Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 14 Dec 2016 17:52:24 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481734474qn2oq7oasdctso8.htm/, Retrieved Fri, 01 Nov 2024 03:36:03 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299625, Retrieved Fri, 01 Nov 2024 03:36:03 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact120
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [decomposition by ...] [2016-12-14 16:52:24] [130d73899007e5ff8a4f636b9bcfb397] [Current]
Feedback Forum

Post a new message
Dataseries X:
7440
3640
4940
5060
3300
7140
6060
9560
10140
9760
9360
6600
4280
3980
3500
2840
5360
6240
3200
6480
9180
8320
11920
6120
5420
4880
3380
2240
2740
5640
4360
4720
9520
6820
7060
6140
5460
2700
4800
5380
3220
2940
5460
7500
6200
9800
8040
4680
7100
2880
7120
2560
4380
5640
5060
7500
8300
6580
4520
4440
3440
5200
4180
4980
2460
7400
4600
7820
4580
9460
11060
1620
5260
4900
6220
2320
2780
6560
4460
2880
5640
5280
2740
1600
3260
2900
2800
2380
1720
2680
4640
2620
3640
3220
3980
3940
2000
1740
1220
3540
1500
4080
3880
2640
3700
4620
5360
3800




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299625&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299625&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299625&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal10810109
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 1081 & 0 & 109 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299625&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]1081[/C][C]0[/C][C]109[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299625&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299625&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal10810109
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
174408730.00974295638-352.4646515652216502.454908608841290.00974295638
236402245.08507619879-1517.752690385516552.66761418671-1394.91492380121
349404162.38201679769-885.2623365622726602.88031976458-777.617983202308
450605095.41209875666-1604.44294896366629.0308502069335.4120987566639
533001932.88474743927-1988.066128088566655.18138064928-1367.11525256073
671407272.25002598061354.8859490404526652.86402497893132.250025980615
760605822.72612758111-353.2727968896886650.54666930858-237.273872418895
8956011706.3876032688772.2722294088346641.340167322372146.3876032688
91014011841.1612586281806.705076035846632.133665336151701.16125862801
10976010773.96492276322151.507514323026594.527562913831013.96492276316
1193609975.658978827152187.419560681356556.9214604915615.658978827152
1266007367.52091001201-571.5297626578286404.00885264582767.52091001201
1342802661.36840676508-352.4646515652216251.09624480014-1618.63159323492
1439803405.88273470018-1517.752690385516071.86995568533-574.117265299825
1535001992.61866999175-885.2623365622725892.64366657052-1507.38133000825
1628401438.04503557453-1604.44294896365846.39791338906-1401.95496442547
1753606907.91396788095-1988.066128088565800.152160207611547.91396788095
1862406228.90293998463354.8859490404525896.21111097492-11.0970600153687
193200761.002735147459-353.2727968896885992.27006174223-2438.99726485254
2064806116.23845008195772.2722294088346071.48932050922-363.761549918053
21918010402.5863446881806.705076035846150.708579276211222.58634468795
2283208368.043794676652151.507514323026120.4486910003348.0437946766542
231192015562.39163659422187.419560681356090.188802724453642.3916365942
2461206815.50805431231-571.5297626578285996.02170834552695.508054312309
2554205290.61003759863-352.4646515652215901.85461396659-129.389962401369
2648805491.56097538918-1517.752690385515786.19171499632611.560975389184
2733801974.73352053622-885.2623365622725670.52881602605-1405.26647946378
282240570.716625615197-1604.44294896365513.7263233484-1669.2833743848
2927402111.14229741781-1988.066128088565356.92383067074-628.857702582187
3056405654.11896508158354.8859490404525270.9950858779714.1189650815759
3143603888.20645580449-353.2727968896885185.0663410852-471.793544195511
3247203453.42996674025772.2722294088345214.29780385091-1266.57003325975
33952011989.76565734751806.705076035845243.529266616632469.76565734754
3468206171.67528745042151.507514323025316.81719822658-648.324712549596
3570606542.475309482122187.419560681355390.10512983653-517.524690517882
3661407442.44274207228-571.5297626578285409.087020585551302.44274207228
3754605844.39574023066-352.4646515652215428.06891133456384.395740230658
3827001485.64196130595-1517.752690385515432.11072907955-1214.35803869405
3948005049.10978973773-885.2623365622725436.15254682454249.109789737732
4053806902.1730846181-1604.44294896365462.26986434551522.1730846181
4132202939.6789462221-1988.066128088565488.38718186645-280.321053777897
422940-13.0871876547635354.8859490404525538.20123861431-2953.08718765476
4354605685.25750152752-353.2727968896885588.01529536217225.25750152752
4475008581.3169977051772.2722294088345646.410772886061081.3169977051
4562004888.488673554211806.705076035845704.80625040996-1311.51132644579
46980011688.19499707252151.507514323025760.297488604461888.19499707253
4780408076.79171251972187.419560681355815.7887267989536.7917125196982
4846804065.283243162-571.5297626578285866.24651949583-614.716756838002
4971008635.76033937251-352.4646515652215916.704312192711535.76033937251
