Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 14 Dec 2016 16:46:06 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481730390gkkkije3h78g9jz.htm/, Retrieved Fri, 01 Nov 2024 03:41:38 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299579, Retrieved Fri, 01 Nov 2024 03:41:38 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact91
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [Classical Decompo...] [2016-12-14 15:46:06] [71d167f7de04005af677e6526bf8917e] [Current]
Feedback Forum

Post a new message
Dataseries X:
7600.00
2800.00
8800.00
6800.00
6000.00
3200.00
4400.00
4800.00
5200.00
4400.00
6800.00
2800.00
5600.00
4400.00
4800.00
2800.00
3600.00
800.00
4400.00
1600.00
7600.00
8000.00
8400.00
5600.00
7200.00
9600.00
6400.00
6000.00
6800.00
6800.00
4000.00
4000.00
3200.00
6000.00
7200.00
6400.00
8000.00
8000.00
8800.00
7600.00
4400.00
5600.00
5200.00
4400.00
4800.00
2800.00
3600.00
8000.00
6400.00
6800.00
11200.00
6400.00
8000.00
2800.00
1600.00
6000.00
3200.00
6000.00
6000.00
8400.00
4000.00
5200.00
7200.00
3600.00
4000.00
7600.00
7200.00
4800.00
5600.00
6800.00
5200.00
6800.00
8000.00
4800.00
9200.00
5600.00
10000.00
4400.00




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299579&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299579&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299579&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
17600NANA635.972NA
22800NANA1172.64NA
38800NANA2049.31NA
46800NANA-374.028NA
56000NANA-300.694NA
63200NANA-960.694NA
744004036.535216.67-1180.14363.472
848003803.195200-1396.81996.806
952004353.195100-746.806846.806
1044004758.754766.67-7.91667-358.75
1168005005.974500505.9721794.03
1228004903.194300603.194-2103.19
1356004835.974200635.972764.028
1444005239.314066.671172.64-839.306
1548006082.644033.332049.31-1282.64
1628003909.314283.33-374.028-1109.31
1736004199.314500-300.694-599.306
188003722.644683.33-960.694-2922.64
1944003686.534866.67-1180.14713.472
2016003753.195150-1396.81-2153.19
2176004686.535433.33-746.8062913.47
2280005625.425633.33-7.916672374.58
2384006405.975900505.9721994.03
2456006886.536283.33603.194-1286.53
2572007152.646516.67635.97247.3611
2696007772.6466001172.641827.36
2764008565.976516.672049.31-2165.97
2860005875.976250-374.028124.028
2968005815.976116.67-300.694984.028
3068005139.316100-960.6941660.69
3140004986.536166.67-1180.14-986.528
3240004736.536133.33-1396.81-736.528
3332005419.866166.67-746.806-2219.86
3460006325.426333.33-7.91667-325.417
3572006805.976300505.972394.028
3664006753.196150603.194-353.194
3780006785.976150635.9721214.03
3880007389.316216.671172.64610.694
3988008349.3163002049.31450.694
4076005859.316233.33-374.0281740.69
4144005649.315950-300.694-1249.31
4256004905.975866.67-960.694694.028
4352004686.535866.67-1180.14513.472
4444004353.195750-1396.8146.8056
4548005053.195800-746.806-253.194
4628005842.085850-7.91667-3042.08
4736006455.975950505.972-2855.97
4880006586.535983.33603.1941413.47
4964006352.645716.67635.97247.3611
5068006805.975633.331172.64-5.97222
51112007682.645633.332049.313517.36
5264005325.975700-374.0281074.03
5380005632.645933.33-300.6942367.36
5428005089.316050-960.694-2289.31
