Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationWed, 14 Dec 2016 18:42:19 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481737521k022cgp0gt1osv4.htm/, Retrieved Fri, 01 Nov 2024 03:47:01 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299660, Retrieved Fri, 01 Nov 2024 03:47:01 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact84
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [] [2016-12-14 17:42:19] [59384cc4294cbecf8e09b453c4247580] [Current]
Feedback Forum

Post a new message
Dataseries X:
2622.4
2607.5
2556.6
2569.3
2533.2
2529
2577.8
2556.6
2558.7
2541.7
2473.8
2461
2435.5
2414.3
2350.6
2329.4
2278.4
2252.9
2269.9
2227.4
2195.6
2204.1
2195.6
2202
2157.4
2142.5
2125.5
2110.7
2072.4
2076.7
2095.8
2023.6
2004.5
1985.4
1953.5
1915.3
1881.3
1821.9
1775.2
1790
1758.2
1747.6
1679.6
1692.3
1675.4
1639.3
1622.3
1577.7
1581.9
1562.8
1552.2
1535.2
1507.6




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299660&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299660&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299660&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.08470.0135-0.0149-0.1803-0.5691-0.344-0.3765
(p-val)(0.9661 )(0.9567 )(0.9272 )(0.9279 )(0.057 )(0.1419 )(0.2726 )
Estimates ( 2 )00.0058-0.0137-0.0958-0.5691-0.3433-0.3762
(p-val)(NA )(0.9716 )(0.933 )(0.5415 )(0.0575 )(0.1416 )(0.2742 )
Estimates ( 3 )00-0.0137-0.0948-0.5694-0.3426-0.3787
(p-val)(NA )(NA )(0.9328 )(0.5372 )(0.0562 )(0.1408 )(0.2587 )
Estimates ( 4 )000-0.0938-0.5715-0.3412-0.3748
(p-val)(NA )(NA )(NA )(0.5419 )(0.0575 )(0.1443 )(0.2654 )
Estimates ( 5 )0000-0.5938-0.3304-0.3727
(p-val)(NA )(NA )(NA )(NA )(0.048 )(0.1621 )(0.2684 )
Estimates ( 6 )0000-0.8619-0.48030
(p-val)(NA )(NA )(NA )(NA )(0 )(0.0011 )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & 0.0847 & 0.0135 & -0.0149 & -0.1803 & -0.5691 & -0.344 & -0.3765 \tabularnewline
(p-val) & (0.9661 ) & (0.9567 ) & (0.9272 ) & (0.9279 ) & (0.057 ) & (0.1419 ) & (0.2726 ) \tabularnewline
Estimates ( 2 ) & 0 & 0.0058 & -0.0137 & -0.0958 & -0.5691 & -0.3433 & -0.3762 \tabularnewline
(p-val) & (NA ) & (0.9716 ) & (0.933 ) & (0.5415 ) & (0.0575 ) & (0.1416 ) & (0.2742 ) \tabularnewline
Estimates ( 3 ) & 0 & 0 & -0.0137 & -0.0948 & -0.5694 & -0.3426 & -0.3787 \tabularnewline
(p-val) & (NA ) & (NA ) & (0.9328 ) & (0.5372 ) & (0.0562 ) & (0.1408 ) & (0.2587 ) \tabularnewline
Estimates ( 4 ) & 0 & 0 & 0 & -0.0938 & -0.5715 & -0.3412 & -0.3748 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (0.5419 ) & (0.0575 ) & (0.1443 ) & (0.2654 ) \tabularnewline
Estimates ( 5 ) & 0 & 0 & 0 & 0 & -0.5938 & -0.3304 & -0.3727 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (0.048 ) & (0.1621 ) & (0.2684 ) \tabularnewline
Estimates ( 6 ) & 0 & 0 & 0 & 0 & -0.8619 & -0.4803 & 0 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (0 ) & (0.0011 ) & (NA ) \tabularnewline
Estimates ( 7 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299660&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]0.0847[/C][C]0.0135[/C][C]-0.0149[/C][C]-0.1803[/C][C]-0.5691[/C][C]-0.344[/C][C]-0.3765[/C][/ROW]
