Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 14 Dec 2016 18:07:31 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481735259rxwfmjrz3qbc319.htm/, Retrieved Fri, 01 Nov 2024 03:45:05 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299637, Retrieved Fri, 01 Nov 2024 03:45:05 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact105
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [] [2016-12-14 17:07:31] [130d73899007e5ff8a4f636b9bcfb397] [Current]
Feedback Forum

Post a new message
Dataseries X:
4360
3120
4120
4000
5360
5240
4240
5460
4660
5160
5500
3820
5380
4920
4420
5700
6000
7160
6700
4520
5980
6240
4780
4800
5900
4200
5100
5440
5820
6160
7060
6760
5980
7020
6420
6620
7500
6180
8060
6500
6360
7760
7080
7940
7340
7860
6720
7680
8920
7200
7800




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299637&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299637&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299637&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal511052
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 511 & 0 & 52 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299637&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]511[/C][C]0[/C][C]52[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299637&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299637&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal511052
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
143604171.42327348058495.8145489760064052.76217754342-188.576726519423
231202964.12786530968-875.8009581243754151.6730928147-155.872134690323
341204172.83261832024-183.4166264062164250.5840080859852.8326183202362
440003925.12641146341-273.0112865085434347.88487504513-74.8735885365859
553606150.31866994592124.4955880498044445.18574200428790.318669945918
652405196.65434034623740.7274728057394542.61818684803-43.3456596537717
742403487.98962853198351.9597397762334640.05063169179-752.010371468019
854606009.97432797849174.1844724354544735.84119958606549.97432797849
946604571.9576916857-83.58945916602364831.63176748033-88.0423083143023
1051604965.12146978655429.8726414237534925.0058887897-194.878530213454
1155006333.28555768235-351.665567781435018.38001009908833.285557682354
1238203060.27171061999-549.5702286591065129.29851803911-759.728289380007
1353805023.96842504484495.8145489760065240.21702597915-356.031574955156
1449205386.05860794688-875.8009581243755329.7423501775466.058607946879
1544203604.14895203037-183.4166264062165419.26767437584-815.851047969625
1657006200.05477830427-273.0112865085435472.95650820427500.054778304271
1760006348.85906991749124.4955880498045526.6453420327348.859069917494
1871608024.21946211202740.7274728057395555.05306508224864.219462112017
1967007464.57947209198351.9597397762335583.46078813179764.57947209198
2045203286.14725052866174.1844724354545579.66827703589-1233.85274947134
2159806467.71369322603-83.58945916602365575.87576593999487.71369322603
2262406501.50398253703429.8726414237535548.62337603922261.503982537032
2347804390.29458164299-351.665567781435521.37098613844-389.705418357006
2448004631.87853130816-549.5702286591065517.69169735095-168.121468691843
2559005790.17304246053495.8145489760065514.01240856346-109.826957539467
2642003704.7672411993-875.8009581243755571.03371692508-495.232758800704
2751004755.36160111952-183.4166264062165628.0550252867-344.638398880481
2854405424.31663301812-273.0112865085435728.69465349042-15.6833669818798
