Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 14 Dec 2016 16:51:52 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t14817307311lg8egqpsgu62ng.htm/, Retrieved Fri, 01 Nov 2024 03:46:31 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299585, Retrieved Fri, 01 Nov 2024 03:46:31 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact93
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [] [2016-12-14 15:51:52] [6deb082de88ded72ec069288c69f9f98] [Current]
Feedback Forum

Post a new message
Dataseries X:
5410.4
5432.2
5452.9
5477.6
5472.5
5454.9
5446
5010.6
5395.9
5360
5336.9
5333.9
5329.6
5345.7
5353.8
5377.2
5334.1
5351.1
5001
5246.4
5230
5115.8
4972.6
5077.6
5056.9
5070.7
4799.3
5076
5021.5
5026.4
4981.9
4936.6
4901.8
4853.8
4839.2
4821.3
4840.5
4847.6
4832.3
4814.7
4806.4
4803.4
4770.3
4723.4
4667.1
4636.8
4613.2
4605.3
4590.4
4595.4
4600.1
4543.3
4596.4
4575.4
4547.9
4503.7
4446.3
4401.4
4354.3
4336.3
4300.9
4304.1
4273.2
4279.9
4243.1
4199.1
4177.6
4141.7
4088.3
4021.4
3981.2
3937.2
3893.1
3864.7
3847.8
3840.8
3828.4
3798.6
3773
3737.8
3699
3674
3648.8
3645.6
3331
3674.7
3714.5
3739.7
3759.7
3708.6
3717.3
3705.3
3612.8
3665
3670.8
3687.6
3708.2
3737.2
3748.7
3785.3
3787.1
3785.8
3749.7
3716.3
3650
3096.9
3703.2
3716
3736.9
3771.9
3704
3824.2
3733.5
3827.5
3827.6
3696.5
3675.8
3757.5
3753.3
3418.7
3772.9




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299585&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299585&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299585&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal12110122
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 1211 & 0 & 122 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299585&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]1211[/C][C]0[/C][C]122[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299585&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299585&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal12110122
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
15410.45427.19685780006-32.82092470705395426.4240669069916.7968578000628
25432.25424.5851426931722.31149214440695417.50336516242-7.61485730682762
35452.95491.507769436285.709567145868325408.5826634178538.6077694362803
45477.65491.7722028224662.89465925741055400.5331379201414.1722028224549
55472.55493.2465792707759.26980830680775392.4836124224220.7465792707726
65454.95458.8118065712565.87946610003875385.108727328723.91180657124551
754465490.4369868317223.82917093327155377.7338422350144.4369868317153
85010.64673.33781586716-22.06841071259365369.93059484543-337.262184132837
95395.95445.36883242402-15.69617987987285362.1273474558549.4688324240224
1053605446.24393815717-80.28436236723295354.0404242100786.2439381571667
115336.95365.1891054903-37.34260645458595345.9535009642828.2891054903039
125333.95383.41546887628-51.68170054701755336.0662316707349.515468876285
135329.65365.84196232987-32.82092470705395326.1789623771836.2419623298711
145345.75355.1120634076222.31149214440695313.976444447979.41206340761983
155353.85400.116506335375.709567145868325301.7739265187646.3165063353672
165377.25409.1159898416462.89465925741055282.3893509009531.9159898416374
175334.15345.9254164100559.26980830680775263.0047752831411.8254164100526
185351.15397.108312502565.87946610003875239.2122213974746.0083125024958
1950014762.7511615549423.82917093327155215.41966751179-238.248838445064
205246.45327.61343323251-22.06841071259365187.2549774800881.2134332325104
2152305316.6058924315-15.69617987987285159.0902874483786.6058924314993
225115.85181.03951258113-80.28436236723295130.844849786165.2395125811336
234972.64879.94319433076-37.34260645458595102.59941212382-92.6568056692377
245077.65128.20899901775-51.68170054701755078.6727015292750.6089990177479
255056.95091.87493377234-32.82092470705395054.7459909347234.974933772337
265070.75085.3737845379122.31149214440695033.7147233176814.673784537913
274799.34580.206977153495.709567145868325012.68345570064-219.093022846511
2850765096.3324036550962.89465925741054992.772937087520.3324036550894
295021.55010.8677732188359.26980830680774972.86241847436-10.6322267811665
305026.45029.5330720033665.87946610003874957.38746189663.13307200336112
314981.94998.0583237478923.82917093327154941.9125053188416.1583237478872
324936.64966.61009051317-22.06841071259364928.6583201994330.0100905131649
334901.84903.89204479986-15.69617987987284915.404135080022.09204479985601
344853.84887.23520844213-80.28436236723294900.649153925133.4352084421344
354839.24829.8484336844-37.34260645458594885.89417277018-9.35156631559494
364821.34827.10119136552-51.68170054701754867.18050918155.8011913655173
374840.54865.35407911423-32.82092470705394848.4668455928224.8540791142323
384847.64843.5070704931622.31149214440694829.38143736244-4.09292950684448
394832.34848.594403722085.709567145868324810.2960291320616.2944037220768
404814.74774.9208022058262.89465925741054791.58453853677-39.7791977941788
414806.44780.6571437517159.26980830680774772.87304794148-25.742856248291
424803.44786.8514661452865.87946610003874754.06906775469-16.5485338547242
434770.34781.5057414988423.82917093327154735.2650875678911.2057414988403
444723.44752.88459334526-22.06841071259364715.9838173673329.4845933452625
454667.14653.1936327131-15.69617987987284696.70254716677-13.9063672868997
464636.84677.11765227199-80.28436236723294676.7667100952440.3176522719905
474613.24606.91173343087-37.34260645458594656.83087302371-6.28826656912497
484605.34625.46406988379-51.68170054701754636.8176306632320.1640698837873
494590.44596.8165364043-32.82092470705394616.804388302756.41653640430195
504595.44571.20127338822.31149214440694597.2872344676-24.1987266120032
514600.14616.720352221695.709567145868324577.7700806324416.6203522216911
524543.34465.4122603465762.89465925741054558.29308039602-77.8877396534308
534596.44594.7141115335959.26980830680774538.8160801596-1.68588846640978
544575.44567.1679327608165.87946610003874517.75260113915-8.23206723918611