5028801357.06573567951-1517.752690385515920.68695470599-1522.93426432049
5171209200.592739343-885.2623365622725924.669597219282080.592739343
522560894.370911373767-1604.44294896365830.07203758983-1665.62908862623
5343805012.59165012818-1988.066128088565735.47447796038632.591650128175
5456405336.51689616528354.8859490404525588.59715479427-303.483103834723
5550605031.55296526153-353.2727968896885441.71983162816-28.4470347384713
5675008881.16020735334772.2722294088345346.567563237821381.16020735334
5783009541.879629116671806.705076035845251.415294847491241.87962911667
5865805782.131589271532151.507514323025226.36089640546-797.868410728473
5945201651.273941355232187.419560681355201.30649796342-2868.72605864477
6044404244.60927921796-571.5297626578285206.92048343987-195.390720782041
6134402019.9301826489-352.4646515652215212.53446891632-1420.0698173511
6252006680.69966396051-1517.752690385515237.053026424991480.69966396051
6341803983.69075262861-885.2623365622725261.57158393366-196.309247371391
6449806187.3981139819-1604.44294896365377.04483498171207.3981139819
6524601415.54804205882-1988.066128088565492.51808602974-1044.45195794118
6674008854.34243976613354.8859490404525590.771611193421454.34243976613
6746003864.24766053258-353.2727968896885689.02513635711-735.75233946742
6878209153.62370263849772.2722294088345714.104067952671333.62370263849
6945801614.111924415921806.705076035845739.18299954824-2965.88807558408
70946011055.19567562022151.507514323025713.296810056821595.19567562016
711106014245.16981875322187.419560681355687.410620565413185.16981875324
721620-1812.68767799054-571.5297626578285624.21744064836-3432.68767799054
7352605311.4403908339-352.4646515652215561.0242607313251.4403908338982
7449005913.69669063922-1517.752690385515404.055999746281013.69669063922
7562208078.17459780103-885.2623365622725247.087738761251858.17459780103
7623201265.82926788021-1604.44294896364978.61368108338-1054.17073211979
7727802837.92650468304-1988.066128088564710.1396234055257.9265046830378
7865608348.73833230587354.8859490404524416.375718653671788.73833230587
7944605150.66098298786-353.2727968896884122.61181390183690.660982987858
8028801084.07416232248772.2722294088343903.65360826868-1795.92583767752
8156405788.599521328631806.705076035843684.69540263553148.599521328629
8252804871.058936416062151.507514323023537.43354926092-408.941063583938
832740-97.59125656765582187.419560681353390.17169588631-2837.59125656766
841600460.546737610754-571.5297626578283310.98302504707-1139.45326238925
8532603640.67029735738-352.4646515652213231.79435420784380.670297357381
8629004126.66070479183-1517.752690385513191.091985593681226.66070479183
8728003334.87271958275-885.2623365622723150.38961697952534.872719582752
8823803249.44886169046-1604.44294896363114.99408727313869.448861690462
8917202348.46757052181-1988.066128088563079.59855756675628.467570521811
9026801966.81066345802354.8859490404523038.30338750153-713.189336541978
9146406636.26457945338-353.2727968896882997.00821743631996.26457945338
9226201540.90846241497772.2722294088342926.8193081762-1079.09153758503
9336402616.664525048071806.705076035842856.63039891609-1023.33547495193
9432201446.050384251342151.507514323022842.44210142564-1773.94961574866
9539802944.326635383462187.419560681352828.2538039352-1035.67336461654
9639405568.20500561737-571.5297626578282883.324757040461628.20500561737
9720001414.0689414195-352.4646515652212938.39571014572-585.931058580502
9817401998.18738432348-1517.752690385512999.56530606203258.187384323476
991220264.527434583937-885.2623365622723060.73490197834-955.472565416063
10035405613.98329153156-1604.44294896363070.459657432032073.98329153156
10115001907.88171520283-1988.066128088563080.18441288573407.881715202828
10240804683.37285369058354.8859490404523121.74119726897603.372853690579
10338804949.97481523748-353.2727968896883163.297981652211069.97481523748
10426401313.59829523179772.2722294088343194.12947535937-1326.40170476821
10537002368.333954897631806.705076035843224.96096906654-1331.66604510237
10646203849.55068728362151.507514323023238.94179839338-770.449312716395
10753605279.657811598432187.419560681353252.92262772022-80.3421884015679
10838004911.41018155766-571.5297626578283260.119581100171111.41018155766

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 7440 & 8730.00974295638 & -352.464651565221 & 6502.45490860884 & 1290.00974295638 \tabularnewline
2 & 3640 & 2245.08507619879 & -1517.75269038551 & 6552.66761418671 & -1394.91492380121 \tabularnewline
3 & 4940 & 4162.38201679769 & -885.262336562272 & 6602.88031976458 & -777.617983202308 \tabularnewline
4 & 5060 & 5095.41209875666 & -1604.4429489636 & 6629.03085020693 & 35.4120987566639 \tabularnewline
5 & 3300 & 1932.88474743927 & -1988.06612808856 & 6655.18138064928 & -1367.11525256073 \tabularnewline
6 & 7140 & 7272.25002598061 & 354.885949040452 & 6652.86402497893 & 132.250025980615 \tabularnewline
7 & 6060 & 5822.72612758111 & -353.272796889688 & 6650.54666930858 & -237.273872418895 \tabularnewline
8 & 9560 & 11706.3876032688 & 772.272229408834 & 6641.34016732237 & 2146.3876032688 \tabularnewline
9 & 10140 & 11841.161258628 & 1806.70507603584 & 6632.13366533615 & 1701.16125862801 \tabularnewline
10 & 9760 & 10773.9649227632 & 2151.50751432302 & 6594.52756291383 & 1013.96492276316 \tabularnewline
