact96
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [ANOVA] [2016-12-14 18:14:40] [462f83e9ca944f1b841aaa868aea0854] [Current]
Feedback Forum

Post a new message
Dataseries X:
15	25
13	23
14	23
13	NA
12	NA
17	29
12	NA
13	NA
13	NA
16	27
12	20
12	22
13	21
16	28
15	25
12	20
NA	NA
NA	NA
15	NA
12	NA
15	26
11	NA
13	21
13	NA
14	NA
14	NA
14	23
15	25
16	27
16	27
16	27
13	21
13	21
14	NA
13	21
14	24
12	NA
17	29
14	23
15	25
13	NA
14	23
15	25
19	33
14	23
13	21
12	NA
NA	1
14	24
15	NA
15	25
12	NA
14	NA
11	19
12	20
10	17
NA	NA
14	23
14	23
15	NA
15	25
13	21
15	25
16	27
12	20
17	29
15	26
NA	9
12	22
16	28
15	NA
15	NA
12	NA
13	NA
10	NA
14	23
11	19
12	20
14	24
12	19
14	NA
12	20
13	NA
13	21
14	NA
12	20
15	25
13	21
13	NA
11	18
12	20
16	NA
11	19
13	NA
12	19
17	NA
14	24
15	25
8	14
13	21
13	NA
15	NA
14	25
13	21
14	NA
12	NA
19	NA
15	NA
14	NA
14	23
15	NA
13	NA
15	NA
14	23
11	NA
17	29
13	21
9	NA
12	19
13	21
17	29
14	23
13	NA
16	27
14	NA
14	23
14	24
10	NA
12	NA
13	NA
14	23
18	NA
14	24
14	NA
13	22
13	NA
16	28
NA	NA
13	22
14	23
8	14
13	NA
13	22
16	NA
14	23
13	22
14	23
12	20
16	27
18	NA
16	NA
15	26
18	31
15	25
14	23
14	NA
15	25
9	NA
17	NA
11	19
15	25
NA	7
15	25
13	NA
NA	NA
15	NA
15	25
14	NA
13	21




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299676&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299676&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299676&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







ANOVA Model
TVDCSUM ~ EPSUM
means171.83.0714.3166.3338.16710.3121416-3-11.333

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
TVDCSUM  ~  EPSUM \tabularnewline
means & 17 & 1.8 & 3.071 & 4.316 & 6.333 & 8.167 & 10.3 & 12 & 14 & 16 & -3 & -11.333 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299676&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]TVDCSUM  ~  EPSUM[/C][/ROW]
[ROW][C]means[/C][C]17[/C][C]1.8[/C][C]3.071[/C][C]4.316[/C][C]6.333[/C][C]8.167[/C][C]10.3[/C][C]12[/C][C]14[/C][C]16[/C][C]-3[/C][C]-11.333[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299676&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299676&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
TVDCSUM ~ EPSUM
means171.83.0714.3166.3338.16710.3121416-3-11.333







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
EPSUM111967.624178.875252.6250
Residuals9164.4340.708

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
EPSUM & 11 & 1967.624 & 178.875 & 252.625 & 0 \tabularnewline
Residuals & 91 & 64.434 & 0.708 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299676&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]EPSUM[/C][C]11[/C][C]1967.624[/C][C]178.875[/C][C]252.625[/C][C]0[/C][/ROW]
[ROW][C]Residuals[/C][C]91[/C][C]64.434[/C][C]0.708[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299676&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299676&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
EPSUM111967.624178.875252.6250
Residuals9164.4340.708