5516004786.535966.67-1180.14-3186.53
5660004403.195800-1396.811596.81
5732004819.865566.67-746.806-1619.86
5860005275.425283.33-7.91667724.583
5960005505.975000505.972494.028
6084005636.535033.33603.1942763.47
6140006102.645466.67635.972-2102.64
6252006822.6456501172.64-1622.64
6372007749.3157002049.31-549.306
6436005459.315833.33-374.028-1859.31
6540005532.645833.33-300.694-1532.64
6676004772.645733.33-960.6942827.36
6772004653.195833.33-1180.142546.81
6848004586.535983.33-1396.81213.472
6956005303.196050-746.806296.806
7068006208.756216.67-7.91667591.25
7152007055.976550505.972-1855.97
7268007269.866666.67603.194-469.861
738000NANA635.972NA
744800NANA1172.64NA
759200NANA2049.31NA
765600NANA-374.028NA
7710000NANA-300.694NA
784400NANA-960.694NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 7600 & NA & NA & 635.972 & NA \tabularnewline
2 & 2800 & NA & NA & 1172.64 & NA \tabularnewline
3 & 8800 & NA & NA & 2049.31 & NA \tabularnewline
4 & 6800 & NA & NA & -374.028 & NA \tabularnewline
5 & 6000 & NA & NA & -300.694 & NA \tabularnewline
6 & 3200 & NA & NA & -960.694 & NA \tabularnewline
7 & 4400 & 4036.53 & 5216.67 & -1180.14 & 363.472 \tabularnewline
8 & 4800 & 3803.19 & 5200 & -1396.81 & 996.806 \tabularnewline
9 & 5200 & 4353.19 & 5100 & -746.806 & 846.806 \tabularnewline
10 & 4400 & 4758.75 & 4766.67 & -7.91667 & -358.75 \tabularnewline
11 & 6800 & 5005.97 & 4500 & 505.972 & 1794.03 \tabularnewline
12 & 2800 & 4903.19 & 4300 & 603.194 & -2103.19 \tabularnewline
13 & 5600 & 4835.97 & 4200 & 635.972 & 764.028 \tabularnewline
14 & 4400 & 5239.31 & 4066.67 & 1172.64 & -839.306 \tabularnewline
15 & 4800 & 6082.64 & 4033.33 & 2049.31 & -1282.64 \tabularnewline
16 & 2800 & 3909.31 & 4283.33 & -374.028 & -1109.31 \tabularnewline
17 & 3600 & 4199.31 & 4500 & -300.694 & -599.306 \tabularnewline
18 & 800 & 3722.64 & 4683.33 & -960.694 & -2922.64 \tabularnewline
19 & 4400 & 3686.53 & 4866.67 & -1180.14 & 713.472 \tabularnewline
20 & 1600 & 3753.19 & 5150 & -1396.81 & -2153.19 \tabularnewline
21 & 7600 & 4686.53 & 5433.33 & -746.806 & 2913.47 \tabularnewline
22 & 8000 & 5625.42 & 5633.33 & -7.91667 & 2374.58 \tabularnewline
23 & 8400 & 6405.97 & 5900 & 505.972 & 1994.03 \tabularnewline
24 & 5600 & 6886.53 & 6283.33 & 603.194 & -1286.53 \tabularnewline
25 & 7200 & 7152.64 & 6516.67 & 635.972 & 47.3611 \tabularnewline
26 & 9600 & 7772.64 & 6600 & 1172.64 & 1827.36 \tabularnewline
27 & 6400 & 8565.97 & 6516.67 & 2049.31 & -2165.97 \tabularnewline
28 & 6000 & 5875.97 & 6250 & -374.028 & 124.028 \tabularnewline
29 & 6800 & 5815.97 & 6116.67 & -300.694 & 984.028 \tabularnewline
30 & 6800 & 5139.31 & 6100 & -960.694 & 1660.69 \tabularnewline
31 & 4000 & 4986.53 & 6166.67 & -1180.14 & -986.528 \tabularnewline
32 & 4000 & 4736.53 & 6133.33 & -1396.81 & -736.528 \tabularnewline
33 & 3200 & 5419.86 & 6166.67 & -746.806 & -2219.86 \tabularnewline
34 & 6000 & 6325.42 & 6333.33 & -7.91667 & -325.417 \tabularnewline
35 & 7200 & 6805.97 & 6300 & 505.972 & 394.028 \tabularnewline
36 & 6400 & 6753.19 & 6150 & 603.194 & -353.194 \tabularnewline
37 & 8000 & 6785.97 & 6150 & 635.972 & 1214.03 \tabularnewline
38 & 8000 & 7389.31 & 6216.67 & 1172.64 & 610.694 \tabularnewline