[ROW][C](p-val)[/C][C](0.9661 )[/C][C](0.9567 )[/C][C](0.9272 )[/C][C](0.9279 )[/C][C](0.057 )[/C][C](0.1419 )[/C][C](0.2726 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0[/C][C]0.0058[/C][C]-0.0137[/C][C]-0.0958[/C][C]-0.5691[/C][C]-0.3433[/C][C]-0.3762[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.9716 )[/C][C](0.933 )[/C][C](0.5415 )[/C][C](0.0575 )[/C][C](0.1416 )[/C][C](0.2742 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0[/C][C]0[/C][C]-0.0137[/C][C]-0.0948[/C][C]-0.5694[/C][C]-0.3426[/C][C]-0.3787[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](0.9328 )[/C][C](0.5372 )[/C][C](0.0562 )[/C][C](0.1408 )[/C][C](0.2587 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.0938[/C][C]-0.5715[/C][C]-0.3412[/C][C]-0.3748[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0.5419 )[/C][C](0.0575 )[/C][C](0.1443 )[/C][C](0.2654 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.5938[/C][C]-0.3304[/C][C]-0.3727[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0.048 )[/C][C](0.1621 )[/C][C](0.2684 )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.8619[/C][C]-0.4803[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0 )[/C][C](0.0011 )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299660&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299660&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )0.08470.0135-0.0149-0.1803-0.5691-0.344-0.3765
(p-val)(0.9661 )(0.9567 )(0.9272 )(0.9279 )(0.057 )(0.1419 )(0.2726 )
Estimates ( 2 )00.0058-0.0137-0.0958-0.5691-0.3433-0.3762
(p-val)(NA )(0.9716 )(0.933 )(0.5415 )(0.0575 )(0.1416 )(0.2742 )
Estimates ( 3 )00-0.0137-0.0948-0.5694-0.3426-0.3787
(p-val)(NA )(NA )(0.9328 )(0.5372 )(0.0562 )(0.1408 )(0.2587 )
Estimates ( 4 )000-0.0938-0.5715-0.3412-0.3748
(p-val)(NA )(NA )(NA )(0.5419 )(0.0575 )(0.1443 )(0.2654 )
Estimates ( 5 )0000-0.5938-0.3304-0.3727
(p-val)(NA )(NA )(NA )(NA )(0.048 )(0.1621 )(0.2684 )
Estimates ( 6 )0000-0.8619-0.48030
(p-val)(NA )(NA )(NA )(NA )(0 )(0.0011 )(NA )
Estimates ( 7 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
-6.61596174009475
-4.3909203581913
36.8956895945783
-20.6879770238817
-22.1523961959125
-6.00114620001329
-51.7505493342574
-3.14341308042047
-29.930982706094
-18.4069872218303
-1.3873112283255
-15.1711039899778
-0.654205430598046
-23.9452180951011
0.775485610778237
11.3115131047268
40.8356900968608
16.3756952919881
-60.0209699048205
6.17465816954337
12.2540288129383
-2.90583165256298
15.9236440965287
18.59190428832
19.1540643521596
-45.6383679463291
21.7759150561054
-9.39890815324305
8.6640949726289
-26.2865860015654
-28.4993694281238
-29.1045342497447
-15.844019203749
20.145833698134
-2.71834145011808
-8.12173940596439
-55.0968141344711
49.922124782265
6.81359683758347
-24.6842672726688
15.9609623097838
-34.6802789327287
13.9353390125244
33.8446116749879
17.4144774837322
-9.12125395539557
4.16890684980044

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
-6.61596174009475 \tabularnewline
-4.3909203581913 \tabularnewline
36.8956895945783 \tabularnewline
-20.6879770238817 \tabularnewline
-22.1523961959125 \tabularnewline
-6.00114620001329 \tabularnewline
-51.7505493342574 \tabularnewline
-3.14341308042047 \tabularnewline
-29.930982706094 \tabularnewline
-18.4069872218303 \tabularnewline
-1.3873112283255 \tabularnewline
-15.1711039899778 \tabularnewline
-0.654205430598046 \tabularnewline
-23.9452180951011 \tabularnewline
0.775485610778237 \tabularnewline
11.3115131047268 \tabularnewline
40.8356900968608 \tabularnewline
16.3756952919881 \tabularnewline
-60.0209699048205 \tabularnewline
6.17465816954337 \tabularnewline
12.2540288129383 \tabularnewline
-2.90583165256298 \tabularnewline
15.9236440965287 \tabularnewline
18.59190428832 \tabularnewline
19.1540643521596 \tabularnewline
-45.6383679463291 \tabularnewline
21.7759150561054 \tabularnewline
-9.39890815324305 \tabularnewline
8.6640949726289 \tabularnewline
-26.2865860015654 \tabularnewline
-28.4993694281238 \tabularnewline