2958205686.17013025605124.4955880498045829.33428169415-133.829869743952
3061605608.39439042632740.7274728057395970.87813676794-551.605609573681
3170607655.61826838203351.9597397762336112.42199184174595.61826838203
3267607065.85946391716174.1844724354546279.95606364738305.859463917164
3359805596.099323713-83.58945916602366447.49013545303-383.900676287003
3470207028.34823203658429.8726414237536581.779126539678.34823203658198
3564206475.59745015513-351.665567781436716.068117626355.5974501551264
3666206989.84078447641-549.5702286591066799.7294441827369.840784476411
3775007620.79468028491495.8145489760066883.39077073909120.794680284907
3861806287.07009651331-875.8009581243756948.73086161107107.070096513307
3980609289.34567392317-183.4166264062167014.070952483051229.34567392317
4065006196.46519045348-273.0112865085437076.54609605506-303.534809546521
4163605456.48317232312124.4955880498047139.02123962708-903.516827676881
4277607560.91833020166740.7274728057397218.35419699261-199.081669798345
4370806510.35310586563351.9597397762337297.68715435813-569.646894134367
4479408312.05656853056174.1844724354547393.75895903398372.056568530561
4573407273.75869545619-83.58945916602367489.83076370984-66.2413045438116
4678607701.56662372642429.8726414237537588.56073484983-158.433376273584
4767206104.3748617916-351.665567781437687.29070598983-615.625138208397
4876808116.90765371879-549.5702286591067792.66257494032436.90765371879
4989209446.15100713319495.8145489760067898.0344438908526.151007133191
5072007265.16276606404-875.8009581243758010.6381920603365.1627660640424
5178007660.17468617635-183.4166264062168123.24194022986-139.825313823648

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 4360 & 4171.42327348058 & 495.814548976006 & 4052.76217754342 & -188.576726519423 \tabularnewline
2 & 3120 & 2964.12786530968 & -875.800958124375 & 4151.6730928147 & -155.872134690323 \tabularnewline
3 & 4120 & 4172.83261832024 & -183.416626406216 & 4250.58400808598 & 52.8326183202362 \tabularnewline
4 & 4000 & 3925.12641146341 & -273.011286508543 & 4347.88487504513 & -74.8735885365859 \tabularnewline
5 & 5360 & 6150.31866994592 & 124.495588049804 & 4445.18574200428 & 790.318669945918 \tabularnewline
6 & 5240 & 5196.65434034623 & 740.727472805739 & 4542.61818684803 & -43.3456596537717 \tabularnewline
7 & 4240 & 3487.98962853198 & 351.959739776233 & 4640.05063169179 & -752.010371468019 \tabularnewline
8 & 5460 & 6009.97432797849 & 174.184472435454 & 4735.84119958606 & 549.97432797849 \tabularnewline
9 & 4660 & 4571.9576916857 & -83.5894591660236 & 4831.63176748033 & -88.0423083143023 \tabularnewline
10 & 5160 & 4965.12146978655 & 429.872641423753 & 4925.0058887897 & -194.878530213454 \tabularnewline
11 & 5500 & 6333.28555768235 & -351.66556778143 & 5018.38001009908 & 833.285557682354 \tabularnewline
12 & 3820 & 3060.27171061999 & -549.570228659106 & 5129.29851803911 & -759.728289380007 \tabularnewline
13 & 5380 & 5023.96842504484 & 495.814548976006 & 5240.21702597915 & -356.031574955156 \tabularnewline
14 & 4920 & 5386.05860794688 & -875.800958124375 & 5329.7423501775 & 466.058607946879 \tabularnewline
15 & 4420 & 3604.14895203037 & -183.416626406216 & 5419.26767437584 & -815.851047969625 \tabularnewline
16 & 5700 & 6200.05477830427 & -273.011286508543 & 5472.95650820427 & 500.054778304271 \tabularnewline
17 & 6000 & 6348.85906991749 & 124.495588049804 & 5526.6453420327 & 348.859069917494 \tabularnewline