Tukey Honest Significant Difference Comparisons
difflwruprp adj
11-101.8-1.2924.8920.723
12-103.0710.155.9930.031
13-104.3161.427.2120
14-106.3333.4529.2140
15-108.1675.26611.0670
16-1010.37.33913.2610
17-10128.90815.0920
18-101410.00817.9920
19-101612.00819.9920
8-10-3-6.4570.4570.155
NA-10-11.333-14.593-8.0740
12-111.271-0.1992.7420.159
13-112.5161.0973.9350
14-114.5333.1465.9210
15-116.3674.947.7940
16-118.56.95410.0460
17-1110.28.41511.9850
18-1112.29.10815.2920
19-1114.211.10817.2920
8-11-4.8-7.162-2.4380
NA-11-13.133-15.195-11.0720
13-121.2440.252.2390.003
14-123.2622.3134.2110
15-125.0954.0896.1010
16-127.2296.068.3970
17-128.9297.45810.3990
18-1210.9298.00713.850
19-1212.92910.00715.850
8-12-6.071-8.205-3.9380
NA-12-14.405-16.201-12.6090
14-132.0181.1512.8840
15-133.8512.9224.7790
16-135.9844.8817.0870
17-137.6846.2659.1030
18-139.6846.78812.580
19-1311.6848.78814.580
8-13-7.316-9.414-5.2170
NA-13-15.649-17.403-13.8950
15-141.8330.9532.7140
16-143.9672.9045.0290
17-145.6674.2797.0540
18-147.6674.78610.5480
19-149.6676.78612.5480
8-14-9.333-11.411-7.2560
NA-14-17.667-19.395-15.9380
16-152.1331.023.2470
17-153.8332.4065.260
18-155.8332.9338.7340
19-157.8334.93310.7340
8-15-11.167-13.271-9.0630
NA-15-19.5-21.26-17.740
17-161.70.1543.2460.019
18-163.70.7396.6610.004
19-165.72.7398.6610
8-16-13.3-15.487-11.1130
NA-16-21.633-23.492-19.7750
18-172-1.0925.0920.575
19-1740.9087.0920.002
8-17-15-17.362-12.6380
NA-17-23.333-25.395-21.2720
19-182-1.9925.9920.872
8-18-17-20.457-13.5430
NA-18-25.333-28.593-22.0740
8-19-19-22.457-15.5430
NA-19-27.333-30.593-24.0740
NA-8-8.333-10.91-5.7560