11 & 9360 & 9975.65897882715 & 2187.41956068135 & 6556.9214604915 & 615.658978827152 \tabularnewline
12 & 6600 & 7367.52091001201 & -571.529762657828 & 6404.00885264582 & 767.52091001201 \tabularnewline
13 & 4280 & 2661.36840676508 & -352.464651565221 & 6251.09624480014 & -1618.63159323492 \tabularnewline
14 & 3980 & 3405.88273470018 & -1517.75269038551 & 6071.86995568533 & -574.117265299825 \tabularnewline
15 & 3500 & 1992.61866999175 & -885.262336562272 & 5892.64366657052 & -1507.38133000825 \tabularnewline
16 & 2840 & 1438.04503557453 & -1604.4429489636 & 5846.39791338906 & -1401.95496442547 \tabularnewline
17 & 5360 & 6907.91396788095 & -1988.06612808856 & 5800.15216020761 & 1547.91396788095 \tabularnewline
18 & 6240 & 6228.90293998463 & 354.885949040452 & 5896.21111097492 & -11.0970600153687 \tabularnewline
19 & 3200 & 761.002735147459 & -353.272796889688 & 5992.27006174223 & -2438.99726485254 \tabularnewline
20 & 6480 & 6116.23845008195 & 772.272229408834 & 6071.48932050922 & -363.761549918053 \tabularnewline
21 & 9180 & 10402.586344688 & 1806.70507603584 & 6150.70857927621 & 1222.58634468795 \tabularnewline
22 & 8320 & 8368.04379467665 & 2151.50751432302 & 6120.44869100033 & 48.0437946766542 \tabularnewline
23 & 11920 & 15562.3916365942 & 2187.41956068135 & 6090.18880272445 & 3642.3916365942 \tabularnewline
24 & 6120 & 6815.50805431231 & -571.529762657828 & 5996.02170834552 & 695.508054312309 \tabularnewline
25 & 5420 & 5290.61003759863 & -352.464651565221 & 5901.85461396659 & -129.389962401369 \tabularnewline
26 & 4880 & 5491.56097538918 & -1517.75269038551 & 5786.19171499632 & 611.560975389184 \tabularnewline
27 & 3380 & 1974.73352053622 & -885.262336562272 & 5670.52881602605 & -1405.26647946378 \tabularnewline
28 & 2240 & 570.716625615197 & -1604.4429489636 & 5513.7263233484 & -1669.2833743848 \tabularnewline
29 & 2740 & 2111.14229741781 & -1988.06612808856 & 5356.92383067074 & -628.857702582187 \tabularnewline
30 & 5640 & 5654.11896508158 & 354.885949040452 & 5270.99508587797 & 14.1189650815759 \tabularnewline
31 & 4360 & 3888.20645580449 & -353.272796889688 & 5185.0663410852 & -471.793544195511 \tabularnewline
32 & 4720 & 3453.42996674025 & 772.272229408834 & 5214.29780385091 & -1266.57003325975 \tabularnewline
33 & 9520 & 11989.7656573475 & 1806.70507603584 & 5243.52926661663 & 2469.76565734754 \tabularnewline
34 & 6820 & 6171.6752874504 & 2151.50751432302 & 5316.81719822658 & -648.324712549596 \tabularnewline
35 & 7060 & 6542.47530948212 & 2187.41956068135 & 5390.10512983653 & -517.524690517882 \tabularnewline
36 & 6140 & 7442.44274207228 & -571.529762657828 & 5409.08702058555 & 1302.44274207228 \tabularnewline
37 & 5460 & 5844.39574023066 & -352.464651565221 & 5428.06891133456 & 384.395740230658 \tabularnewline
38 & 2700 & 1485.64196130595 & -1517.75269038551 & 5432.11072907955 & -1214.35803869405 \tabularnewline
39 & 4800 & 5049.10978973773 & -885.262336562272 & 5436.15254682454 & 249.109789737732 \tabularnewline
40 & 5380 & 6902.1730846181 & -1604.4429489636 & 5462.2698643455 & 1522.1730846181 \tabularnewline
41 & 3220 & 2939.6789462221 & -1988.06612808856 & 5488.38718186645 & -280.321053777897 \tabularnewline
42 & 2940 & -13.0871876547635 & 354.885949040452 & 5538.20123861431 & -2953.08718765476 \tabularnewline
43 & 5460 & 5685.25750152752 & -353.272796889688 & 5588.01529536217 & 225.25750152752 \tabularnewline
44 & 7500 & 8581.3169977051 & 772.272229408834 & 5646.41077288606 & 1081.3169977051 \tabularnewline
45 & 6200 & 4888.48867355421 & 1806.70507603584 & 5704.80625040996 & -1311.51132644579 \tabularnewline
46 & 9800 & 11688.1949970725 & 2151.50751432302 & 5760.29748860446 & 1888.19499707253 \tabularnewline
47 & 8040 & 8076.7917125197 & 2187.41956068135 & 5815.78872679895 & 36.7917125196982 \tabularnewline
48 & 4680 & 4065.283243162 & -571.529762657828 & 5866.24651949583 & -614.716756838002 \tabularnewline
49 & 7100 & 8635.76033937251 & -352.464651565221 & 5916.70431219271 & 1535.76033937251 \tabularnewline
50 & 2880 & 1357.06573567951 & -1517.75269038551 & 5920.68695470599 & -1522.93426432049 \tabularnewline
51 & 7120 & 9200.592739343 & -885.262336562272 & 5924.66959721928 & 2080.592739343 \tabularnewline
52 & 2560 & 894.370911373767 & -1604.4429489636 & 5830.07203758983 & -1665.62908862623 \tabularnewline
53 & 4380 & 5012.59165012818 & -1988.06612808856 & 5735.47447796038 & 632.591650128175 \tabularnewline
54 & 5640 & 5336.51689616528 & 354.885949040452 & 5588.59715479427 & -303.483103834723 \tabularnewline
55 & 5060 & 5031.55296526153 & -353.272796889688 & 5441.71983162816 & -28.4470347384713 \tabularnewline
56 & 7500 & 8881.16020735334 & 772.272229408834 & 5346.56756323782 & 1381.16020735334 \tabularnewline
57 & 8300 & 9541.87962911667 & 1806.70507603584 & 5251.41529484749 & 1241.87962911667 \tabularnewline
58 & 6580 & 5782.13158927153 & 2151.50751432302 & 5226.36089640546 & -797.868410728473 \tabularnewline
59 & 4520 & 1651.27394135523 & 2187.41956068135 & 5201.30649796342 & -2868.72605864477 \tabularnewline
60 & 4440 & 4244.60927921796 & -571.529762657828 & 5206.92048343987 & -195.390720782041 \tabularnewline
61 & 3440 & 2019.9301826489 & -352.464651565221 & 5212.53446891632 & -1420.0698173511 \tabularnewline