18 & 7160 & 8024.21946211202 & 740.727472805739 & 5555.05306508224 & 864.219462112017 \tabularnewline
19 & 6700 & 7464.57947209198 & 351.959739776233 & 5583.46078813179 & 764.57947209198 \tabularnewline
20 & 4520 & 3286.14725052866 & 174.184472435454 & 5579.66827703589 & -1233.85274947134 \tabularnewline
21 & 5980 & 6467.71369322603 & -83.5894591660236 & 5575.87576593999 & 487.71369322603 \tabularnewline
22 & 6240 & 6501.50398253703 & 429.872641423753 & 5548.62337603922 & 261.503982537032 \tabularnewline
23 & 4780 & 4390.29458164299 & -351.66556778143 & 5521.37098613844 & -389.705418357006 \tabularnewline
24 & 4800 & 4631.87853130816 & -549.570228659106 & 5517.69169735095 & -168.121468691843 \tabularnewline
25 & 5900 & 5790.17304246053 & 495.814548976006 & 5514.01240856346 & -109.826957539467 \tabularnewline
26 & 4200 & 3704.7672411993 & -875.800958124375 & 5571.03371692508 & -495.232758800704 \tabularnewline
27 & 5100 & 4755.36160111952 & -183.416626406216 & 5628.0550252867 & -344.638398880481 \tabularnewline
28 & 5440 & 5424.31663301812 & -273.011286508543 & 5728.69465349042 & -15.6833669818798 \tabularnewline
29 & 5820 & 5686.17013025605 & 124.495588049804 & 5829.33428169415 & -133.829869743952 \tabularnewline
30 & 6160 & 5608.39439042632 & 740.727472805739 & 5970.87813676794 & -551.605609573681 \tabularnewline
31 & 7060 & 7655.61826838203 & 351.959739776233 & 6112.42199184174 & 595.61826838203 \tabularnewline
32 & 6760 & 7065.85946391716 & 174.184472435454 & 6279.95606364738 & 305.859463917164 \tabularnewline
33 & 5980 & 5596.099323713 & -83.5894591660236 & 6447.49013545303 & -383.900676287003 \tabularnewline
34 & 7020 & 7028.34823203658 & 429.872641423753 & 6581.77912653967 & 8.34823203658198 \tabularnewline
35 & 6420 & 6475.59745015513 & -351.66556778143 & 6716.0681176263 & 55.5974501551264 \tabularnewline
36 & 6620 & 6989.84078447641 & -549.570228659106 & 6799.7294441827 & 369.840784476411 \tabularnewline
37 & 7500 & 7620.79468028491 & 495.814548976006 & 6883.39077073909 & 120.794680284907 \tabularnewline
38 & 6180 & 6287.07009651331 & -875.800958124375 & 6948.73086161107 & 107.070096513307 \tabularnewline
39 & 8060 & 9289.34567392317 & -183.416626406216 & 7014.07095248305 & 1229.34567392317 \tabularnewline
40 & 6500 & 6196.46519045348 & -273.011286508543 & 7076.54609605506 & -303.534809546521 \tabularnewline
41 & 6360 & 5456.48317232312 & 124.495588049804 & 7139.02123962708 & -903.516827676881 \tabularnewline
42 & 7760 & 7560.91833020166 & 740.727472805739 & 7218.35419699261 & -199.081669798345 \tabularnewline
43 & 7080 & 6510.35310586563 & 351.959739776233 & 7297.68715435813 & -569.646894134367 \tabularnewline
44 & 7940 & 8312.05656853056 & 174.184472435454 & 7393.75895903398 & 372.056568530561 \tabularnewline
45 & 7340 & 7273.75869545619 & -83.5894591660236 & 7489.83076370984 & -66.2413045438116 \tabularnewline
46 & 7860 & 7701.56662372642 & 429.872641423753 & 7588.56073484983 & -158.433376273584 \tabularnewline
47 & 6720 & 6104.3748617916 & -351.66556778143 & 7687.29070598983 & -615.625138208397 \tabularnewline
48 & 7680 & 8116.90765371879 & -549.570228659106 & 7792.66257494032 & 436.90765371879 \tabularnewline
49 & 8920 & 9446.15100713319 & 495.814548976006 & 7898.0344438908 & 526.151007133191 \tabularnewline
50 & 7200 & 7265.16276606404 & -875.800958124375 & 8010.63819206033 & 65.1627660640424 \tabularnewline