554547.94575.2817069480323.82917093327154496.6891221186927.3817069480347
564503.74556.15152092914-22.06841071259364473.3168897834552.4515209291421
574446.34458.35152243166-15.69617987987284449.9446574482112.0515224316632
584401.44460.08736339477-80.28436236723294422.9969989724658.6873633947716
594354.34349.89326595787-37.34260645458594396.04934049671-4.40673404212521
604336.34359.16775894705-51.68170054701754365.1139415999722.8677589470517
614300.94300.44238200383-32.82092470705394334.17854270322-0.457617996168665
624304.14283.6002196494922.31149214440694302.2882882061-20.4997803505075
634273.24270.292399145155.709567145868324270.39803370898-2.90760085484908
644279.94257.441047320862.89465925741054239.46429342179-22.4589526792006
654243.14218.3996385585959.26980830680774208.5305531346-24.700361441407
664199.14155.3475497007865.87946610003874176.97298419919-43.7524502992246
674177.64185.9554138029623.82917093327154145.415415263778.35541380295581
684141.74193.82857726986-22.06841071259364111.6398334427452.1285772698557
694088.34114.43192825817-15.69617987987284077.864251621726.1319282581717
704021.44080.98022132465-80.28436236723294042.1041410425859.5802213246507
713981.23993.39857599112-37.34260645458594006.3440304634612.1985759911231
723937.23956.13222931245-51.68170054701753969.9494712345618.9322293124524
733893.13885.46601270139-32.82092470705393933.55491200567-7.63398729861274
743864.73808.2096822138522.31149214440693898.87882564174-56.4903177861488
753847.83825.687693576315.709567145868323864.20273927782-22.1123064236854
763840.83784.276864729862.89465925741053834.42847601279-56.5231352701967
773828.43792.8759789454459.26980830680773804.65421274776-35.5240210545639
783798.63753.869617072265.87946610003873777.45091682776-44.7303829277957
7937733771.9232081589723.82917093327153750.24762090776-1.07679184102881
803737.83768.69925495073-22.06841071259363728.9691557618730.8992549507252
8136993706.00548926389-15.69617987987283707.690690615987.0054892638932
8236743733.19006896214-80.28436236723293695.0942934050959.1900689621434
833648.83652.44471026039-37.34260645458593682.49789619423.644710260387
843645.63667.32053307674-51.68170054701753675.5611674702821.7205330767388
8533313026.1964859607-32.82092470705393668.62443874636-304.803514039304
863674.73662.5473815973322.31149214440693664.54112625826-12.1526184026652
873714.53762.832619083975.709567145868323660.4578137701648.332619083973
883739.73753.9188037342562.89465925741053662.5865370083314.2188037342548
893759.73795.4149314466859.26980830680773664.7152602465135.7149314466815
903708.63677.4851607211965.87946610003873673.83537317877-31.1148392788091
913717.33727.815342955723.82917093327153682.9554861110310.5153429556985
923705.33740.26650979792-22.06841071259363692.4019009146734.9665097979205
933612.83539.44786416156-15.69617987987283701.84831571832-73.3521358384428
9436653703.66053057501-80.28436236723293706.6238317922238.660530575014
953670.83667.54325858846-37.34260645458593711.39934786612-3.25674141153559
963687.63711.50042703681-51.68170054701753715.3812735102123.9004270368118
973708.23729.85772555276-32.82092470705393719.3631991542921.657725552765
983737.23734.5585314335122.31149214440693717.52997642208-2.64146856649086
993748.73775.993679164255.709567145868323715.6967536898827.2936791642524
1003785.33802.3567779187562.89465925741053705.3485628238417.0567779187459
1013787.13819.9298197353859.26980830680773695.0003719578132.8298197353838
1023785.83818.1515143293165.87946610003873687.5690195706532.3515143293075
1033749.73795.4331618832323.82917093327153680.137667183545.7331618832286
1043716.33775.79471695993-22.06841071259363678.8736937526759.4947169599259
10536503638.08645955804-15.69617987987283677.60972032184-11.9135404419631
1063096.92595.7604845156-80.28436236723293678.32387785164-501.139515484403
1073703.23764.70457107315-37.34260645458593679.0380353814461.5045710731501
10837163800.18102205112-51.68170054701753683.500678495984.1810220511211
1093736.93818.6576030967-32.82092470705393687.9633216103681.757603096697
1103771.93822.5252940723622.31149214440693698.9632137832450.6252940723566
11137043692.327326898025.709567145868323709.96310595612-11.6726731019844
1123824.23867.2368873691662.89465925741053718.2684533734343.0368873691623
1133733.53681.1563909024559.26980830680773726.57380079074-52.3436090975465
1143827.53861.8857777881465.87946610003873727.2347561118234.3857777881376
1153827.63903.4751176338223.82917093327153727.8957114329175.8751176338201
1163696.53686.94858000219-22.06841071259363728.1198307104-9.5514199978079
1173675.83638.95222989198-15.69617987987283728.34394998789-36.847770108021
1183757.53867.42627276117-80.28436236723293727.85808960606109.926272761168
1193753.33816.57037723035-37.34260645458593727.3722292242463.2703772303512
1203418.73163.15775135833-51.68170054701753725.92394918868-255.542248641666
1213772.93854.14525555392-32.82092470705393724.4756691531381.2452555539235

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 5410.4 & 5427.19685780006 & -32.8209247070539 & 5426.42406690699 & 16.7968578000628 \tabularnewline
2 & 5432.2 & 5424.58514269317 & 22.3114921444069 & 5417.50336516242 & -7.61485730682762 \tabularnewline
3 & 5452.9 & 5491.50776943628 & 5.70956714586832 & 5408.58266341785 & 38.6077694362803 \tabularnewline
4 & 5477.6 & 5491.77220282246 & 62.8946592574105 & 5400.53313792014 & 14.1722028224549 \tabularnewline
5 & 5472.5 & 5493.24657927077 & 59.2698083068077 & 5392.48361242242 & 20.7465792707726 \tabularnewline
6 & 5454.9 & 5458.81180657125 & 65.8794661000387 & 5385.10872732872 & 3.91180657124551 \tabularnewline
7 & 5446 & 5490.43698683172 & 23.8291709332715 & 5377.73384223501 & 44.4369868317153 \tabularnewline
8 & 5010.6 & 4673.33781586716 & -22.0684107125936 & 5369.93059484543 & -337.262184132837 \tabularnewline
9 & 5395.9 & 5445.36883242402 & -15.6961798798728 & 5362.12734745585 & 49.4688324240224 \tabularnewline
10 & 5360 & 5446.24393815717 & -80.2843623672329 & 5354.04042421007 & 86.2439381571667 \tabularnewline