62 & 5200 & 6680.69966396051 & -1517.75269038551 & 5237.05302642499 & 1480.69966396051 \tabularnewline
63 & 4180 & 3983.69075262861 & -885.262336562272 & 5261.57158393366 & -196.309247371391 \tabularnewline
64 & 4980 & 6187.3981139819 & -1604.4429489636 & 5377.0448349817 & 1207.3981139819 \tabularnewline
65 & 2460 & 1415.54804205882 & -1988.06612808856 & 5492.51808602974 & -1044.45195794118 \tabularnewline
66 & 7400 & 8854.34243976613 & 354.885949040452 & 5590.77161119342 & 1454.34243976613 \tabularnewline
67 & 4600 & 3864.24766053258 & -353.272796889688 & 5689.02513635711 & -735.75233946742 \tabularnewline
68 & 7820 & 9153.62370263849 & 772.272229408834 & 5714.10406795267 & 1333.62370263849 \tabularnewline
69 & 4580 & 1614.11192441592 & 1806.70507603584 & 5739.18299954824 & -2965.88807558408 \tabularnewline
70 & 9460 & 11055.1956756202 & 2151.50751432302 & 5713.29681005682 & 1595.19567562016 \tabularnewline
71 & 11060 & 14245.1698187532 & 2187.41956068135 & 5687.41062056541 & 3185.16981875324 \tabularnewline
72 & 1620 & -1812.68767799054 & -571.529762657828 & 5624.21744064836 & -3432.68767799054 \tabularnewline
73 & 5260 & 5311.4403908339 & -352.464651565221 & 5561.02426073132 & 51.4403908338982 \tabularnewline
74 & 4900 & 5913.69669063922 & -1517.75269038551 & 5404.05599974628 & 1013.69669063922 \tabularnewline
75 & 6220 & 8078.17459780103 & -885.262336562272 & 5247.08773876125 & 1858.17459780103 \tabularnewline
76 & 2320 & 1265.82926788021 & -1604.4429489636 & 4978.61368108338 & -1054.17073211979 \tabularnewline
77 & 2780 & 2837.92650468304 & -1988.06612808856 & 4710.13962340552 & 57.9265046830378 \tabularnewline
78 & 6560 & 8348.73833230587 & 354.885949040452 & 4416.37571865367 & 1788.73833230587 \tabularnewline
79 & 4460 & 5150.66098298786 & -353.272796889688 & 4122.61181390183 & 690.660982987858 \tabularnewline
80 & 2880 & 1084.07416232248 & 772.272229408834 & 3903.65360826868 & -1795.92583767752 \tabularnewline
81 & 5640 & 5788.59952132863 & 1806.70507603584 & 3684.69540263553 & 148.599521328629 \tabularnewline
82 & 5280 & 4871.05893641606 & 2151.50751432302 & 3537.43354926092 & -408.941063583938 \tabularnewline
83 & 2740 & -97.5912565676558 & 2187.41956068135 & 3390.17169588631 & -2837.59125656766 \tabularnewline
84 & 1600 & 460.546737610754 & -571.529762657828 & 3310.98302504707 & -1139.45326238925 \tabularnewline
85 & 3260 & 3640.67029735738 & -352.464651565221 & 3231.79435420784 & 380.670297357381 \tabularnewline
86 & 2900 & 4126.66070479183 & -1517.75269038551 & 3191.09198559368 & 1226.66070479183 \tabularnewline
87 & 2800 & 3334.87271958275 & -885.262336562272 & 3150.38961697952 & 534.872719582752 \tabularnewline
88 & 2380 & 3249.44886169046 & -1604.4429489636 & 3114.99408727313 & 869.448861690462 \tabularnewline
89 & 1720 & 2348.46757052181 & -1988.06612808856 & 3079.59855756675 & 628.467570521811 \tabularnewline
90 & 2680 & 1966.81066345802 & 354.885949040452 & 3038.30338750153 & -713.189336541978 \tabularnewline
91 & 4640 & 6636.26457945338 & -353.272796889688 & 2997.0082174363 & 1996.26457945338 \tabularnewline
92 & 2620 & 1540.90846241497 & 772.272229408834 & 2926.8193081762 & -1079.09153758503 \tabularnewline
93 & 3640 & 2616.66452504807 & 1806.70507603584 & 2856.63039891609 & -1023.33547495193 \tabularnewline
94 & 3220 & 1446.05038425134 & 2151.50751432302 & 2842.44210142564 & -1773.94961574866 \tabularnewline
95 & 3980 & 2944.32663538346 & 2187.41956068135 & 2828.2538039352 & -1035.67336461654 \tabularnewline
96 & 3940 & 5568.20500561737 & -571.529762657828 & 2883.32475704046 & 1628.20500561737 \tabularnewline
97 & 2000 & 1414.0689414195 & -352.464651565221 & 2938.39571014572 & -585.931058580502 \tabularnewline
98 & 1740 & 1998.18738432348 & -1517.75269038551 & 2999.56530606203 & 258.187384323476 \tabularnewline
99 & 1220 & 264.527434583937 & -885.262336562272 & 3060.73490197834 & -955.472565416063 \tabularnewline
100 & 3540 & 5613.98329153156 & -1604.4429489636 & 3070.45965743203 & 2073.98329153156 \tabularnewline
101 & 1500 & 1907.88171520283 & -1988.06612808856 & 3080.18441288573 & 407.881715202828 \tabularnewline
102 & 4080 & 4683.37285369058 & 354.885949040452 & 3121.74119726897 & 603.372853690579 \tabularnewline
103 & 3880 & 4949.97481523748 & -353.272796889688 & 3163.29798165221 & 1069.97481523748 \tabularnewline
104 & 2640 & 1313.59829523179 & 772.272229408834 & 3194.12947535937 & -1326.40170476821 \tabularnewline
105 & 3700 & 2368.33395489763 & 1806.70507603584 & 3224.96096906654 & -1331.66604510237 \tabularnewline
106 & 4620 & 3849.5506872836 & 2151.50751432302 & 3238.94179839338 & -770.449312716395 \tabularnewline
107 & 5360 & 5279.65781159843 & 2187.41956068135 & 3252.92262772022 & -80.3421884015679 \tabularnewline
108 & 3800 & 4911.41018155766 & -571.529762657828 & 3260.11958110017 & 1111.41018155766 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299625&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]7440[/C][C]8730.00974295638[/C][C]-352.464651565221[/C][C]6502.45490860884[/C][C]1290.00974295638[/C][/ROW]
[ROW][C]2[/C][C]3640[/C][C]2245.08507619879[/C][C]-1517.75269038551[/C][C]6552.66761418671[/C][C]-1394.91492380121[/C][/ROW]
[ROW][C]3[/C][C]4940[/C][C]4162.38201679769[/C][C]-885.262336562272[/C][C]6602.88031976458[/C][C]-777.617983202308[/C][/ROW]