\begin{tabular}{lllllllll}
\hline
Tukey Honest Significant Difference Comparisons \tabularnewline
  & diff & lwr & upr & p adj \tabularnewline
11-10 & 1.8 & -1.292 & 4.892 & 0.723 \tabularnewline
12-10 & 3.071 & 0.15 & 5.993 & 0.031 \tabularnewline
13-10 & 4.316 & 1.42 & 7.212 & 0 \tabularnewline
14-10 & 6.333 & 3.452 & 9.214 & 0 \tabularnewline
15-10 & 8.167 & 5.266 & 11.067 & 0 \tabularnewline
16-10 & 10.3 & 7.339 & 13.261 & 0 \tabularnewline
17-10 & 12 & 8.908 & 15.092 & 0 \tabularnewline
18-10 & 14 & 10.008 & 17.992 & 0 \tabularnewline
19-10 & 16 & 12.008 & 19.992 & 0 \tabularnewline
8-10 & -3 & -6.457 & 0.457 & 0.155 \tabularnewline
NA-10 & -11.333 & -14.593 & -8.074 & 0 \tabularnewline
12-11 & 1.271 & -0.199 & 2.742 & 0.159 \tabularnewline
13-11 & 2.516 & 1.097 & 3.935 & 0 \tabularnewline
14-11 & 4.533 & 3.146 & 5.921 & 0 \tabularnewline
15-11 & 6.367 & 4.94 & 7.794 & 0 \tabularnewline
16-11 & 8.5 & 6.954 & 10.046 & 0 \tabularnewline
17-11 & 10.2 & 8.415 & 11.985 & 0 \tabularnewline
18-11 & 12.2 & 9.108 & 15.292 & 0 \tabularnewline
19-11 & 14.2 & 11.108 & 17.292 & 0 \tabularnewline
8-11 & -4.8 & -7.162 & -2.438 & 0 \tabularnewline
NA-11 & -13.133 & -15.195 & -11.072 & 0 \tabularnewline
13-12 & 1.244 & 0.25 & 2.239 & 0.003 \tabularnewline
14-12 & 3.262 & 2.313 & 4.211 & 0 \tabularnewline
15-12 & 5.095 & 4.089 & 6.101 & 0 \tabularnewline
16-12 & 7.229 & 6.06 & 8.397 & 0 \tabularnewline
17-12 & 8.929 & 7.458 & 10.399 & 0 \tabularnewline
18-12 & 10.929 & 8.007 & 13.85 & 0 \tabularnewline
19-12 & 12.929 & 10.007 & 15.85 & 0 \tabularnewline
8-12 & -6.071 & -8.205 & -3.938 & 0 \tabularnewline
NA-12 & -14.405 & -16.201 & -12.609 & 0 \tabularnewline
14-13 & 2.018 & 1.151 & 2.884 & 0 \tabularnewline
15-13 & 3.851 & 2.922 & 4.779 & 0 \tabularnewline
16-13 & 5.984 & 4.881 & 7.087 & 0 \tabularnewline
17-13 & 7.684 & 6.265 & 9.103 & 0 \tabularnewline
18-13 & 9.684 & 6.788 & 12.58 & 0 \tabularnewline
19-13 & 11.684 & 8.788 & 14.58 & 0 \tabularnewline
8-13 & -7.316 & -9.414 & -5.217 & 0 \tabularnewline
NA-13 & -15.649 & -17.403 & -13.895 & 0 \tabularnewline
15-14 & 1.833 & 0.953 & 2.714 & 0 \tabularnewline
16-14 & 3.967 & 2.904 & 5.029 & 0 \tabularnewline
17-14 & 5.667 & 4.279 & 7.054 & 0 \tabularnewline
18-14 & 7.667 & 4.786 & 10.548 & 0 \tabularnewline
19-14 & 9.667 & 6.786 & 12.548 & 0 \tabularnewline
8-14 & -9.333 & -11.411 & -7.256 & 0 \tabularnewline
NA-14 & -17.667 & -19.395 & -15.938 & 0 \tabularnewline
16-15 & 2.133 & 1.02 & 3.247 & 0 \tabularnewline
17-15 & 3.833 & 2.406 & 5.26 & 0 \tabularnewline
18-15 & 5.833 & 2.933 & 8.734 & 0 \tabularnewline
19-15 & 7.833 & 4.933 & 10.734 & 0 \tabularnewline
8-15 & -11.167 & -13.271 & -9.063 & 0 \tabularnewline
NA-15 & -19.5 & -21.26 & -17.74 & 0 \tabularnewline
17-16 & 1.7 & 0.154 & 3.246 & 0.019 \tabularnewline
18-16 & 3.7 & 0.739 & 6.661 & 0.004 \tabularnewline
19-16 & 5.7 & 2.739 & 8.661 & 0 \tabularnewline
8-16 & -13.3 & -15.487 & -11.113 & 0 \tabularnewline
NA-16 & -21.633 & -23.492 & -19.775 & 0 \tabularnewline
18-17 & 2 & -1.092 & 5.092 & 0.575 \tabularnewline
19-17 & 4 & 0.908 & 7.092 & 0.002 \tabularnewline
8-17 & -15 & -17.362 & -12.638 & 0 \tabularnewline
NA-17 & -23.333 & -25.395 & -21.272 & 0 \tabularnewline
19-18 & 2 & -1.992 & 5.992 & 0.872 \tabularnewline
8-18 & -17 & -20.457 & -13.543 & 0 \tabularnewline
NA-18 & -25.333 & -28.593 & -22.074 & 0 \tabularnewline
8-19 & -19 & -22.457 & -15.543 & 0 \tabularnewline
NA-19 & -27.333 & -30.593 & -24.074 & 0 \tabularnewline
NA-8 & -8.333 & -10.91 & -5.756 & 0 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299676&T=3