11 & 5336.9 & 5365.1891054903 & -37.3426064545859 & 5345.95350096428 & 28.2891054903039 \tabularnewline
12 & 5333.9 & 5383.41546887628 & -51.6817005470175 & 5336.06623167073 & 49.515468876285 \tabularnewline
13 & 5329.6 & 5365.84196232987 & -32.8209247070539 & 5326.17896237718 & 36.2419623298711 \tabularnewline
14 & 5345.7 & 5355.11206340762 & 22.3114921444069 & 5313.97644444797 & 9.41206340761983 \tabularnewline
15 & 5353.8 & 5400.11650633537 & 5.70956714586832 & 5301.77392651876 & 46.3165063353672 \tabularnewline
16 & 5377.2 & 5409.11598984164 & 62.8946592574105 & 5282.38935090095 & 31.9159898416374 \tabularnewline
17 & 5334.1 & 5345.92541641005 & 59.2698083068077 & 5263.00477528314 & 11.8254164100526 \tabularnewline
18 & 5351.1 & 5397.1083125025 & 65.8794661000387 & 5239.21222139747 & 46.0083125024958 \tabularnewline
19 & 5001 & 4762.75116155494 & 23.8291709332715 & 5215.41966751179 & -238.248838445064 \tabularnewline
20 & 5246.4 & 5327.61343323251 & -22.0684107125936 & 5187.25497748008 & 81.2134332325104 \tabularnewline
21 & 5230 & 5316.6058924315 & -15.6961798798728 & 5159.09028744837 & 86.6058924314993 \tabularnewline
22 & 5115.8 & 5181.03951258113 & -80.2843623672329 & 5130.8448497861 & 65.2395125811336 \tabularnewline
23 & 4972.6 & 4879.94319433076 & -37.3426064545859 & 5102.59941212382 & -92.6568056692377 \tabularnewline
24 & 5077.6 & 5128.20899901775 & -51.6817005470175 & 5078.67270152927 & 50.6089990177479 \tabularnewline
25 & 5056.9 & 5091.87493377234 & -32.8209247070539 & 5054.74599093472 & 34.974933772337 \tabularnewline
26 & 5070.7 & 5085.37378453791 & 22.3114921444069 & 5033.71472331768 & 14.673784537913 \tabularnewline
27 & 4799.3 & 4580.20697715349 & 5.70956714586832 & 5012.68345570064 & -219.093022846511 \tabularnewline
28 & 5076 & 5096.33240365509 & 62.8946592574105 & 4992.7729370875 & 20.3324036550894 \tabularnewline
29 & 5021.5 & 5010.86777321883 & 59.2698083068077 & 4972.86241847436 & -10.6322267811665 \tabularnewline
30 & 5026.4 & 5029.53307200336 & 65.8794661000387 & 4957.3874618966 & 3.13307200336112 \tabularnewline
31 & 4981.9 & 4998.05832374789 & 23.8291709332715 & 4941.91250531884 & 16.1583237478872 \tabularnewline
32 & 4936.6 & 4966.61009051317 & -22.0684107125936 & 4928.65832019943 & 30.0100905131649 \tabularnewline
33 & 4901.8 & 4903.89204479986 & -15.6961798798728 & 4915.40413508002 & 2.09204479985601 \tabularnewline
34 & 4853.8 & 4887.23520844213 & -80.2843623672329 & 4900.6491539251 & 33.4352084421344 \tabularnewline
35 & 4839.2 & 4829.8484336844 & -37.3426064545859 & 4885.89417277018 & -9.35156631559494 \tabularnewline
36 & 4821.3 & 4827.10119136552 & -51.6817005470175 & 4867.1805091815 & 5.8011913655173 \tabularnewline
37 & 4840.5 & 4865.35407911423 & -32.8209247070539 & 4848.46684559282 & 24.8540791142323 \tabularnewline
38 & 4847.6 & 4843.50707049316 & 22.3114921444069 & 4829.38143736244 & -4.09292950684448 \tabularnewline
39 & 4832.3 & 4848.59440372208 & 5.70956714586832 & 4810.29602913206 & 16.2944037220768 \tabularnewline
40 & 4814.7 & 4774.92080220582 & 62.8946592574105 & 4791.58453853677 & -39.7791977941788 \tabularnewline
41 & 4806.4 & 4780.65714375171 & 59.2698083068077 & 4772.87304794148 & -25.742856248291 \tabularnewline
42 & 4803.4 & 4786.85146614528 & 65.8794661000387 & 4754.06906775469 & -16.5485338547242 \tabularnewline
43 & 4770.3 & 4781.50574149884 & 23.8291709332715 & 4735.26508756789 & 11.2057414988403 \tabularnewline
44 & 4723.4 & 4752.88459334526 & -22.0684107125936 & 4715.98381736733 & 29.4845933452625 \tabularnewline
45 & 4667.1 & 4653.1936327131 & -15.6961798798728 & 4696.70254716677 & -13.9063672868997 \tabularnewline
46 & 4636.8 & 4677.11765227199 & -80.2843623672329 & 4676.76671009524 & 40.3176522719905 \tabularnewline
47 & 4613.2 & 4606.91173343087 & -37.3426064545859 & 4656.83087302371 & -6.28826656912497 \tabularnewline
48 & 4605.3 & 4625.46406988379 & -51.6817005470175 & 4636.81763066323 & 20.1640698837873 \tabularnewline
49 & 4590.4 & 4596.8165364043 & -32.8209247070539 & 4616.80438830275 & 6.41653640430195 \tabularnewline
50 & 4595.4 & 4571.201273388 & 22.3114921444069 & 4597.2872344676 & -24.1987266120032 \tabularnewline
51 & 4600.1 & 4616.72035222169 & 5.70956714586832 & 4577.77008063244 & 16.6203522216911 \tabularnewline
52 & 4543.3 & 4465.41226034657 & 62.8946592574105 & 4558.29308039602 & -77.8877396534308 \tabularnewline
53 & 4596.4 & 4594.71411153359 & 59.2698083068077 & 4538.8160801596 & -1.68588846640978 \tabularnewline
54 & 4575.4 & 4567.16793276081 & 65.8794661000387 & 4517.75260113915 & -8.23206723918611 \tabularnewline
55 & 4547.9 & 4575.28170694803 & 23.8291709332715 & 4496.68912211869 & 27.3817069480347 \tabularnewline
56 & 4503.7 & 4556.15152092914 & -22.0684107125936 & 4473.31688978345 & 52.4515209291421 \tabularnewline
57 & 4446.3 & 4458.35152243166 & -15.6961798798728 & 4449.94465744821 & 12.0515224316632 \tabularnewline
58 & 4401.4 & 4460.08736339477 & -80.2843623672329 & 4422.99699897246 & 58.6873633947716 \tabularnewline
59 & 4354.3 & 4349.89326595787 & -37.3426064545859 & 4396.04934049671 & -4.40673404212521 \tabularnewline
60 & 4336.3 & 4359.16775894705 & -51.6817005470175 & 4365.11394159997 & 22.8677589470517 \tabularnewline
61 & 4300.9 & 4300.44238200383 & -32.8209247070539 & 4334.17854270322 & -0.457617996168665 \tabularnewline
62 & 4304.1 & 4283.60021964949 & 22.3114921444069 & 4302.2882882061 & -20.4997803505075 \tabularnewline
63 & 4273.2 & 4270.29239914515 & 5.70956714586832 & 4270.39803370898 & -2.90760085484908 \tabularnewline
64 & 4279.9 & 4257.4410473208 & 62.8946592574105 & 4239.46429342179 & -22.4589526792006 \tabularnewline
65 & 4243.1 & 4218.39963855859 & 59.2698083068077 & 4208.5305531346 & -24.700361441407 \tabularnewline
66 & 4199.1 & 4155.34754970078 & 65.8794661000387 & 4176.97298419919 & -43.7524502992246 \tabularnewline
67 & 4177.6 & 4185.95541380296 & 23.8291709332715 & 4145.41541526377 & 8.35541380295581 \tabularnewline
68 & 4141.7 & 4193.82857726986 & -22.0684107125936 & 4111.63983344274 & 52.1285772698557 \tabularnewline