51 & 7800 & 7660.17468617635 & -183.416626406216 & 8123.24194022986 & -139.825313823648 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299637&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]4360[/C][C]4171.42327348058[/C][C]495.814548976006[/C][C]4052.76217754342[/C][C]-188.576726519423[/C][/ROW]
[ROW][C]2[/C][C]3120[/C][C]2964.12786530968[/C][C]-875.800958124375[/C][C]4151.6730928147[/C][C]-155.872134690323[/C][/ROW]
[ROW][C]3[/C][C]4120[/C][C]4172.83261832024[/C][C]-183.416626406216[/C][C]4250.58400808598[/C][C]52.8326183202362[/C][/ROW]
[ROW][C]4[/C][C]4000[/C][C]3925.12641146341[/C][C]-273.011286508543[/C][C]4347.88487504513[/C][C]-74.8735885365859[/C][/ROW]
[ROW][C]5[/C][C]5360[/C][C]6150.31866994592[/C][C]124.495588049804[/C][C]4445.18574200428[/C][C]790.318669945918[/C][/ROW]
[ROW][C]6[/C][C]5240[/C][C]5196.65434034623[/C][C]740.727472805739[/C][C]4542.61818684803[/C][C]-43.3456596537717[/C][/ROW]
[ROW][C]7[/C][C]4240[/C][C]3487.98962853198[/C][C]351.959739776233[/C][C]4640.05063169179[/C][C]-752.010371468019[/C][/ROW]
[ROW][C]8[/C][C]5460[/C][C]6009.97432797849[/C][C]174.184472435454[/C][C]4735.84119958606[/C][C]549.97432797849[/C][/ROW]
[ROW][C]9[/C][C]4660[/C][C]4571.9576916857[/C][C]-83.5894591660236[/C][C]4831.63176748033[/C][C]-88.0423083143023[/C][/ROW]
[ROW][C]10[/C][C]5160[/C][C]4965.12146978655[/C][C]429.872641423753[/C][C]4925.0058887897[/C][C]-194.878530213454[/C][/ROW]
[ROW][C]11[/C][C]5500[/C][C]6333.28555768235[/C][C]-351.66556778143[/C][C]5018.38001009908[/C][C]833.285557682354[/C][/ROW]
[ROW][C]12[/C][C]3820[/C][C]3060.27171061999[/C][C]-549.570228659106[/C][C]5129.29851803911[/C][C]-759.728289380007[/C][/ROW]
[ROW][C]13[/C][C]5380[/C][C]5023.96842504484[/C][C]495.814548976006[/C][C]5240.21702597915[/C][C]-356.031574955156[/C][/ROW]
[ROW][C]14[/C][C]4920[/C][C]5386.05860794688[/C][C]-875.800958124375[/C][C]5329.7423501775[/C][C]466.058607946879[/C][/ROW]
[ROW][C]15[/C][C]4420[/C][C]3604.14895203037[/C][C]-183.416626406216[/C][C]5419.26767437584[/C][C]-815.851047969625[/C][/ROW]
[ROW][C]16[/C][C]5700[/C][C]6200.05477830427[/C][C]-273.011286508543[/C][C]5472.95650820427[/C][C]500.054778304271[/C][/ROW]
[ROW][C]17[/C][C]6000[/C][C]6348.85906991749[/C][C]124.495588049804[/C][C]5526.6453420327[/C][C]348.859069917494[/C][/ROW]
[ROW][C]18[/C][C]7160[/C][C]8024.21946211202[/C][C]740.727472805739[/C][C]5555.05306508224[/C][C]864.219462112017[/C][/ROW]
[ROW][C]19[/C][C]6700[/C][C]7464.57947209198[/C][C]351.959739776233[/C][C]5583.46078813179[/C][C]764.57947209198[/C][/ROW]
[ROW][C]20[/C][C]4520[/C][C]3286.14725052866[/C][C]174.184472435454[/C][C]5579.66827703589[/C][C]-1233.85274947134[/C][/ROW]
[ROW][C]21[/C][C]5980[/C][C]6467.71369322603[/C][C]-83.5894591660236[/C][C]5575.87576593999[/C][C]487.71369322603[/C][/ROW]
[ROW][C]22[/C][C]6240[/C][C]6501.50398253703[/C][C]429.872641423753[/C][C]5548.62337603922[/C][C]261.503982537032[/C][/ROW]
[ROW][C]23[/C][C]4780[/C][C]4390.29458164299[/C][C]-351.66556778143[/C][C]5521.37098613844[/C][C]-389.705418357006[/C][/ROW]
[ROW][C]24[/C][C]4800[/C][C]4631.87853130816[/C][C]-549.570228659106[/C][C]5517.69169735095[/C][C]-168.121468691843[/C][/ROW]
[ROW][C]25[/C][C]5900[/C][C]5790.17304246053[/C][C]495.814548976006[/C][C]5514.01240856346[/C][C]-109.826957539467[/C][/ROW]
[ROW][C]26[/C][C]4200[/C][C]3704.7672411993[/C][C]-875.800958124375[/C][C]5571.03371692508[/C][C]-495.232758800704[/C][/ROW]
[ROW][C]27[/C][C]5100[/C][C]4755.36160111952[/C][C]-183.416626406216[/C][C]5628.0550252867[/C][C]-344.638398880481[/C][/ROW]