[ROW][C]4[/C][C]5060[/C][C]5095.41209875666[/C][C]-1604.4429489636[/C][C]6629.03085020693[/C][C]35.4120987566639[/C][/ROW]
[ROW][C]5[/C][C]3300[/C][C]1932.88474743927[/C][C]-1988.06612808856[/C][C]6655.18138064928[/C][C]-1367.11525256073[/C][/ROW]
[ROW][C]6[/C][C]7140[/C][C]7272.25002598061[/C][C]354.885949040452[/C][C]6652.86402497893[/C][C]132.250025980615[/C][/ROW]
[ROW][C]7[/C][C]6060[/C][C]5822.72612758111[/C][C]-353.272796889688[/C][C]6650.54666930858[/C][C]-237.273872418895[/C][/ROW]
[ROW][C]8[/C][C]9560[/C][C]11706.3876032688[/C][C]772.272229408834[/C][C]6641.34016732237[/C][C]2146.3876032688[/C][/ROW]
[ROW][C]9[/C][C]10140[/C][C]11841.161258628[/C][C]1806.70507603584[/C][C]6632.13366533615[/C][C]1701.16125862801[/C][/ROW]
[ROW][C]10[/C][C]9760[/C][C]10773.9649227632[/C][C]2151.50751432302[/C][C]6594.52756291383[/C][C]1013.96492276316[/C][/ROW]
[ROW][C]11[/C][C]9360[/C][C]9975.65897882715[/C][C]2187.41956068135[/C][C]6556.9214604915[/C][C]615.658978827152[/C][/ROW]
[ROW][C]12[/C][C]6600[/C][C]7367.52091001201[/C][C]-571.529762657828[/C][C]6404.00885264582[/C][C]767.52091001201[/C][/ROW]
[ROW][C]13[/C][C]4280[/C][C]2661.36840676508[/C][C]-352.464651565221[/C][C]6251.09624480014[/C][C]-1618.63159323492[/C][/ROW]
[ROW][C]14[/C][C]3980[/C][C]3405.88273470018[/C][C]-1517.75269038551[/C][C]6071.86995568533[/C][C]-574.117265299825[/C][/ROW]
[ROW][C]15[/C][C]3500[/C][C]1992.61866999175[/C][C]-885.262336562272[/C][C]5892.64366657052[/C][C]-1507.38133000825[/C][/ROW]
[ROW][C]16[/C][C]2840[/C][C]1438.04503557453[/C][C]-1604.4429489636[/C][C]5846.39791338906[/C][C]-1401.95496442547[/C][/ROW]
[ROW][C]17[/C][C]5360[/C][C]6907.91396788095[/C][C]-1988.06612808856[/C][C]5800.15216020761[/C][C]1547.91396788095[/C][/ROW]
[ROW][C]18[/C][C]6240[/C][C]6228.90293998463[/C][C]354.885949040452[/C][C]5896.21111097492[/C][C]-11.0970600153687[/C][/ROW]
[ROW][C]19[/C][C]3200[/C][C]761.002735147459[/C][C]-353.272796889688[/C][C]5992.27006174223[/C][C]-2438.99726485254[/C][/ROW]
[ROW][C]20[/C][C]6480[/C][C]6116.23845008195[/C][C]772.272229408834[/C][C]6071.48932050922[/C][C]-363.761549918053[/C][/ROW]
[ROW][C]21[/C][C]9180[/C][C]10402.586344688[/C][C]1806.70507603584[/C][C]6150.70857927621[/C][C]1222.58634468795[/C][/ROW]
[ROW][C]22[/C][C]8320[/C][C]8368.04379467665[/C][C]2151.50751432302[/C][C]6120.44869100033[/C][C]48.0437946766542[/C][/ROW]
[ROW][C]23[/C][C]11920[/C][C]15562.3916365942[/C][C]2187.41956068135[/C][C]6090.18880272445[/C][C]3642.3916365942[/C][/ROW]
[ROW][C]24[/C][C]6120[/C][C]6815.50805431231[/C][C]-571.529762657828[/C][C]5996.02170834552[/C][C]695.508054312309[/C][/ROW]
[ROW][C]25[/C][C]5420[/C][C]5290.61003759863[/C][C]-352.464651565221[/C][C]5901.85461396659[/C][C]-129.389962401369[/C][/ROW]
[ROW][C]26[/C][C]4880[/C][C]5491.56097538918[/C][C]-1517.75269038551[/C][C]5786.19171499632[/C][C]611.560975389184[/C][/ROW]
[ROW][C]27[/C][C]3380[/C][C]1974.73352053622[/C][C]-885.262336562272[/C][C]5670.52881602605[/C][C]-1405.26647946378[/C][/ROW]
[ROW][C]28[/C][C]2240[/C][C]570.716625615197[/C][C]-1604.4429489636[/C][C]5513.7263233484[/C][C]-1669.2833743848[/C][/ROW]
[ROW][C]29[/C][C]2740[/C][C]2111.14229741781[/C][C]-1988.06612808856[/C][C]5356.92383067074[/C][C]-628.857702582187[/C][/ROW]
[ROW][C]30[/C][C]5640[/C][C]5654.11896508158[/C][C]354.885949040452[/C][C]5270.99508587797[/C][C]14.1189650815759[/C][/ROW]
[ROW][C]31[/C][C]4360[/C][C]3888.20645580449[/C][C]-353.272796889688[/C][C]5185.0663410852[/C][C]-471.793544195511[/C][/ROW]
[ROW][C]32[/C][C]4720[/C][C]3453.42996674025[/C][C]772.272229408834[/C][C]5214.29780385091[/C][C]-1266.57003325975[/C][/ROW]
[ROW][C]33[/C][C]9520[/C][C]11989.7656573475[/C][C]1806.70507603584[/C][C]5243.52926661663[/C][C]2469.76565734754[/C][/ROW]
[ROW][C]34[/C][C]6820[/C][C]6171.6752874504[/C][C]2151.50751432302[/C][C]5316.81719822658[/C][C]-648.324712549596[/C][/ROW]
[ROW][C]35[/C][C]7060[/C][C]6542.47530948212[/C][C]2187.41956068135[/C][C]5390.10512983653[/C][C]-517.524690517882[/C][/ROW]
[ROW][C]36[/C][C]6140[/C][C]7442.44274207228[/C][C]-571.529762657828[/C][C]5409.08702058555[/C][C]1302.44274207228[/C][/ROW]
[ROW][C]37[/C][C]5460[/C][C]5844.39574023066[/C][C]-352.464651565221[/C][C]5428.06891133456[/C][C]384.395740230658[/C][/ROW]
[ROW][C]38[/C][C]2700[/C][C]1485.64196130595[/C][C]-1517.75269038551[/C][C]5432.11072907955[/C][C]-1214.35803869405[/C][/ROW]
[ROW][C]39[/C][C]4800[/C][C]5049.10978973773[/C][C]-885.262336562272[/C][C]5436.15254682454[/C][C]249.109789737732[/C][/ROW]
[ROW][C]40[/C][C]5380[/C][C]6902.1730846181[/C][C]-1604.4429489636[/C][C]5462.2698643455[/C][C]1522.1730846181[/C][/ROW]
[ROW][C]41[/C][C]3220[/C][C]2939.6789462221[/C][C]-1988.06612808856[/C][C]5488.38718186645[/C][C]-280.321053777897[/C][/ROW]
[ROW][C]42[/C][C]2940[/C][C]-13.0871876547635[/C][C]354.885949040452[/C][C]5538.20123861431[/C][C]-2953.08718765476[/C][/ROW]
[ROW][C]43[/C][C]5460[/C][C]5685.25750152752[/C][C]-353.272796889688[/C][C]5588.01529536217[/C][C]225.25750152752[/C][/ROW]
[ROW][C]44[/C][C]7500[/C][C]8581.3169977051[/C][C]772.272229408834[/C][C]5646.41077288606[/C][C]1081.3169977051[/C][/ROW]
[ROW][C]45[/C][C]6200[/C][C]4888.48867355421[/C][C]1806.70507603584[/C][C]5704.80625040996[/C][C]-1311.51132644579[/C][/ROW]