69 & 4088.3 & 4114.43192825817 & -15.6961798798728 & 4077.8642516217 & 26.1319282581717 \tabularnewline
70 & 4021.4 & 4080.98022132465 & -80.2843623672329 & 4042.10414104258 & 59.5802213246507 \tabularnewline
71 & 3981.2 & 3993.39857599112 & -37.3426064545859 & 4006.34403046346 & 12.1985759911231 \tabularnewline
72 & 3937.2 & 3956.13222931245 & -51.6817005470175 & 3969.94947123456 & 18.9322293124524 \tabularnewline
73 & 3893.1 & 3885.46601270139 & -32.8209247070539 & 3933.55491200567 & -7.63398729861274 \tabularnewline
74 & 3864.7 & 3808.20968221385 & 22.3114921444069 & 3898.87882564174 & -56.4903177861488 \tabularnewline
75 & 3847.8 & 3825.68769357631 & 5.70956714586832 & 3864.20273927782 & -22.1123064236854 \tabularnewline
76 & 3840.8 & 3784.2768647298 & 62.8946592574105 & 3834.42847601279 & -56.5231352701967 \tabularnewline
77 & 3828.4 & 3792.87597894544 & 59.2698083068077 & 3804.65421274776 & -35.5240210545639 \tabularnewline
78 & 3798.6 & 3753.8696170722 & 65.8794661000387 & 3777.45091682776 & -44.7303829277957 \tabularnewline
79 & 3773 & 3771.92320815897 & 23.8291709332715 & 3750.24762090776 & -1.07679184102881 \tabularnewline
80 & 3737.8 & 3768.69925495073 & -22.0684107125936 & 3728.96915576187 & 30.8992549507252 \tabularnewline
81 & 3699 & 3706.00548926389 & -15.6961798798728 & 3707.69069061598 & 7.0054892638932 \tabularnewline
82 & 3674 & 3733.19006896214 & -80.2843623672329 & 3695.09429340509 & 59.1900689621434 \tabularnewline
83 & 3648.8 & 3652.44471026039 & -37.3426064545859 & 3682.4978961942 & 3.644710260387 \tabularnewline
84 & 3645.6 & 3667.32053307674 & -51.6817005470175 & 3675.56116747028 & 21.7205330767388 \tabularnewline
85 & 3331 & 3026.1964859607 & -32.8209247070539 & 3668.62443874636 & -304.803514039304 \tabularnewline
86 & 3674.7 & 3662.54738159733 & 22.3114921444069 & 3664.54112625826 & -12.1526184026652 \tabularnewline
87 & 3714.5 & 3762.83261908397 & 5.70956714586832 & 3660.45781377016 & 48.332619083973 \tabularnewline
88 & 3739.7 & 3753.91880373425 & 62.8946592574105 & 3662.58653700833 & 14.2188037342548 \tabularnewline
89 & 3759.7 & 3795.41493144668 & 59.2698083068077 & 3664.71526024651 & 35.7149314466815 \tabularnewline
90 & 3708.6 & 3677.48516072119 & 65.8794661000387 & 3673.83537317877 & -31.1148392788091 \tabularnewline
91 & 3717.3 & 3727.8153429557 & 23.8291709332715 & 3682.95548611103 & 10.5153429556985 \tabularnewline
92 & 3705.3 & 3740.26650979792 & -22.0684107125936 & 3692.40190091467 & 34.9665097979205 \tabularnewline
93 & 3612.8 & 3539.44786416156 & -15.6961798798728 & 3701.84831571832 & -73.3521358384428 \tabularnewline
94 & 3665 & 3703.66053057501 & -80.2843623672329 & 3706.62383179222 & 38.660530575014 \tabularnewline
95 & 3670.8 & 3667.54325858846 & -37.3426064545859 & 3711.39934786612 & -3.25674141153559 \tabularnewline
96 & 3687.6 & 3711.50042703681 & -51.6817005470175 & 3715.38127351021 & 23.9004270368118 \tabularnewline
97 & 3708.2 & 3729.85772555276 & -32.8209247070539 & 3719.36319915429 & 21.657725552765 \tabularnewline
98 & 3737.2 & 3734.55853143351 & 22.3114921444069 & 3717.52997642208 & -2.64146856649086 \tabularnewline
99 & 3748.7 & 3775.99367916425 & 5.70956714586832 & 3715.69675368988 & 27.2936791642524 \tabularnewline
100 & 3785.3 & 3802.35677791875 & 62.8946592574105 & 3705.34856282384 & 17.0567779187459 \tabularnewline
101 & 3787.1 & 3819.92981973538 & 59.2698083068077 & 3695.00037195781 & 32.8298197353838 \tabularnewline
102 & 3785.8 & 3818.15151432931 & 65.8794661000387 & 3687.56901957065 & 32.3515143293075 \tabularnewline
103 & 3749.7 & 3795.43316188323 & 23.8291709332715 & 3680.1376671835 & 45.7331618832286 \tabularnewline
104 & 3716.3 & 3775.79471695993 & -22.0684107125936 & 3678.87369375267 & 59.4947169599259 \tabularnewline
105 & 3650 & 3638.08645955804 & -15.6961798798728 & 3677.60972032184 & -11.9135404419631 \tabularnewline
106 & 3096.9 & 2595.7604845156 & -80.2843623672329 & 3678.32387785164 & -501.139515484403 \tabularnewline
107 & 3703.2 & 3764.70457107315 & -37.3426064545859 & 3679.03803538144 & 61.5045710731501 \tabularnewline
108 & 3716 & 3800.18102205112 & -51.6817005470175 & 3683.5006784959 & 84.1810220511211 \tabularnewline
109 & 3736.9 & 3818.6576030967 & -32.8209247070539 & 3687.96332161036 & 81.757603096697 \tabularnewline
110 & 3771.9 & 3822.52529407236 & 22.3114921444069 & 3698.96321378324 & 50.6252940723566 \tabularnewline
111 & 3704 & 3692.32732689802 & 5.70956714586832 & 3709.96310595612 & -11.6726731019844 \tabularnewline
112 & 3824.2 & 3867.23688736916 & 62.8946592574105 & 3718.26845337343 & 43.0368873691623 \tabularnewline
113 & 3733.5 & 3681.15639090245 & 59.2698083068077 & 3726.57380079074 & -52.3436090975465 \tabularnewline
114 & 3827.5 & 3861.88577778814 & 65.8794661000387 & 3727.23475611182 & 34.3857777881376 \tabularnewline
115 & 3827.6 & 3903.47511763382 & 23.8291709332715 & 3727.89571143291 & 75.8751176338201 \tabularnewline
116 & 3696.5 & 3686.94858000219 & -22.0684107125936 & 3728.1198307104 & -9.5514199978079 \tabularnewline
117 & 3675.8 & 3638.95222989198 & -15.6961798798728 & 3728.34394998789 & -36.847770108021 \tabularnewline
118 & 3757.5 & 3867.42627276117 & -80.2843623672329 & 3727.85808960606 & 109.926272761168 \tabularnewline
119 & 3753.3 & 3816.57037723035 & -37.3426064545859 & 3727.37222922424 & 63.2703772303512 \tabularnewline
120 & 3418.7 & 3163.15775135833 & -51.6817005470175 & 3725.92394918868 & -255.542248641666 \tabularnewline
121 & 3772.9 & 3854.14525555392 & -32.8209247070539 & 3724.47566915313 & 81.2452555539235 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299585&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]5410.4[/C][C]5427.19685780006[/C][C]-32.8209247070539[/C][C]5426.42406690699[/C][C]16.7968578000628[/C][/ROW]
[ROW][C]2[/C][C]5432.2[/C][C]5424.58514269317[/C][C]22.3114921444069[/C][C]5417.50336516242[/C][C]-7.61485730682762[/C][/ROW]
[ROW][C]3[/C][C]5452.9[/C][C]5491.50776943628[/C][C]5.70956714586832[/C][C]5408.58266341785[/C][C]38.6077694362803[/C][/ROW]