[TABLE]
[ROW][C]Tukey Honest Significant Difference Comparisons[/C][/ROW]
[ROW][C] [/C][C]diff[/C][C]lwr[/C][C]upr[/C][C]p adj[/C][/ROW]
[ROW][C]11-10[/C][C]1.8[/C][C]-1.292[/C][C]4.892[/C][C]0.723[/C][/ROW]
[ROW][C]12-10[/C][C]3.071[/C][C]0.15[/C][C]5.993[/C][C]0.031[/C][/ROW]
[ROW][C]13-10[/C][C]4.316[/C][C]1.42[/C][C]7.212[/C][C]0[/C][/ROW]
[ROW][C]14-10[/C][C]6.333[/C][C]3.452[/C][C]9.214[/C][C]0[/C][/ROW]
[ROW][C]15-10[/C][C]8.167[/C][C]5.266[/C][C]11.067[/C][C]0[/C][/ROW]
[ROW][C]16-10[/C][C]10.3[/C][C]7.339[/C][C]13.261[/C][C]0[/C][/ROW]
[ROW][C]17-10[/C][C]12[/C][C]8.908[/C][C]15.092[/C][C]0[/C][/ROW]
[ROW][C]18-10[/C][C]14[/C][C]10.008[/C][C]17.992[/C][C]0[/C][/ROW]
[ROW][C]19-10[/C][C]16[/C][C]12.008[/C][C]19.992[/C][C]0[/C][/ROW]
[ROW][C]8-10[/C][C]-3[/C][C]-6.457[/C][C]0.457[/C][C]0.155[/C][/ROW]
[ROW][C]NA-10[/C][C]-11.333[/C][C]-14.593[/C][C]-8.074[/C][C]0[/C][/ROW]
[ROW][C]12-11[/C][C]1.271[/C][C]-0.199[/C][C]2.742[/C][C]0.159[/C][/ROW]
[ROW][C]13-11[/C][C]2.516[/C][C]1.097[/C][C]3.935[/C][C]0[/C][/ROW]
[ROW][C]14-11[/C][C]4.533[/C][C]3.146[/C][C]5.921[/C][C]0[/C][/ROW]
[ROW][C]15-11[/C][C]6.367[/C][C]4.94[/C][C]7.794[/C][C]0[/C][/ROW]
[ROW][C]16-11[/C][C]8.5[/C][C]6.954[/C][C]10.046[/C][C]0[/C][/ROW]
[ROW][C]17-11[/C][C]10.2[/C][C]8.415[/C][C]11.985[/C][C]0[/C][/ROW]
[ROW][C]18-11[/C][C]12.2[/C][C]9.108[/C][C]15.292[/C][C]0[/C][/ROW]
[ROW][C]19-11[/C][C]14.2[/C][C]11.108[/C][C]17.292[/C][C]0[/C][/ROW]
[ROW][C]8-11[/C][C]-4.8[/C][C]-7.162[/C][C]-2.438[/C][C]0[/C][/ROW]
[ROW][C]NA-11[/C][C]-13.133[/C][C]-15.195[/C][C]-11.072[/C][C]0[/C][/ROW]
[ROW][C]13-12[/C][C]1.244[/C][C]0.25[/C][C]2.239[/C][C]0.003[/C][/ROW]
[ROW][C]14-12[/C][C]3.262[/C][C]2.313[/C][C]4.211[/C][C]0[/C][/ROW]
[ROW][C]15-12[/C][C]5.095[/C][C]4.089[/C][C]6.101[/C][C]0[/C][/ROW]
[ROW][C]16-12[/C][C]7.229[/C][C]6.06[/C][C]8.397[/C][C]0[/C][/ROW]
[ROW][C]17-12[/C][C]8.929[/C][C]7.458[/C][C]10.399[/C][C]0[/C][/ROW]
[ROW][C]18-12[/C][C]10.929[/C][C]8.007[/C][C]13.85[/C][C]0[/C][/ROW]
[ROW][C]19-12[/C][C]12.929[/C][C]10.007[/C][C]15.85[/C][C]0[/C][/ROW]
[ROW][C]8-12[/C][C]-6.071[/C][C]-8.205[/C][C]-3.938[/C][C]0[/C][/ROW]
[ROW][C]NA-12[/C][C]-14.405[/C][C]-16.201[/C][C]-12.609[/C][C]0[/C][/ROW]
[ROW][C]14-13[/C][C]2.018[/C][C]1.151[/C][C]2.884[/C][C]0[/C][/ROW]
[ROW][C]15-13[/C][C]3.851[/C][C]2.922[/C][C]4.779[/C][C]0[/C][/ROW]
[ROW][C]16-13[/C][C]5.984[/C][C]4.881[/C][C]7.087[/C][C]0[/C][/ROW]
[ROW][C]17-13[/C][C]7.684[/C][C]6.265[/C][C]9.103[/C][C]0[/C][/ROW]
[ROW][C]18-13[/C][C]9.684[/C][C]6.788[/C][C]12.58[/C][C]0[/C][/ROW]
[ROW][C]19-13[/C][C]11.684[/C][C]8.788[/C][C]14.58[/C][C]0[/C][/ROW]
[ROW][C]8-13[/C][C]-7.316[/C][C]-9.414[/C][C]-5.217[/C][C]0[/C][/ROW]