[ROW][C]46[/C][C]9800[/C][C]11688.1949970725[/C][C]2151.50751432302[/C][C]5760.29748860446[/C][C]1888.19499707253[/C][/ROW]
[ROW][C]47[/C][C]8040[/C][C]8076.7917125197[/C][C]2187.41956068135[/C][C]5815.78872679895[/C][C]36.7917125196982[/C][/ROW]
[ROW][C]48[/C][C]4680[/C][C]4065.283243162[/C][C]-571.529762657828[/C][C]5866.24651949583[/C][C]-614.716756838002[/C][/ROW]
[ROW][C]49[/C][C]7100[/C][C]8635.76033937251[/C][C]-352.464651565221[/C][C]5916.70431219271[/C][C]1535.76033937251[/C][/ROW]
[ROW][C]50[/C][C]2880[/C][C]1357.06573567951[/C][C]-1517.75269038551[/C][C]5920.68695470599[/C][C]-1522.93426432049[/C][/ROW]
[ROW][C]51[/C][C]7120[/C][C]9200.592739343[/C][C]-885.262336562272[/C][C]5924.66959721928[/C][C]2080.592739343[/C][/ROW]
[ROW][C]52[/C][C]2560[/C][C]894.370911373767[/C][C]-1604.4429489636[/C][C]5830.07203758983[/C][C]-1665.62908862623[/C][/ROW]
[ROW][C]53[/C][C]4380[/C][C]5012.59165012818[/C][C]-1988.06612808856[/C][C]5735.47447796038[/C][C]632.591650128175[/C][/ROW]
[ROW][C]54[/C][C]5640[/C][C]5336.51689616528[/C][C]354.885949040452[/C][C]5588.59715479427[/C][C]-303.483103834723[/C][/ROW]
[ROW][C]55[/C][C]5060[/C][C]5031.55296526153[/C][C]-353.272796889688[/C][C]5441.71983162816[/C][C]-28.4470347384713[/C][/ROW]
[ROW][C]56[/C][C]7500[/C][C]8881.16020735334[/C][C]772.272229408834[/C][C]5346.56756323782[/C][C]1381.16020735334[/C][/ROW]
[ROW][C]57[/C][C]8300[/C][C]9541.87962911667[/C][C]1806.70507603584[/C][C]5251.41529484749[/C][C]1241.87962911667[/C][/ROW]
[ROW][C]58[/C][C]6580[/C][C]5782.13158927153[/C][C]2151.50751432302[/C][C]5226.36089640546[/C][C]-797.868410728473[/C][/ROW]
[ROW][C]59[/C][C]4520[/C][C]1651.27394135523[/C][C]2187.41956068135[/C][C]5201.30649796342[/C][C]-2868.72605864477[/C][/ROW]
[ROW][C]60[/C][C]4440[/C][C]4244.60927921796[/C][C]-571.529762657828[/C][C]5206.92048343987[/C][C]-195.390720782041[/C][/ROW]
[ROW][C]61[/C][C]3440[/C][C]2019.9301826489[/C][C]-352.464651565221[/C][C]5212.53446891632[/C][C]-1420.0698173511[/C][/ROW]
[ROW][C]62[/C][C]5200[/C][C]6680.69966396051[/C][C]-1517.75269038551[/C][C]5237.05302642499[/C][C]1480.69966396051[/C][/ROW]
[ROW][C]63[/C][C]4180[/C][C]3983.69075262861[/C][C]-885.262336562272[/C][C]5261.57158393366[/C][C]-196.309247371391[/C][/ROW]
[ROW][C]64[/C][C]4980[/C][C]6187.3981139819[/C][C]-1604.4429489636[/C][C]5377.0448349817[/C][C]1207.3981139819[/C][/ROW]
[ROW][C]65[/C][C]2460[/C][C]1415.54804205882[/C][C]-1988.06612808856[/C][C]5492.51808602974[/C][C]-1044.45195794118[/C][/ROW]
[ROW][C]66[/C][C]7400[/C][C]8854.34243976613[/C][C]354.885949040452[/C][C]5590.77161119342[/C][C]1454.34243976613[/C][/ROW]
[ROW][C]67[/C][C]4600[/C][C]3864.24766053258[/C][C]-353.272796889688[/C][C]5689.02513635711[/C][C]-735.75233946742[/C][/ROW]
[ROW][C]68[/C][C]7820[/C][C]9153.62370263849[/C][C]772.272229408834[/C][C]5714.10406795267[/C][C]1333.62370263849[/C][/ROW]
[ROW][C]69[/C][C]4580[/C][C]1614.11192441592[/C][C]1806.70507603584[/C][C]5739.18299954824[/C][C]-2965.88807558408[/C][/ROW]
[ROW][C]70[/C][C]9460[/C][C]11055.1956756202[/C][C]2151.50751432302[/C][C]5713.29681005682[/C][C]1595.19567562016[/C][/ROW]
[ROW][C]71[/C][C]11060[/C][C]14245.1698187532[/C][C]2187.41956068135[/C][C]5687.41062056541[/C][C]3185.16981875324[/C][/ROW]
[ROW][C]72[/C][C]1620[/C][C]-1812.68767799054[/C][C]-571.529762657828[/C][C]5624.21744064836[/C][C]-3432.68767799054[/C][/ROW]
[ROW][C]73[/C][C]5260[/C][C]5311.4403908339[/C][C]-352.464651565221[/C][C]5561.02426073132[/C][C]51.4403908338982[/C][/ROW]
[ROW][C]74[/C][C]4900[/C][C]5913.69669063922[/C][C]-1517.75269038551[/C][C]5404.05599974628[/C][C]1013.69669063922[/C][/ROW]
[ROW][C]75[/C][C]6220[/C][C]8078.17459780103[/C][C]-885.262336562272[/C][C]5247.08773876125[/C][C]1858.17459780103[/C][/ROW]
[ROW][C]76[/C][C]2320[/C][C]1265.82926788021[/C][C]-1604.4429489636[/C][C]4978.61368108338[/C][C]-1054.17073211979[/C][/ROW]
[ROW][C]77[/C][C]2780[/C][C]2837.92650468304[/C][C]-1988.06612808856[/C][C]4710.13962340552[/C][C]57.9265046830378[/C][/ROW]
[ROW][C]78[/C][C]6560[/C][C]8348.73833230587[/C][C]354.885949040452[/C][C]4416.37571865367[/C][C]1788.73833230587[/C][/ROW]
[ROW][C]79[/C][C]4460[/C][C]5150.66098298786[/C][C]-353.272796889688[/C][C]4122.61181390183[/C][C]690.660982987858[/C][/ROW]
[ROW][C]80[/C][C]2880[/C][C]1084.07416232248[/C][C]772.272229408834[/C][C]3903.65360826868[/C][C]-1795.92583767752[/C][/ROW]
[ROW][C]81[/C][C]5640[/C][C]5788.59952132863[/C][C]1806.70507603584[/C][C]3684.69540263553[/C][C]148.599521328629[/C][/ROW]
[ROW][C]82[/C][C]5280[/C][C]4871.05893641606[/C][C]2151.50751432302[/C][C]3537.43354926092[/C][C]-408.941063583938[/C][/ROW]
[ROW][C]83[/C][C]2740[/C][C]-97.5912565676558[/C][C]2187.41956068135[/C][C]3390.17169588631[/C][C]-2837.59125656766[/C][/ROW]
[ROW][C]84[/C][C]1600[/C][C]460.546737610754[/C][C]-571.529762657828[/C][C]3310.98302504707[/C][C]-1139.45326238925[/C][/ROW]
[ROW][C]85[/C][C]3260[/C][C]3640.67029735738[/C][C]-352.464651565221[/C][C]3231.79435420784[/C][C]380.670297357381[/C][/ROW]
[ROW][C]86[/C][C]2900[/C][C]4126.66070479183[/C][C]-1517.75269038551[/C][C]3191.09198559368[/C][C]1226.66070479183[/C][/ROW]
[ROW][C]87[/C][C]2800[/C][C]3334.87271958275[/C][C]-885.262336562272[/C][C]3150.38961697952[/C][C]534.872719582752[/C][/ROW]