39 & 8800 & 8349.31 & 6300 & 2049.31 & 450.694 \tabularnewline
40 & 7600 & 5859.31 & 6233.33 & -374.028 & 1740.69 \tabularnewline
41 & 4400 & 5649.31 & 5950 & -300.694 & -1249.31 \tabularnewline
42 & 5600 & 4905.97 & 5866.67 & -960.694 & 694.028 \tabularnewline
43 & 5200 & 4686.53 & 5866.67 & -1180.14 & 513.472 \tabularnewline
44 & 4400 & 4353.19 & 5750 & -1396.81 & 46.8056 \tabularnewline
45 & 4800 & 5053.19 & 5800 & -746.806 & -253.194 \tabularnewline
46 & 2800 & 5842.08 & 5850 & -7.91667 & -3042.08 \tabularnewline
47 & 3600 & 6455.97 & 5950 & 505.972 & -2855.97 \tabularnewline
48 & 8000 & 6586.53 & 5983.33 & 603.194 & 1413.47 \tabularnewline
49 & 6400 & 6352.64 & 5716.67 & 635.972 & 47.3611 \tabularnewline
50 & 6800 & 6805.97 & 5633.33 & 1172.64 & -5.97222 \tabularnewline
51 & 11200 & 7682.64 & 5633.33 & 2049.31 & 3517.36 \tabularnewline
52 & 6400 & 5325.97 & 5700 & -374.028 & 1074.03 \tabularnewline
53 & 8000 & 5632.64 & 5933.33 & -300.694 & 2367.36 \tabularnewline
54 & 2800 & 5089.31 & 6050 & -960.694 & -2289.31 \tabularnewline
55 & 1600 & 4786.53 & 5966.67 & -1180.14 & -3186.53 \tabularnewline
56 & 6000 & 4403.19 & 5800 & -1396.81 & 1596.81 \tabularnewline
57 & 3200 & 4819.86 & 5566.67 & -746.806 & -1619.86 \tabularnewline
58 & 6000 & 5275.42 & 5283.33 & -7.91667 & 724.583 \tabularnewline
59 & 6000 & 5505.97 & 5000 & 505.972 & 494.028 \tabularnewline
60 & 8400 & 5636.53 & 5033.33 & 603.194 & 2763.47 \tabularnewline
61 & 4000 & 6102.64 & 5466.67 & 635.972 & -2102.64 \tabularnewline
62 & 5200 & 6822.64 & 5650 & 1172.64 & -1622.64 \tabularnewline
63 & 7200 & 7749.31 & 5700 & 2049.31 & -549.306 \tabularnewline
64 & 3600 & 5459.31 & 5833.33 & -374.028 & -1859.31 \tabularnewline
65 & 4000 & 5532.64 & 5833.33 & -300.694 & -1532.64 \tabularnewline
66 & 7600 & 4772.64 & 5733.33 & -960.694 & 2827.36 \tabularnewline
67 & 7200 & 4653.19 & 5833.33 & -1180.14 & 2546.81 \tabularnewline
68 & 4800 & 4586.53 & 5983.33 & -1396.81 & 213.472 \tabularnewline
69 & 5600 & 5303.19 & 6050 & -746.806 & 296.806 \tabularnewline
70 & 6800 & 6208.75 & 6216.67 & -7.91667 & 591.25 \tabularnewline
71 & 5200 & 7055.97 & 6550 & 505.972 & -1855.97 \tabularnewline
72 & 6800 & 7269.86 & 6666.67 & 603.194 & -469.861 \tabularnewline
73 & 8000 & NA & NA & 635.972 & NA \tabularnewline
74 & 4800 & NA & NA & 1172.64 & NA \tabularnewline
75 & 9200 & NA & NA & 2049.31 & NA \tabularnewline
76 & 5600 & NA & NA & -374.028 & NA \tabularnewline
77 & 10000 & NA & NA & -300.694 & NA \tabularnewline
78 & 4400 & NA & NA & -960.694 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299579&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]7600[/C][C]NA[/C][C]NA[/C][C]635.972[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]2800[/C][C]NA[/C][C]NA[/C][C]1172.64[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]8800[/C][C]NA[/C][C]NA[/C][C]2049.31[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]6800[/C][C]NA[/C][C]NA[/C][C]-374.028[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]6000[/C][C]NA[/C][C]NA[/C][C]-300.694[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]3200[/C][C]NA[/C][C]NA[/C][C]-960.694[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]4400[/C][C]4036.53[/C][C]5216.67[/C][C]-1180.14[/C][C]363.472[/C][/ROW]