[ROW][C]28[/C][C]5440[/C][C]5424.31663301812[/C][C]-273.011286508543[/C][C]5728.69465349042[/C][C]-15.6833669818798[/C][/ROW]
[ROW][C]29[/C][C]5820[/C][C]5686.17013025605[/C][C]124.495588049804[/C][C]5829.33428169415[/C][C]-133.829869743952[/C][/ROW]
[ROW][C]30[/C][C]6160[/C][C]5608.39439042632[/C][C]740.727472805739[/C][C]5970.87813676794[/C][C]-551.605609573681[/C][/ROW]
[ROW][C]31[/C][C]7060[/C][C]7655.61826838203[/C][C]351.959739776233[/C][C]6112.42199184174[/C][C]595.61826838203[/C][/ROW]
[ROW][C]32[/C][C]6760[/C][C]7065.85946391716[/C][C]174.184472435454[/C][C]6279.95606364738[/C][C]305.859463917164[/C][/ROW]
[ROW][C]33[/C][C]5980[/C][C]5596.099323713[/C][C]-83.5894591660236[/C][C]6447.49013545303[/C][C]-383.900676287003[/C][/ROW]
[ROW][C]34[/C][C]7020[/C][C]7028.34823203658[/C][C]429.872641423753[/C][C]6581.77912653967[/C][C]8.34823203658198[/C][/ROW]
[ROW][C]35[/C][C]6420[/C][C]6475.59745015513[/C][C]-351.66556778143[/C][C]6716.0681176263[/C][C]55.5974501551264[/C][/ROW]
[ROW][C]36[/C][C]6620[/C][C]6989.84078447641[/C][C]-549.570228659106[/C][C]6799.7294441827[/C][C]369.840784476411[/C][/ROW]
[ROW][C]37[/C][C]7500[/C][C]7620.79468028491[/C][C]495.814548976006[/C][C]6883.39077073909[/C][C]120.794680284907[/C][/ROW]
[ROW][C]38[/C][C]6180[/C][C]6287.07009651331[/C][C]-875.800958124375[/C][C]6948.73086161107[/C][C]107.070096513307[/C][/ROW]
[ROW][C]39[/C][C]8060[/C][C]9289.34567392317[/C][C]-183.416626406216[/C][C]7014.07095248305[/C][C]1229.34567392317[/C][/ROW]
[ROW][C]40[/C][C]6500[/C][C]6196.46519045348[/C][C]-273.011286508543[/C][C]7076.54609605506[/C][C]-303.534809546521[/C][/ROW]
[ROW][C]41[/C][C]6360[/C][C]5456.48317232312[/C][C]124.495588049804[/C][C]7139.02123962708[/C][C]-903.516827676881[/C][/ROW]
[ROW][C]42[/C][C]7760[/C][C]7560.91833020166[/C][C]740.727472805739[/C][C]7218.35419699261[/C][C]-199.081669798345[/C][/ROW]
[ROW][C]43[/C][C]7080[/C][C]6510.35310586563[/C][C]351.959739776233[/C][C]7297.68715435813[/C][C]-569.646894134367[/C][/ROW]
[ROW][C]44[/C][C]7940[/C][C]8312.05656853056[/C][C]174.184472435454[/C][C]7393.75895903398[/C][C]372.056568530561[/C][/ROW]
[ROW][C]45[/C][C]7340[/C][C]7273.75869545619[/C][C]-83.5894591660236[/C][C]7489.83076370984[/C][C]-66.2413045438116[/C][/ROW]
[ROW][C]46[/C][C]7860[/C][C]7701.56662372642[/C][C]429.872641423753[/C][C]7588.56073484983[/C][C]-158.433376273584[/C][/ROW]
[ROW][C]47[/C][C]6720[/C][C]6104.3748617916[/C][C]-351.66556778143[/C][C]7687.29070598983[/C][C]-615.625138208397[/C][/ROW]
[ROW][C]48[/C][C]7680[/C][C]8116.90765371879[/C][C]-549.570228659106[/C][C]7792.66257494032[/C][C]436.90765371879[/C][/ROW]
[ROW][C]49[/C][C]8920[/C][C]9446.15100713319[/C][C]495.814548976006[/C][C]7898.0344438908[/C][C]526.151007133191[/C][/ROW]
[ROW][C]50[/C][C]7200[/C][C]7265.16276606404[/C][C]-875.800958124375[/C][C]8010.63819206033[/C][C]65.1627660640424[/C][/ROW]
[ROW][C]51[/C][C]7800[/C][C]7660.17468617635[/C][C]-183.416626406216[/C][C]8123.24194022986[/C][C]-139.825313823648[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299637&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299637&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
143604171.42327348058495.8145489760064052.76217754342-188.576726519423
231202964.12786530968-875.8009581243754151.6730928147-155.872134690323
341204172.83261832024-183.4166264062164250.5840080859852.8326183202362
440003925.12641146341-273.0112865085434347.88487504513-74.8735885365859