[ROW][C]4[/C][C]5477.6[/C][C]5491.77220282246[/C][C]62.8946592574105[/C][C]5400.53313792014[/C][C]14.1722028224549[/C][/ROW]
[ROW][C]5[/C][C]5472.5[/C][C]5493.24657927077[/C][C]59.2698083068077[/C][C]5392.48361242242[/C][C]20.7465792707726[/C][/ROW]
[ROW][C]6[/C][C]5454.9[/C][C]5458.81180657125[/C][C]65.8794661000387[/C][C]5385.10872732872[/C][C]3.91180657124551[/C][/ROW]
[ROW][C]7[/C][C]5446[/C][C]5490.43698683172[/C][C]23.8291709332715[/C][C]5377.73384223501[/C][C]44.4369868317153[/C][/ROW]
[ROW][C]8[/C][C]5010.6[/C][C]4673.33781586716[/C][C]-22.0684107125936[/C][C]5369.93059484543[/C][C]-337.262184132837[/C][/ROW]
[ROW][C]9[/C][C]5395.9[/C][C]5445.36883242402[/C][C]-15.6961798798728[/C][C]5362.12734745585[/C][C]49.4688324240224[/C][/ROW]
[ROW][C]10[/C][C]5360[/C][C]5446.24393815717[/C][C]-80.2843623672329[/C][C]5354.04042421007[/C][C]86.2439381571667[/C][/ROW]
[ROW][C]11[/C][C]5336.9[/C][C]5365.1891054903[/C][C]-37.3426064545859[/C][C]5345.95350096428[/C][C]28.2891054903039[/C][/ROW]
[ROW][C]12[/C][C]5333.9[/C][C]5383.41546887628[/C][C]-51.6817005470175[/C][C]5336.06623167073[/C][C]49.515468876285[/C][/ROW]
[ROW][C]13[/C][C]5329.6[/C][C]5365.84196232987[/C][C]-32.8209247070539[/C][C]5326.17896237718[/C][C]36.2419623298711[/C][/ROW]
[ROW][C]14[/C][C]5345.7[/C][C]5355.11206340762[/C][C]22.3114921444069[/C][C]5313.97644444797[/C][C]9.41206340761983[/C][/ROW]
[ROW][C]15[/C][C]5353.8[/C][C]5400.11650633537[/C][C]5.70956714586832[/C][C]5301.77392651876[/C][C]46.3165063353672[/C][/ROW]
[ROW][C]16[/C][C]5377.2[/C][C]5409.11598984164[/C][C]62.8946592574105[/C][C]5282.38935090095[/C][C]31.9159898416374[/C][/ROW]
[ROW][C]17[/C][C]5334.1[/C][C]5345.92541641005[/C][C]59.2698083068077[/C][C]5263.00477528314[/C][C]11.8254164100526[/C][/ROW]
[ROW][C]18[/C][C]5351.1[/C][C]5397.1083125025[/C][C]65.8794661000387[/C][C]5239.21222139747[/C][C]46.0083125024958[/C][/ROW]
[ROW][C]19[/C][C]5001[/C][C]4762.75116155494[/C][C]23.8291709332715[/C][C]5215.41966751179[/C][C]-238.248838445064[/C][/ROW]
[ROW][C]20[/C][C]5246.4[/C][C]5327.61343323251[/C][C]-22.0684107125936[/C][C]5187.25497748008[/C][C]81.2134332325104[/C][/ROW]
[ROW][C]21[/C][C]5230[/C][C]5316.6058924315[/C][C]-15.6961798798728[/C][C]5159.09028744837[/C][C]86.6058924314993[/C][/ROW]
[ROW][C]22[/C][C]5115.8[/C][C]5181.03951258113[/C][C]-80.2843623672329[/C][C]5130.8448497861[/C][C]65.2395125811336[/C][/ROW]
[ROW][C]23[/C][C]4972.6[/C][C]4879.94319433076[/C][C]-37.3426064545859[/C][C]5102.59941212382[/C][C]-92.6568056692377[/C][/ROW]
[ROW][C]24[/C][C]5077.6[/C][C]5128.20899901775[/C][C]-51.6817005470175[/C][C]5078.67270152927[/C][C]50.6089990177479[/C][/ROW]
[ROW][C]25[/C][C]5056.9[/C][C]5091.87493377234[/C][C]-32.8209247070539[/C][C]5054.74599093472[/C][C]34.974933772337[/C][/ROW]
[ROW][C]26[/C][C]5070.7[/C][C]5085.37378453791[/C][C]22.3114921444069[/C][C]5033.71472331768[/C][C]14.673784537913[/C][/ROW]
[ROW][C]27[/C][C]4799.3[/C][C]4580.20697715349[/C][C]5.70956714586832[/C][C]5012.68345570064[/C][C]-219.093022846511[/C][/ROW]
[ROW][C]28[/C][C]5076[/C][C]5096.33240365509[/C][C]62.8946592574105[/C][C]4992.7729370875[/C][C]20.3324036550894[/C][/ROW]
[ROW][C]29[/C][C]5021.5[/C][C]5010.86777321883[/C][C]59.2698083068077[/C][C]4972.86241847436[/C][C]-10.6322267811665[/C][/ROW]
[ROW][C]30[/C][C]5026.4[/C][C]5029.53307200336[/C][C]65.8794661000387[/C][C]4957.3874618966[/C][C]3.13307200336112[/C][/ROW]
[ROW][C]31[/C][C]4981.9[/C][C]4998.05832374789[/C][C]23.8291709332715[/C][C]4941.91250531884[/C][C]16.1583237478872[/C][/ROW]
[ROW][C]32[/C][C]4936.6[/C][C]4966.61009051317[/C][C]-22.0684107125936[/C][C]4928.65832019943[/C][C]30.0100905131649[/C][/ROW]
[ROW][C]33[/C][C]4901.8[/C][C]4903.89204479986[/C][C]-15.6961798798728[/C][C]4915.40413508002[/C][C]2.09204479985601[/C][/ROW]
[ROW][C]34[/C][C]4853.8[/C][C]4887.23520844213[/C][C]-80.2843623672329[/C][C]4900.6491539251[/C][C]33.4352084421344[/C][/ROW]
[ROW][C]35[/C][C]4839.2[/C][C]4829.8484336844[/C][C]-37.3426064545859[/C][C]4885.89417277018[/C][C]-9.35156631559494[/C][/ROW]
[ROW][C]36[/C][C]4821.3[/C][C]4827.10119136552[/C][C]-51.6817005470175[/C][C]4867.1805091815[/C][C]5.8011913655173[/C][/ROW]
[ROW][C]37[/C][C]4840.5[/C][C]4865.35407911423[/C][C]-32.8209247070539[/C][C]4848.46684559282[/C][C]24.8540791142323[/C][/ROW]
[ROW][C]38[/C][C]4847.6[/C][C]4843.50707049316[/C][C]22.3114921444069[/C][C]4829.38143736244[/C][C]-4.09292950684448[/C][/ROW]
[ROW][C]39[/C][C]4832.3[/C][C]4848.59440372208[/C][C]5.70956714586832[/C][C]4810.29602913206[/C][C]16.2944037220768[/C][/ROW]
[ROW][C]40[/C][C]4814.7[/C][C]4774.92080220582[/C][C]62.8946592574105[/C][C]4791.58453853677[/C][C]-39.7791977941788[/C][/ROW]
[ROW][C]41[/C][C]4806.4[/C][C]4780.65714375171[/C][C]59.2698083068077[/C][C]4772.87304794148[/C][C]-25.742856248291[/C][/ROW]
[ROW][C]42[/C][C]4803.4[/C][C]4786.85146614528[/C][C]65.8794661000387[/C][C]4754.06906775469[/C][C]-16.5485338547242[/C][/ROW]
[ROW][C]43[/C][C]4770.3[/C][C]4781.50574149884[/C][C]23.8291709332715[/C][C]4735.26508756789[/C][C]11.2057414988403[/C][/ROW]
[ROW][C]44[/C][C]4723.4[/C][C]4752.88459334526[/C][C]-22.0684107125936[/C][C]4715.98381736733[/C][C]29.4845933452625[/C][/ROW]
[ROW][C]45[/C][C]4667.1[/C][C]4653.1936327131[/C][C]-15.6961798798728[/C][C]4696.70254716677[/C][C]-13.9063672868997[/C][/ROW]
[ROW][C]46[/C][C]4636.8[/C][C]4677.11765227199[/C][C]-80.2843623672329[/C][C]4676.76671009524[/C][C]40.3176522719905[/C][/ROW]
[ROW][C]47[/C][C]4613.2[/C][C]4606.91173343087[/C][C]-37.3426064545859[/C][C]4656.83087302371[/C][C]-6.28826656912497[/C][/ROW]
[ROW][C]48[/C][C]4605.3[/C][C]4625.46406988379[/C][C]-51.6817005470175[/C][C]4636.81763066323[/C][C]20.1640698837873[/C][/ROW]
[ROW][C]49[/C][C]4590.4[/C][C]4596.8165364043[/C][C]-32.8209247070539[/C][C]4616.80438830275[/C][C]6.41653640430195[/C][/ROW]
[ROW][C]50[/C][C]4595.4[/C][C]4571.201273388[/C][C]22.3114921444069[/C][C]4597.2872344676[/C][C]-24.1987266120032[/C][/ROW]
[ROW][C]51[/C][C]4600.1[/C][C]4616.72035222169[/C][C]5.70956714586832[/C][C]4577.77008063244[/C][C]16.6203522216911[/C][/ROW]