[ROW][C]88[/C][C]2380[/C][C]3249.44886169046[/C][C]-1604.4429489636[/C][C]3114.99408727313[/C][C]869.448861690462[/C][/ROW]
[ROW][C]89[/C][C]1720[/C][C]2348.46757052181[/C][C]-1988.06612808856[/C][C]3079.59855756675[/C][C]628.467570521811[/C][/ROW]
[ROW][C]90[/C][C]2680[/C][C]1966.81066345802[/C][C]354.885949040452[/C][C]3038.30338750153[/C][C]-713.189336541978[/C][/ROW]
[ROW][C]91[/C][C]4640[/C][C]6636.26457945338[/C][C]-353.272796889688[/C][C]2997.0082174363[/C][C]1996.26457945338[/C][/ROW]
[ROW][C]92[/C][C]2620[/C][C]1540.90846241497[/C][C]772.272229408834[/C][C]2926.8193081762[/C][C]-1079.09153758503[/C][/ROW]
[ROW][C]93[/C][C]3640[/C][C]2616.66452504807[/C][C]1806.70507603584[/C][C]2856.63039891609[/C][C]-1023.33547495193[/C][/ROW]
[ROW][C]94[/C][C]3220[/C][C]1446.05038425134[/C][C]2151.50751432302[/C][C]2842.44210142564[/C][C]-1773.94961574866[/C][/ROW]
[ROW][C]95[/C][C]3980[/C][C]2944.32663538346[/C][C]2187.41956068135[/C][C]2828.2538039352[/C][C]-1035.67336461654[/C][/ROW]
[ROW][C]96[/C][C]3940[/C][C]5568.20500561737[/C][C]-571.529762657828[/C][C]2883.32475704046[/C][C]1628.20500561737[/C][/ROW]
[ROW][C]97[/C][C]2000[/C][C]1414.0689414195[/C][C]-352.464651565221[/C][C]2938.39571014572[/C][C]-585.931058580502[/C][/ROW]
[ROW][C]98[/C][C]1740[/C][C]1998.18738432348[/C][C]-1517.75269038551[/C][C]2999.56530606203[/C][C]258.187384323476[/C][/ROW]
[ROW][C]99[/C][C]1220[/C][C]264.527434583937[/C][C]-885.262336562272[/C][C]3060.73490197834[/C][C]-955.472565416063[/C][/ROW]
[ROW][C]100[/C][C]3540[/C][C]5613.98329153156[/C][C]-1604.4429489636[/C][C]3070.45965743203[/C][C]2073.98329153156[/C][/ROW]
[ROW][C]101[/C][C]1500[/C][C]1907.88171520283[/C][C]-1988.06612808856[/C][C]3080.18441288573[/C][C]407.881715202828[/C][/ROW]
[ROW][C]102[/C][C]4080[/C][C]4683.37285369058[/C][C]354.885949040452[/C][C]3121.74119726897[/C][C]603.372853690579[/C][/ROW]
[ROW][C]103[/C][C]3880[/C][C]4949.97481523748[/C][C]-353.272796889688[/C][C]3163.29798165221[/C][C]1069.97481523748[/C][/ROW]
[ROW][C]104[/C][C]2640[/C][C]1313.59829523179[/C][C]772.272229408834[/C][C]3194.12947535937[/C][C]-1326.40170476821[/C][/ROW]
[ROW][C]105[/C][C]3700[/C][C]2368.33395489763[/C][C]1806.70507603584[/C][C]3224.96096906654[/C][C]-1331.66604510237[/C][/ROW]
[ROW][C]106[/C][C]4620[/C][C]3849.5506872836[/C][C]2151.50751432302[/C][C]3238.94179839338[/C][C]-770.449312716395[/C][/ROW]
[ROW][C]107[/C][C]5360[/C][C]5279.65781159843[/C][C]2187.41956068135[/C][C]3252.92262772022[/C][C]-80.3421884015679[/C][/ROW]
[ROW][C]108[/C][C]3800[/C][C]4911.41018155766[/C][C]-571.529762657828[/C][C]3260.11958110017[/C][C]1111.41018155766[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299625&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299625&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
174408730.00974295638-352.4646515652216502.454908608841290.00974295638
236402245.08507619879-1517.752690385516552.66761418671-1394.91492380121
349404162.38201679769-885.2623365622726602.88031976458-777.617983202308
450605095.41209875666-1604.44294896366629.0308502069335.4120987566639
533001932.88474743927-1988.066128088566655.18138064928-1367.11525256073
671407272.25002598061354.8859490404526652.86402497893132.250025980615
760605822.72612758111-353.2727968896886650.54666930858-237.273872418895
8956011706.3876032688772.2722294088346641.340167322372146.3876032688
91014011841.1612586281806.705076035846632.133665336151701.16125862801
10976010773.96492276322151.507514323026594.527562913831013.96492276316
1193609975.658978827152187.419560681356556.9214604915615.658978827152
1266007367.52091001201-571.5297626578286404.00885264582767.52091001201
1342802661.36840676508-352.4646515652216251.09624480014-1618.63159323492
1439803405.88273470018-1517.752690385516071.86995568533-574.117265299825
1535001992.61866999175-885.2623365622725892.64366657052-1507.38133000825
1628401438.04503557453-1604.44294896365846.39791338906-1401.95496442547
1753606907.91396788095-1988.066128088565800.152160207611547.91396788095
1862406228.90293998463354.8859490404525896.21111097492-11.0970600153687
193200761.002735147459-353.2727968896885992.27006174223-2438.99726485254
2064806116.23845008195772.2722294088346071.48932050922-363.761549918053
21918010402.5863446881806.705076035846150.708579276211222.58634468795
2283208368.043794676652151.507514323026120.4486910003348.0437946766542
231192015562.39163659422187.419560681356090.188802724453642.3916365942
2461206815.50805431231-571.5297626578285996.02170834552695.508054312309
2554205290.61003759863-352.4646515652215901.85461396659-129.389962401369
2648805491.56097538918-1517.752690385515786.19171499632611.560975389184
2733801974.73352053622-885.2623365622725670.52881602605-1405.26647946378
282240570.716625615197-1604.44294896365513.7263233484-1669.2833743848
2927402111.14229741781-1988.066128088565356.92383067074-628.857702582187
3056405654.11896508158354.8859490404525270.9950858779714.1189650815759
3143603888.20645580449-353.2727968896885185.0663410852-471.793544195511
3247203453.42996674025772.2722294088345214.29780385091-1266.57003325975
33952011989.76565734751806.705076035845243.529266616632469.76565734754
3468206171.67528745042151.507514323025316.81719822658-648.324712549596
3570606542.475309482122187.419560681355390.10512983653-517.524690517882