553606150.31866994592124.4955880498044445.18574200428790.318669945918
652405196.65434034623740.7274728057394542.61818684803-43.3456596537717
742403487.98962853198351.9597397762334640.05063169179-752.010371468019
854606009.97432797849174.1844724354544735.84119958606549.97432797849
946604571.9576916857-83.58945916602364831.63176748033-88.0423083143023
1051604965.12146978655429.8726414237534925.0058887897-194.878530213454
1155006333.28555768235-351.665567781435018.38001009908833.285557682354
1238203060.27171061999-549.5702286591065129.29851803911-759.728289380007
1353805023.96842504484495.8145489760065240.21702597915-356.031574955156
1449205386.05860794688-875.8009581243755329.7423501775466.058607946879
1544203604.14895203037-183.4166264062165419.26767437584-815.851047969625
1657006200.05477830427-273.0112865085435472.95650820427500.054778304271
1760006348.85906991749124.4955880498045526.6453420327348.859069917494
1871608024.21946211202740.7274728057395555.05306508224864.219462112017
1967007464.57947209198351.9597397762335583.46078813179764.57947209198
2045203286.14725052866174.1844724354545579.66827703589-1233.85274947134
2159806467.71369322603-83.58945916602365575.87576593999487.71369322603
2262406501.50398253703429.8726414237535548.62337603922261.503982537032
2347804390.29458164299-351.665567781435521.37098613844-389.705418357006
2448004631.87853130816-549.5702286591065517.69169735095-168.121468691843
2559005790.17304246053495.8145489760065514.01240856346-109.826957539467
2642003704.7672411993-875.8009581243755571.03371692508-495.232758800704
2751004755.36160111952-183.4166264062165628.0550252867-344.638398880481
2854405424.31663301812-273.0112865085435728.69465349042-15.6833669818798
2958205686.17013025605124.4955880498045829.33428169415-133.829869743952
3061605608.39439042632740.7274728057395970.87813676794-551.605609573681
3170607655.61826838203351.9597397762336112.42199184174595.61826838203
3267607065.85946391716174.1844724354546279.95606364738305.859463917164
3359805596.099323713-83.58945916602366447.49013545303-383.900676287003
3470207028.34823203658429.8726414237536581.779126539678.34823203658198
3564206475.59745015513-351.665567781436716.068117626355.5974501551264
3666206989.84078447641-549.5702286591066799.7294441827369.840784476411
3775007620.79468028491495.8145489760066883.39077073909120.794680284907
3861806287.07009651331-875.8009581243756948.73086161107107.070096513307
3980609289.34567392317-183.4166264062167014.070952483051229.34567392317
4065006196.46519045348-273.0112865085437076.54609605506-303.534809546521
4163605456.48317232312124.4955880498047139.02123962708-903.516827676881
4277607560.91833020166740.7274728057397218.35419699261-199.081669798345
4370806510.35310586563351.9597397762337297.68715435813-569.646894134367
4479408312.05656853056174.1844724354547393.75895903398372.056568530561
4573407273.75869545619-83.58945916602367489.83076370984-66.2413045438116
4678607701.56662372642429.8726414237537588.56073484983-158.433376273584
4767206104.3748617916-351.665567781437687.29070598983-615.625138208397
4876808116.90765371879-549.5702286591067792.66257494032436.90765371879
4989209446.15100713319495.8145489760067898.0344438908526.151007133191
5072007265.16276606404-875.8009581243758010.6381920603365.1627660640424
5178007660.17468617635-183.4166264062168123.24194022986-139.825313823648



Parameters (Session):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')