[ROW][C]52[/C][C]4543.3[/C][C]4465.41226034657[/C][C]62.8946592574105[/C][C]4558.29308039602[/C][C]-77.8877396534308[/C][/ROW]
[ROW][C]53[/C][C]4596.4[/C][C]4594.71411153359[/C][C]59.2698083068077[/C][C]4538.8160801596[/C][C]-1.68588846640978[/C][/ROW]
[ROW][C]54[/C][C]4575.4[/C][C]4567.16793276081[/C][C]65.8794661000387[/C][C]4517.75260113915[/C][C]-8.23206723918611[/C][/ROW]
[ROW][C]55[/C][C]4547.9[/C][C]4575.28170694803[/C][C]23.8291709332715[/C][C]4496.68912211869[/C][C]27.3817069480347[/C][/ROW]
[ROW][C]56[/C][C]4503.7[/C][C]4556.15152092914[/C][C]-22.0684107125936[/C][C]4473.31688978345[/C][C]52.4515209291421[/C][/ROW]
[ROW][C]57[/C][C]4446.3[/C][C]4458.35152243166[/C][C]-15.6961798798728[/C][C]4449.94465744821[/C][C]12.0515224316632[/C][/ROW]
[ROW][C]58[/C][C]4401.4[/C][C]4460.08736339477[/C][C]-80.2843623672329[/C][C]4422.99699897246[/C][C]58.6873633947716[/C][/ROW]
[ROW][C]59[/C][C]4354.3[/C][C]4349.89326595787[/C][C]-37.3426064545859[/C][C]4396.04934049671[/C][C]-4.40673404212521[/C][/ROW]
[ROW][C]60[/C][C]4336.3[/C][C]4359.16775894705[/C][C]-51.6817005470175[/C][C]4365.11394159997[/C][C]22.8677589470517[/C][/ROW]
[ROW][C]61[/C][C]4300.9[/C][C]4300.44238200383[/C][C]-32.8209247070539[/C][C]4334.17854270322[/C][C]-0.457617996168665[/C][/ROW]
[ROW][C]62[/C][C]4304.1[/C][C]4283.60021964949[/C][C]22.3114921444069[/C][C]4302.2882882061[/C][C]-20.4997803505075[/C][/ROW]
[ROW][C]63[/C][C]4273.2[/C][C]4270.29239914515[/C][C]5.70956714586832[/C][C]4270.39803370898[/C][C]-2.90760085484908[/C][/ROW]
[ROW][C]64[/C][C]4279.9[/C][C]4257.4410473208[/C][C]62.8946592574105[/C][C]4239.46429342179[/C][C]-22.4589526792006[/C][/ROW]
[ROW][C]65[/C][C]4243.1[/C][C]4218.39963855859[/C][C]59.2698083068077[/C][C]4208.5305531346[/C][C]-24.700361441407[/C][/ROW]
[ROW][C]66[/C][C]4199.1[/C][C]4155.34754970078[/C][C]65.8794661000387[/C][C]4176.97298419919[/C][C]-43.7524502992246[/C][/ROW]
[ROW][C]67[/C][C]4177.6[/C][C]4185.95541380296[/C][C]23.8291709332715[/C][C]4145.41541526377[/C][C]8.35541380295581[/C][/ROW]
[ROW][C]68[/C][C]4141.7[/C][C]4193.82857726986[/C][C]-22.0684107125936[/C][C]4111.63983344274[/C][C]52.1285772698557[/C][/ROW]
[ROW][C]69[/C][C]4088.3[/C][C]4114.43192825817[/C][C]-15.6961798798728[/C][C]4077.8642516217[/C][C]26.1319282581717[/C][/ROW]
[ROW][C]70[/C][C]4021.4[/C][C]4080.98022132465[/C][C]-80.2843623672329[/C][C]4042.10414104258[/C][C]59.5802213246507[/C][/ROW]
[ROW][C]71[/C][C]3981.2[/C][C]3993.39857599112[/C][C]-37.3426064545859[/C][C]4006.34403046346[/C][C]12.1985759911231[/C][/ROW]
[ROW][C]72[/C][C]3937.2[/C][C]3956.13222931245[/C][C]-51.6817005470175[/C][C]3969.94947123456[/C][C]18.9322293124524[/C][/ROW]
[ROW][C]73[/C][C]3893.1[/C][C]3885.46601270139[/C][C]-32.8209247070539[/C][C]3933.55491200567[/C][C]-7.63398729861274[/C][/ROW]
[ROW][C]74[/C][C]3864.7[/C][C]3808.20968221385[/C][C]22.3114921444069[/C][C]3898.87882564174[/C][C]-56.4903177861488[/C][/ROW]
[ROW][C]75[/C][C]3847.8[/C][C]3825.68769357631[/C][C]5.70956714586832[/C][C]3864.20273927782[/C][C]-22.1123064236854[/C][/ROW]
[ROW][C]76[/C][C]3840.8[/C][C]3784.2768647298[/C][C]62.8946592574105[/C][C]3834.42847601279[/C][C]-56.5231352701967[/C][/ROW]
[ROW][C]77[/C][C]3828.4[/C][C]3792.87597894544[/C][C]59.2698083068077[/C][C]3804.65421274776[/C][C]-35.5240210545639[/C][/ROW]
[ROW][C]78[/C][C]3798.6[/C][C]3753.8696170722[/C][C]65.8794661000387[/C][C]3777.45091682776[/C][C]-44.7303829277957[/C][/ROW]
[ROW][C]79[/C][C]3773[/C][C]3771.92320815897[/C][C]23.8291709332715[/C][C]3750.24762090776[/C][C]-1.07679184102881[/C][/ROW]
[ROW][C]80[/C][C]3737.8[/C][C]3768.69925495073[/C][C]-22.0684107125936[/C][C]3728.96915576187[/C][C]30.8992549507252[/C][/ROW]
[ROW][C]81[/C][C]3699[/C][C]3706.00548926389[/C][C]-15.6961798798728[/C][C]3707.69069061598[/C][C]7.0054892638932[/C][/ROW]
[ROW][C]82[/C][C]3674[/C][C]3733.19006896214[/C][C]-80.2843623672329[/C][C]3695.09429340509[/C][C]59.1900689621434[/C][/ROW]
[ROW][C]83[/C][C]3648.8[/C][C]3652.44471026039[/C][C]-37.3426064545859[/C][C]3682.4978961942[/C][C]3.644710260387[/C][/ROW]
[ROW][C]84[/C][C]3645.6[/C][C]3667.32053307674[/C][C]-51.6817005470175[/C][C]3675.56116747028[/C][C]21.7205330767388[/C][/ROW]
[ROW][C]85[/C][C]3331[/C][C]3026.1964859607[/C][C]-32.8209247070539[/C][C]3668.62443874636[/C][C]-304.803514039304[/C][/ROW]
[ROW][C]86[/C][C]3674.7[/C][C]3662.54738159733[/C][C]22.3114921444069[/C][C]3664.54112625826[/C][C]-12.1526184026652[/C][/ROW]
[ROW][C]87[/C][C]3714.5[/C][C]3762.83261908397[/C][C]5.70956714586832[/C][C]3660.45781377016[/C][C]48.332619083973[/C][/ROW]
[ROW][C]88[/C][C]3739.7[/C][C]3753.91880373425[/C][C]62.8946592574105[/C][C]3662.58653700833[/C][C]14.2188037342548[/C][/ROW]
[ROW][C]89[/C][C]3759.7[/C][C]3795.41493144668[/C][C]59.2698083068077[/C][C]3664.71526024651[/C][C]35.7149314466815[/C][/ROW]
[ROW][C]90[/C][C]3708.6[/C][C]3677.48516072119[/C][C]65.8794661000387[/C][C]3673.83537317877[/C][C]-31.1148392788091[/C][/ROW]
[ROW][C]91[/C][C]3717.3[/C][C]3727.8153429557[/C][C]23.8291709332715[/C][C]3682.95548611103[/C][C]10.5153429556985[/C][/ROW]
[ROW][C]92[/C][C]3705.3[/C][C]3740.26650979792[/C][C]-22.0684107125936[/C][C]3692.40190091467[/C][C]34.9665097979205[/C][/ROW]
[ROW][C]93[/C][C]3612.8[/C][C]3539.44786416156[/C][C]-15.6961798798728[/C][C]3701.84831571832[/C][C]-73.3521358384428[/C][/ROW]
[ROW][C]94[/C][C]3665[/C][C]3703.66053057501[/C][C]-80.2843623672329[/C][C]3706.62383179222[/C][C]38.660530575014[/C][/ROW]
[ROW][C]95[/C][C]3670.8[/C][C]3667.54325858846[/C][C]-37.3426064545859[/C][C]3711.39934786612[/C][C]-3.25674141153559[/C][/ROW]
[ROW][C]96[/C][C]3687.6[/C][C]3711.50042703681[/C][C]-51.6817005470175[/C][C]3715.38127351021[/C][C]23.9004270368118[/C][/ROW]
[ROW][C]97[/C][C]3708.2[/C][C]3729.85772555276[/C][C]-32.8209247070539[/C][C]3719.36319915429[/C][C]21.657725552765[/C][/ROW]
[ROW][C]98[/C][C]3737.2[/C][C]3734.55853143351[/C][C]22.3114921444069[/C][C]3717.52997642208[/C][C]-2.64146856649086[/C][/ROW]