3661407442.44274207228-571.5297626578285409.087020585551302.44274207228
3754605844.39574023066-352.4646515652215428.06891133456384.395740230658
3827001485.64196130595-1517.752690385515432.11072907955-1214.35803869405
3948005049.10978973773-885.2623365622725436.15254682454249.109789737732
4053806902.1730846181-1604.44294896365462.26986434551522.1730846181
4132202939.6789462221-1988.066128088565488.38718186645-280.321053777897
422940-13.0871876547635354.8859490404525538.20123861431-2953.08718765476
4354605685.25750152752-353.2727968896885588.01529536217225.25750152752
4475008581.3169977051772.2722294088345646.410772886061081.3169977051
4562004888.488673554211806.705076035845704.80625040996-1311.51132644579
46980011688.19499707252151.507514323025760.297488604461888.19499707253
4780408076.79171251972187.419560681355815.7887267989536.7917125196982
4846804065.283243162-571.5297626578285866.24651949583-614.716756838002
4971008635.76033937251-352.4646515652215916.704312192711535.76033937251
5028801357.06573567951-1517.752690385515920.68695470599-1522.93426432049
5171209200.592739343-885.2623365622725924.669597219282080.592739343
522560894.370911373767-1604.44294896365830.07203758983-1665.62908862623
5343805012.59165012818-1988.066128088565735.47447796038632.591650128175
5456405336.51689616528354.8859490404525588.59715479427-303.483103834723
5550605031.55296526153-353.2727968896885441.71983162816-28.4470347384713
5675008881.16020735334772.2722294088345346.567563237821381.16020735334
5783009541.879629116671806.705076035845251.415294847491241.87962911667
5865805782.131589271532151.507514323025226.36089640546-797.868410728473
5945201651.273941355232187.419560681355201.30649796342-2868.72605864477
6044404244.60927921796-571.5297626578285206.92048343987-195.390720782041
6134402019.9301826489-352.4646515652215212.53446891632-1420.0698173511
6252006680.69966396051-1517.752690385515237.053026424991480.69966396051
6341803983.69075262861-885.2623365622725261.57158393366-196.309247371391
6449806187.3981139819-1604.44294896365377.04483498171207.3981139819
6524601415.54804205882-1988.066128088565492.51808602974-1044.45195794118
6674008854.34243976613354.8859490404525590.771611193421454.34243976613
6746003864.24766053258-353.2727968896885689.02513635711-735.75233946742
6878209153.62370263849772.2722294088345714.104067952671333.62370263849
6945801614.111924415921806.705076035845739.18299954824-2965.88807558408
70946011055.19567562022151.507514323025713.296810056821595.19567562016
711106014245.16981875322187.419560681355687.410620565413185.16981875324
721620-1812.68767799054-571.5297626578285624.21744064836-3432.68767799054
7352605311.4403908339-352.4646515652215561.0242607313251.4403908338982
7449005913.69669063922-1517.752690385515404.055999746281013.69669063922
7562208078.17459780103-885.2623365622725247.087738761251858.17459780103
7623201265.82926788021-1604.44294896364978.61368108338-1054.17073211979
7727802837.92650468304-1988.066128088564710.1396234055257.9265046830378
7865608348.73833230587354.8859490404524416.375718653671788.73833230587
7944605150.66098298786-353.2727968896884122.61181390183690.660982987858
8028801084.07416232248772.2722294088343903.65360826868-1795.92583767752
8156405788.599521328631806.705076035843684.69540263553148.599521328629
8252804871.058936416062151.507514323023537.43354926092-408.941063583938
832740-97.59125656765582187.419560681353390.17169588631-2837.59125656766
841600460.546737610754-571.5297626578283310.98302504707-1139.45326238925
8532603640.67029735738-352.4646515652213231.79435420784380.670297357381
8629004126.66070479183-1517.752690385513191.091985593681226.66070479183
8728003334.87271958275-885.2623365622723150.38961697952534.872719582752
8823803249.44886169046-1604.44294896363114.99408727313869.448861690462
8917202348.46757052181-1988.066128088563079.59855756675628.467570521811
9026801966.81066345802354.8859490404523038.30338750153-713.189336541978
9146406636.26457945338-353.2727968896882997.00821743631996.26457945338
9226201540.90846241497772.2722294088342926.8193081762-1079.09153758503
9336402616.664525048071806.705076035842856.63039891609-1023.33547495193
9432201446.050384251342151.507514323022842.44210142564-1773.94961574866
9539802944.326635383462187.419560681352828.2538039352-1035.67336461654
9639405568.20500561737-571.5297626578282883.324757040461628.20500561737
9720001414.0689414195-352.4646515652212938.39571014572-585.931058580502
9817401998.18738432348-1517.752690385512999.56530606203258.187384323476
991220264.527434583937-885.2623365622723060.73490197834-955.472565416063
10035405613.98329153156-1604.44294896363070.459657432032073.98329153156
10115001907.88171520283-1988.066128088563080.18441288573407.881715202828
10240804683.37285369058354.8859490404523121.74119726897603.372853690579
10338804949.97481523748-353.2727968896883163.297981652211069.97481523748
10426401313.59829523179772.2722294088343194.12947535937-1326.40170476821
10537002368.333954897631806.705076035843224.96096906654-1331.66604510237
10646203849.55068728362151.507514323023238.94179839338-770.449312716395
10753605279.657811598432187.419560681353252.92262772022-80.3421884015679
10838004911.41018155766-571.5297626578283260.119581100171111.41018155766



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')