[ROW][C]NA-13[/C][C]-15.649[/C][C]-17.403[/C][C]-13.895[/C][C]0[/C][/ROW]
[ROW][C]15-14[/C][C]1.833[/C][C]0.953[/C][C]2.714[/C][C]0[/C][/ROW]
[ROW][C]16-14[/C][C]3.967[/C][C]2.904[/C][C]5.029[/C][C]0[/C][/ROW]
[ROW][C]17-14[/C][C]5.667[/C][C]4.279[/C][C]7.054[/C][C]0[/C][/ROW]
[ROW][C]18-14[/C][C]7.667[/C][C]4.786[/C][C]10.548[/C][C]0[/C][/ROW]
[ROW][C]19-14[/C][C]9.667[/C][C]6.786[/C][C]12.548[/C][C]0[/C][/ROW]
[ROW][C]8-14[/C][C]-9.333[/C][C]-11.411[/C][C]-7.256[/C][C]0[/C][/ROW]
[ROW][C]NA-14[/C][C]-17.667[/C][C]-19.395[/C][C]-15.938[/C][C]0[/C][/ROW]
[ROW][C]16-15[/C][C]2.133[/C][C]1.02[/C][C]3.247[/C][C]0[/C][/ROW]
[ROW][C]17-15[/C][C]3.833[/C][C]2.406[/C][C]5.26[/C][C]0[/C][/ROW]
[ROW][C]18-15[/C][C]5.833[/C][C]2.933[/C][C]8.734[/C][C]0[/C][/ROW]
[ROW][C]19-15[/C][C]7.833[/C][C]4.933[/C][C]10.734[/C][C]0[/C][/ROW]
[ROW][C]8-15[/C][C]-11.167[/C][C]-13.271[/C][C]-9.063[/C][C]0[/C][/ROW]
[ROW][C]NA-15[/C][C]-19.5[/C][C]-21.26[/C][C]-17.74[/C][C]0[/C][/ROW]
[ROW][C]17-16[/C][C]1.7[/C][C]0.154[/C][C]3.246[/C][C]0.019[/C][/ROW]
[ROW][C]18-16[/C][C]3.7[/C][C]0.739[/C][C]6.661[/C][C]0.004[/C][/ROW]
[ROW][C]19-16[/C][C]5.7[/C][C]2.739[/C][C]8.661[/C][C]0[/C][/ROW]
[ROW][C]8-16[/C][C]-13.3[/C][C]-15.487[/C][C]-11.113[/C][C]0[/C][/ROW]
[ROW][C]NA-16[/C][C]-21.633[/C][C]-23.492[/C][C]-19.775[/C][C]0[/C][/ROW]
[ROW][C]18-17[/C][C]2[/C][C]-1.092[/C][C]5.092[/C][C]0.575[/C][/ROW]
[ROW][C]19-17[/C][C]4[/C][C]0.908[/C][C]7.092[/C][C]0.002[/C][/ROW]
[ROW][C]8-17[/C][C]-15[/C][C]-17.362[/C][C]-12.638[/C][C]0[/C][/ROW]
[ROW][C]NA-17[/C][C]-23.333[/C][C]-25.395[/C][C]-21.272[/C][C]0[/C][/ROW]
[ROW][C]19-18[/C][C]2[/C][C]-1.992[/C][C]5.992[/C][C]0.872[/C][/ROW]
[ROW][C]8-18[/C][C]-17[/C][C]-20.457[/C][C]-13.543[/C][C]0[/C][/ROW]
[ROW][C]NA-18[/C][C]-25.333[/C][C]-28.593[/C][C]-22.074[/C][C]0[/C][/ROW]
[ROW][C]8-19[/C][C]-19[/C][C]-22.457[/C][C]-15.543[/C][C]0[/C][/ROW]
[ROW][C]NA-19[/C][C]-27.333[/C][C]-30.593[/C][C]-24.074[/C][C]0[/C][/ROW]
[ROW][C]NA-8[/C][C]-8.333[/C][C]-10.91[/C][C]-5.756[/C][C]0[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299676&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299676&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tukey Honest Significant Difference Comparisons
difflwruprp adj
11-101.8-1.2924.8920.723
12-103.0710.155.9930.031
13-104.3161.427.2120
14-106.3333.4529.2140
15-108.1675.26611.0670
16-1010.37.33913.2610
17-10128.90815.0920
18-101410.00817.9920
19-101612.00819.9920
8-10-3-6.4570.4570.155
NA-10-11.333-14.593-8.0740
12-111.271-0.1992.7420.159
13-112.5161.0973.9350
14-114.5333.1465.9210
15-116.3674.947.7940
16-118.56.95410.0460
17-1110.28.41511.9850