[ROW][C]99[/C][C]3748.7[/C][C]3775.99367916425[/C][C]5.70956714586832[/C][C]3715.69675368988[/C][C]27.2936791642524[/C][/ROW]
[ROW][C]100[/C][C]3785.3[/C][C]3802.35677791875[/C][C]62.8946592574105[/C][C]3705.34856282384[/C][C]17.0567779187459[/C][/ROW]
[ROW][C]101[/C][C]3787.1[/C][C]3819.92981973538[/C][C]59.2698083068077[/C][C]3695.00037195781[/C][C]32.8298197353838[/C][/ROW]
[ROW][C]102[/C][C]3785.8[/C][C]3818.15151432931[/C][C]65.8794661000387[/C][C]3687.56901957065[/C][C]32.3515143293075[/C][/ROW]
[ROW][C]103[/C][C]3749.7[/C][C]3795.43316188323[/C][C]23.8291709332715[/C][C]3680.1376671835[/C][C]45.7331618832286[/C][/ROW]
[ROW][C]104[/C][C]3716.3[/C][C]3775.79471695993[/C][C]-22.0684107125936[/C][C]3678.87369375267[/C][C]59.4947169599259[/C][/ROW]
[ROW][C]105[/C][C]3650[/C][C]3638.08645955804[/C][C]-15.6961798798728[/C][C]3677.60972032184[/C][C]-11.9135404419631[/C][/ROW]
[ROW][C]106[/C][C]3096.9[/C][C]2595.7604845156[/C][C]-80.2843623672329[/C][C]3678.32387785164[/C][C]-501.139515484403[/C][/ROW]
[ROW][C]107[/C][C]3703.2[/C][C]3764.70457107315[/C][C]-37.3426064545859[/C][C]3679.03803538144[/C][C]61.5045710731501[/C][/ROW]
[ROW][C]108[/C][C]3716[/C][C]3800.18102205112[/C][C]-51.6817005470175[/C][C]3683.5006784959[/C][C]84.1810220511211[/C][/ROW]
[ROW][C]109[/C][C]3736.9[/C][C]3818.6576030967[/C][C]-32.8209247070539[/C][C]3687.96332161036[/C][C]81.757603096697[/C][/ROW]
[ROW][C]110[/C][C]3771.9[/C][C]3822.52529407236[/C][C]22.3114921444069[/C][C]3698.96321378324[/C][C]50.6252940723566[/C][/ROW]
[ROW][C]111[/C][C]3704[/C][C]3692.32732689802[/C][C]5.70956714586832[/C][C]3709.96310595612[/C][C]-11.6726731019844[/C][/ROW]
[ROW][C]112[/C][C]3824.2[/C][C]3867.23688736916[/C][C]62.8946592574105[/C][C]3718.26845337343[/C][C]43.0368873691623[/C][/ROW]
[ROW][C]113[/C][C]3733.5[/C][C]3681.15639090245[/C][C]59.2698083068077[/C][C]3726.57380079074[/C][C]-52.3436090975465[/C][/ROW]
[ROW][C]114[/C][C]3827.5[/C][C]3861.88577778814[/C][C]65.8794661000387[/C][C]3727.23475611182[/C][C]34.3857777881376[/C][/ROW]
[ROW][C]115[/C][C]3827.6[/C][C]3903.47511763382[/C][C]23.8291709332715[/C][C]3727.89571143291[/C][C]75.8751176338201[/C][/ROW]
[ROW][C]116[/C][C]3696.5[/C][C]3686.94858000219[/C][C]-22.0684107125936[/C][C]3728.1198307104[/C][C]-9.5514199978079[/C][/ROW]
[ROW][C]117[/C][C]3675.8[/C][C]3638.95222989198[/C][C]-15.6961798798728[/C][C]3728.34394998789[/C][C]-36.847770108021[/C][/ROW]
[ROW][C]118[/C][C]3757.5[/C][C]3867.42627276117[/C][C]-80.2843623672329[/C][C]3727.85808960606[/C][C]109.926272761168[/C][/ROW]
[ROW][C]119[/C][C]3753.3[/C][C]3816.57037723035[/C][C]-37.3426064545859[/C][C]3727.37222922424[/C][C]63.2703772303512[/C][/ROW]
[ROW][C]120[/C][C]3418.7[/C][C]3163.15775135833[/C][C]-51.6817005470175[/C][C]3725.92394918868[/C][C]-255.542248641666[/C][/ROW]
[ROW][C]121[/C][C]3772.9[/C][C]3854.14525555392[/C][C]-32.8209247070539[/C][C]3724.47566915313[/C][C]81.2452555539235[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299585&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299585&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
15410.45427.19685780006-32.82092470705395426.4240669069916.7968578000628
25432.25424.5851426931722.31149214440695417.50336516242-7.61485730682762
35452.95491.507769436285.709567145868325408.5826634178538.6077694362803
45477.65491.7722028224662.89465925741055400.5331379201414.1722028224549
55472.55493.2465792707759.26980830680775392.4836124224220.7465792707726
65454.95458.8118065712565.87946610003875385.108727328723.91180657124551
754465490.4369868317223.82917093327155377.7338422350144.4369868317153
85010.64673.33781586716-22.06841071259365369.93059484543-337.262184132837
95395.95445.36883242402-15.69617987987285362.1273474558549.4688324240224
1053605446.24393815717-80.28436236723295354.0404242100786.2439381571667
115336.95365.1891054903-37.34260645458595345.9535009642828.2891054903039
125333.95383.41546887628-51.68170054701755336.0662316707349.515468876285
135329.65365.84196232987-32.82092470705395326.1789623771836.2419623298711
145345.75355.1120634076222.31149214440695313.976444447979.41206340761983
155353.85400.116506335375.709567145868325301.7739265187646.3165063353672
165377.25409.1159898416462.89465925741055282.3893509009531.9159898416374
175334.15345.9254164100559.26980830680775263.0047752831411.8254164100526
185351.15397.108312502565.87946610003875239.2122213974746.0083125024958
1950014762.7511615549423.82917093327155215.41966751179-238.248838445064
205246.45327.61343323251-22.06841071259365187.2549774800881.2134332325104
2152305316.6058924315-15.69617987987285159.0902874483786.6058924314993
225115.85181.03951258113-80.28436236723295130.844849786165.2395125811336
234972.64879.94319433076-37.34260645458595102.59941212382-92.6568056692377
245077.65128.20899901775-51.68170054701755078.6727015292750.6089990177479
255056.95091.87493377234-32.82092470705395054.7459909347234.974933772337
265070.75085.3737845379122.31149214440695033.7147233176814.673784537913
274799.34580.206977153495.709567145868325012.68345570064-219.093022846511
2850765096.3324036550962.89465925741054992.772937087520.3324036550894
295021.55010.8677732188359.26980830680774972.86241847436-10.6322267811665
305026.45029.5330720033665.87946610003874957.38746189663.13307200336112
314981.94998.0583237478923.82917093327154941.9125053188416.1583237478872
324936.64966.61009051317-22.06841071259364928.6583201994330.0100905131649
334901.84903.89204479986-15.69617987987284915.404135080022.09204479985601
344853.84887.23520844213-80.28436236723294900.649153925133.4352084421344
354839.24829.8484336844-37.34260645458594885.89417277018-9.35156631559494
364821.34827.10119136552-51.68170054701754867.18050918155.8011913655173
374840.54865.35407911423-32.82092470705394848.4668455928224.8540791142323
384847.64843.5070704931622.31149214440694829.38143736244-4.09292950684448
394832.34848.594403722085.709567145868324810.2960291320616.2944037220768
404814.74774.9208022058262.89465925741054791.58453853677-39.7791977941788