-29.1045342497447 \tabularnewline
-15.844019203749 \tabularnewline
20.145833698134 \tabularnewline
-2.71834145011808 \tabularnewline
-8.12173940596439 \tabularnewline
-55.0968141344711 \tabularnewline
49.922124782265 \tabularnewline
6.81359683758347 \tabularnewline
-24.6842672726688 \tabularnewline
15.9609623097838 \tabularnewline
-34.6802789327287 \tabularnewline
13.9353390125244 \tabularnewline
33.8446116749879 \tabularnewline
17.4144774837322 \tabularnewline
-9.12125395539557 \tabularnewline
4.16890684980044 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299660&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]-6.61596174009475[/C][/ROW]
[ROW][C]-4.3909203581913[/C][/ROW]
[ROW][C]36.8956895945783[/C][/ROW]
[ROW][C]-20.6879770238817[/C][/ROW]
[ROW][C]-22.1523961959125[/C][/ROW]
[ROW][C]-6.00114620001329[/C][/ROW]
[ROW][C]-51.7505493342574[/C][/ROW]
[ROW][C]-3.14341308042047[/C][/ROW]
[ROW][C]-29.930982706094[/C][/ROW]
[ROW][C]-18.4069872218303[/C][/ROW]
[ROW][C]-1.3873112283255[/C][/ROW]
[ROW][C]-15.1711039899778[/C][/ROW]
[ROW][C]-0.654205430598046[/C][/ROW]
[ROW][C]-23.9452180951011[/C][/ROW]
[ROW][C]0.775485610778237[/C][/ROW]
[ROW][C]11.3115131047268[/C][/ROW]
[ROW][C]40.8356900968608[/C][/ROW]
[ROW][C]16.3756952919881[/C][/ROW]
[ROW][C]-60.0209699048205[/C][/ROW]
[ROW][C]6.17465816954337[/C][/ROW]
[ROW][C]12.2540288129383[/C][/ROW]
[ROW][C]-2.90583165256298[/C][/ROW]
[ROW][C]15.9236440965287[/C][/ROW]
[ROW][C]18.59190428832[/C][/ROW]
[ROW][C]19.1540643521596[/C][/ROW]
[ROW][C]-45.6383679463291[/C][/ROW]
[ROW][C]21.7759150561054[/C][/ROW]
[ROW][C]-9.39890815324305[/C][/ROW]
[ROW][C]8.6640949726289[/C][/ROW]
[ROW][C]-26.2865860015654[/C][/ROW]
[ROW][C]-28.4993694281238[/C][/ROW]
[ROW][C]-29.1045342497447[/C][/ROW]
[ROW][C]-15.844019203749[/C][/ROW]
[ROW][C]20.145833698134[/C][/ROW]
[ROW][C]-2.71834145011808[/C][/ROW]
[ROW][C]-8.12173940596439[/C][/ROW]
[ROW][C]-55.0968141344711[/C][/ROW]
[ROW][C]49.922124782265[/C][/ROW]
[ROW][C]6.81359683758347[/C][/ROW]
[ROW][C]-24.6842672726688[/C][/ROW]
[ROW][C]15.9609623097838[/C][/ROW]
[ROW][C]-34.6802789327287[/C][/ROW]
[ROW][C]13.9353390125244[/C][/ROW]
[ROW][C]33.8446116749879[/C][/ROW]
[ROW][C]17.4144774837322[/C][/ROW]
[ROW][C]-9.12125395539557[/C][/ROW]
[ROW][C]4.16890684980044[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299660&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299660&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
-6.61596174009475
-4.3909203581913
36.8956895945783
-20.6879770238817
-22.1523961959125
-6.00114620001329
-51.7505493342574
-3.14341308042047
-29.930982706094
-18.4069872218303
-1.3873112283255
-15.1711039899778
-0.654205430598046
-23.9452180951011
0.775485610778237
11.3115131047268
40.8356900968608
16.3756952919881
-60.0209699048205
6.17465816954337
12.2540288129383
-2.90583165256298
15.9236440965287
18.59190428832
19.1540643521596
-45.6383679463291
21.7759150561054
-9.39890815324305
8.6640949726289
-26.2865860015654
-28.4993694281238
-29.1045342497447
-15.844019203749
20.145833698134
-2.71834145011808
-8.12173940596439
-55.0968141344711
49.922124782265
6.81359683758347
-24.6842672726688
15.9609623097838
-34.6802789327287
13.9353390125244
33.8446116749879
17.4144774837322
-9.12125395539557
4.16890684980044



Parameters (Session):
par1 = 0 ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 6 ; par6 = 0 ; par7 = 0 ; par8 = 0 ; par9 = 0 ; par10 = FALSE ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 6 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')