18-1112.29.10815.2920
19-1114.211.10817.2920
8-11-4.8-7.162-2.4380
NA-11-13.133-15.195-11.0720
13-121.2440.252.2390.003
14-123.2622.3134.2110
15-125.0954.0896.1010
16-127.2296.068.3970
17-128.9297.45810.3990
18-1210.9298.00713.850
19-1212.92910.00715.850
8-12-6.071-8.205-3.9380
NA-12-14.405-16.201-12.6090
14-132.0181.1512.8840
15-133.8512.9224.7790
16-135.9844.8817.0870
17-137.6846.2659.1030
18-139.6846.78812.580
19-1311.6848.78814.580
8-13-7.316-9.414-5.2170
NA-13-15.649-17.403-13.8950
15-141.8330.9532.7140
16-143.9672.9045.0290
17-145.6674.2797.0540
18-147.6674.78610.5480
19-149.6676.78612.5480
8-14-9.333-11.411-7.2560
NA-14-17.667-19.395-15.9380
16-152.1331.023.2470
17-153.8332.4065.260
18-155.8332.9338.7340
19-157.8334.93310.7340
8-15-11.167-13.271-9.0630
NA-15-19.5-21.26-17.740
17-161.70.1543.2460.019
18-163.70.7396.6610.004
19-165.72.7398.6610
8-16-13.3-15.487-11.1130
NA-16-21.633-23.492-19.7750
18-172-1.0925.0920.575
19-1740.9087.0920.002
8-17-15-17.362-12.6380
NA-17-23.333-25.395-21.2720
19-182-1.9925.9920.872
8-18-17-20.457-13.5430
NA-18-25.333-28.593-22.0740
8-19-19-22.457-15.5430
NA-19-27.333-30.593-24.0740
NA-8-8.333-10.91-5.7560







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group113.3840.001
91

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 11 & 3.384 & 0.001 \tabularnewline
  & 91 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299676&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]11[/C][C]3.384[/C][C]0.001[/C][/ROW]
[ROW][C] [/C][C]91[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299676&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299676&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group113.3840.001
91



Parameters (Session):
par1 = 2 ; par2 = 1 ; par3 = TRUE ;
Parameters (R input):
par1 = 2 ; par2 = 1 ; par3 = TRUE ;
R code (references can be found in the software module):
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
intercept<-as.logical(par3)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
xdf<-data.frame(x1,f1)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
names(xdf)<-c('Response', 'Treatment')
if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmxdf$coefficients)){
a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$Df[2],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
dev.off()
if(intercept==TRUE){
'Tukey Plot'
thsd<-TukeyHSD(aov.xdf)
bitmap(file='TukeyHSDPlot.png')
plot(thsd)
dev.off()
}
if(intercept==TRUE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(i in 1:length(rownames(thsd[[1]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-leveneTest(lmxdf)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')