414806.44780.6571437517159.26980830680774772.87304794148-25.742856248291
424803.44786.8514661452865.87946610003874754.06906775469-16.5485338547242
434770.34781.5057414988423.82917093327154735.2650875678911.2057414988403
444723.44752.88459334526-22.06841071259364715.9838173673329.4845933452625
454667.14653.1936327131-15.69617987987284696.70254716677-13.9063672868997
464636.84677.11765227199-80.28436236723294676.7667100952440.3176522719905
474613.24606.91173343087-37.34260645458594656.83087302371-6.28826656912497
484605.34625.46406988379-51.68170054701754636.8176306632320.1640698837873
494590.44596.8165364043-32.82092470705394616.804388302756.41653640430195
504595.44571.20127338822.31149214440694597.2872344676-24.1987266120032
514600.14616.720352221695.709567145868324577.7700806324416.6203522216911
524543.34465.4122603465762.89465925741054558.29308039602-77.8877396534308
534596.44594.7141115335959.26980830680774538.8160801596-1.68588846640978
544575.44567.1679327608165.87946610003874517.75260113915-8.23206723918611
554547.94575.2817069480323.82917093327154496.6891221186927.3817069480347
564503.74556.15152092914-22.06841071259364473.3168897834552.4515209291421
574446.34458.35152243166-15.69617987987284449.9446574482112.0515224316632
584401.44460.08736339477-80.28436236723294422.9969989724658.6873633947716
594354.34349.89326595787-37.34260645458594396.04934049671-4.40673404212521
604336.34359.16775894705-51.68170054701754365.1139415999722.8677589470517
614300.94300.44238200383-32.82092470705394334.17854270322-0.457617996168665
624304.14283.6002196494922.31149214440694302.2882882061-20.4997803505075
634273.24270.292399145155.709567145868324270.39803370898-2.90760085484908
644279.94257.441047320862.89465925741054239.46429342179-22.4589526792006
654243.14218.3996385585959.26980830680774208.5305531346-24.700361441407
664199.14155.3475497007865.87946610003874176.97298419919-43.7524502992246
674177.64185.9554138029623.82917093327154145.415415263778.35541380295581
684141.74193.82857726986-22.06841071259364111.6398334427452.1285772698557
694088.34114.43192825817-15.69617987987284077.864251621726.1319282581717
704021.44080.98022132465-80.28436236723294042.1041410425859.5802213246507
713981.23993.39857599112-37.34260645458594006.3440304634612.1985759911231
723937.23956.13222931245-51.68170054701753969.9494712345618.9322293124524
733893.13885.46601270139-32.82092470705393933.55491200567-7.63398729861274
743864.73808.2096822138522.31149214440693898.87882564174-56.4903177861488
753847.83825.687693576315.709567145868323864.20273927782-22.1123064236854
763840.83784.276864729862.89465925741053834.42847601279-56.5231352701967
773828.43792.8759789454459.26980830680773804.65421274776-35.5240210545639
783798.63753.869617072265.87946610003873777.45091682776-44.7303829277957
7937733771.9232081589723.82917093327153750.24762090776-1.07679184102881
803737.83768.69925495073-22.06841071259363728.9691557618730.8992549507252
8136993706.00548926389-15.69617987987283707.690690615987.0054892638932
8236743733.19006896214-80.28436236723293695.0942934050959.1900689621434
833648.83652.44471026039-37.34260645458593682.49789619423.644710260387
843645.63667.32053307674-51.68170054701753675.5611674702821.7205330767388
8533313026.1964859607-32.82092470705393668.62443874636-304.803514039304
863674.73662.5473815973322.31149214440693664.54112625826-12.1526184026652
873714.53762.832619083975.709567145868323660.4578137701648.332619083973
883739.73753.9188037342562.89465925741053662.5865370083314.2188037342548
893759.73795.4149314466859.26980830680773664.7152602465135.7149314466815
903708.63677.4851607211965.87946610003873673.83537317877-31.1148392788091
913717.33727.815342955723.82917093327153682.9554861110310.5153429556985
923705.33740.26650979792-22.06841071259363692.4019009146734.9665097979205
933612.83539.44786416156-15.69617987987283701.84831571832-73.3521358384428
9436653703.66053057501-80.28436236723293706.6238317922238.660530575014
953670.83667.54325858846-37.34260645458593711.39934786612-3.25674141153559
963687.63711.50042703681-51.68170054701753715.3812735102123.9004270368118
973708.23729.85772555276-32.82092470705393719.3631991542921.657725552765
983737.23734.5585314335122.31149214440693717.52997642208-2.64146856649086
993748.73775.993679164255.709567145868323715.6967536898827.2936791642524
1003785.33802.3567779187562.89465925741053705.3485628238417.0567779187459
1013787.13819.9298197353859.26980830680773695.0003719578132.8298197353838
1023785.83818.1515143293165.87946610003873687.5690195706532.3515143293075
1033749.73795.4331618832323.82917093327153680.137667183545.7331618832286
1043716.33775.79471695993-22.06841071259363678.8736937526759.4947169599259
10536503638.08645955804-15.69617987987283677.60972032184-11.9135404419631
1063096.92595.7604845156-80.28436236723293678.32387785164-501.139515484403
1073703.23764.70457107315-37.34260645458593679.0380353814461.5045710731501
10837163800.18102205112-51.68170054701753683.500678495984.1810220511211
1093736.93818.6576030967-32.82092470705393687.9633216103681.757603096697
1103771.93822.5252940723622.31149214440693698.9632137832450.6252940723566
11137043692.327326898025.709567145868323709.96310595612-11.6726731019844
1123824.23867.2368873691662.89465925741053718.2684533734343.0368873691623
1133733.53681.1563909024559.26980830680773726.57380079074-52.3436090975465
1143827.53861.8857777881465.87946610003873727.2347561118234.3857777881376
1153827.63903.4751176338223.82917093327153727.8957114329175.8751176338201
1163696.53686.94858000219-22.06841071259363728.1198307104-9.5514199978079
1173675.83638.95222989198-15.69617987987283728.34394998789-36.847770108021
1183757.53867.42627276117-80.28436236723293727.85808960606109.926272761168
1193753.33816.57037723035-37.34260645458593727.3722292242463.2703772303512
1203418.73163.15775135833-51.68170054701753725.92394918868-255.542248641666
1213772.93854.14525555392-32.82092470705393724.4756691531381.2452555539235



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')