[ROW][C]8[/C][C]4800[/C][C]3803.19[/C][C]5200[/C][C]-1396.81[/C][C]996.806[/C][/ROW]
[ROW][C]9[/C][C]5200[/C][C]4353.19[/C][C]5100[/C][C]-746.806[/C][C]846.806[/C][/ROW]
[ROW][C]10[/C][C]4400[/C][C]4758.75[/C][C]4766.67[/C][C]-7.91667[/C][C]-358.75[/C][/ROW]
[ROW][C]11[/C][C]6800[/C][C]5005.97[/C][C]4500[/C][C]505.972[/C][C]1794.03[/C][/ROW]
[ROW][C]12[/C][C]2800[/C][C]4903.19[/C][C]4300[/C][C]603.194[/C][C]-2103.19[/C][/ROW]
[ROW][C]13[/C][C]5600[/C][C]4835.97[/C][C]4200[/C][C]635.972[/C][C]764.028[/C][/ROW]
[ROW][C]14[/C][C]4400[/C][C]5239.31[/C][C]4066.67[/C][C]1172.64[/C][C]-839.306[/C][/ROW]
[ROW][C]15[/C][C]4800[/C][C]6082.64[/C][C]4033.33[/C][C]2049.31[/C][C]-1282.64[/C][/ROW]
[ROW][C]16[/C][C]2800[/C][C]3909.31[/C][C]4283.33[/C][C]-374.028[/C][C]-1109.31[/C][/ROW]
[ROW][C]17[/C][C]3600[/C][C]4199.31[/C][C]4500[/C][C]-300.694[/C][C]-599.306[/C][/ROW]
[ROW][C]18[/C][C]800[/C][C]3722.64[/C][C]4683.33[/C][C]-960.694[/C][C]-2922.64[/C][/ROW]
[ROW][C]19[/C][C]4400[/C][C]3686.53[/C][C]4866.67[/C][C]-1180.14[/C][C]713.472[/C][/ROW]
[ROW][C]20[/C][C]1600[/C][C]3753.19[/C][C]5150[/C][C]-1396.81[/C][C]-2153.19[/C][/ROW]
[ROW][C]21[/C][C]7600[/C][C]4686.53[/C][C]5433.33[/C][C]-746.806[/C][C]2913.47[/C][/ROW]
[ROW][C]22[/C][C]8000[/C][C]5625.42[/C][C]5633.33[/C][C]-7.91667[/C][C]2374.58[/C][/ROW]
[ROW][C]23[/C][C]8400[/C][C]6405.97[/C][C]5900[/C][C]505.972[/C][C]1994.03[/C][/ROW]
[ROW][C]24[/C][C]5600[/C][C]6886.53[/C][C]6283.33[/C][C]603.194[/C][C]-1286.53[/C][/ROW]
[ROW][C]25[/C][C]7200[/C][C]7152.64[/C][C]6516.67[/C][C]635.972[/C][C]47.3611[/C][/ROW]
[ROW][C]26[/C][C]9600[/C][C]7772.64[/C][C]6600[/C][C]1172.64[/C][C]1827.36[/C][/ROW]
[ROW][C]27[/C][C]6400[/C][C]8565.97[/C][C]6516.67[/C][C]2049.31[/C][C]-2165.97[/C][/ROW]
[ROW][C]28[/C][C]6000[/C][C]5875.97[/C][C]6250[/C][C]-374.028[/C][C]124.028[/C][/ROW]
[ROW][C]29[/C][C]6800[/C][C]5815.97[/C][C]6116.67[/C][C]-300.694[/C][C]984.028[/C][/ROW]
[ROW][C]30[/C][C]6800[/C][C]5139.31[/C][C]6100[/C][C]-960.694[/C][C]1660.69[/C][/ROW]
[ROW][C]31[/C][C]4000[/C][C]4986.53[/C][C]6166.67[/C][C]-1180.14[/C][C]-986.528[/C][/ROW]
[ROW][C]32[/C][C]4000[/C][C]4736.53[/C][C]6133.33[/C][C]-1396.81[/C][C]-736.528[/C][/ROW]
[ROW][C]33[/C][C]3200[/C][C]5419.86[/C][C]6166.67[/C][C]-746.806[/C][C]-2219.86[/C][/ROW]
[ROW][C]34[/C][C]6000[/C][C]6325.42[/C][C]6333.33[/C][C]-7.91667[/C][C]-325.417[/C][/ROW]
[ROW][C]35[/C][C]7200[/C][C]6805.97[/C][C]6300[/C][C]505.972[/C][C]394.028[/C][/ROW]
[ROW][C]36[/C][C]6400[/C][C]6753.19[/C][C]6150[/C][C]603.194[/C][C]-353.194[/C][/ROW]
[ROW][C]37[/C][C]8000[/C][C]6785.97[/C][C]6150[/C][C]635.972[/C][C]1214.03[/C][/ROW]
[ROW][C]38[/C][C]8000[/C][C]7389.31[/C][C]6216.67[/C][C]1172.64[/C][C]610.694[/C][/ROW]
[ROW][C]39[/C][C]8800[/C][C]8349.31[/C][C]6300[/C][C]2049.31[/C][C]450.694[/C][/ROW]
[ROW][C]40[/C][C]7600[/C][C]5859.31[/C][C]6233.33[/C][C]-374.028[/C][C]1740.69[/C][/ROW]
[ROW][C]41[/C][C]4400[/C][C]5649.31[/C][C]5950[/C][C]-300.694[/C][C]-1249.31[/C][/ROW]
[ROW][C]42[/C][C]5600[/C][C]4905.97[/C][C]5866.67[/C][C]-960.694[/C][C]694.028[/C][/ROW]
[ROW][C]43[/C][C]5200[/C][C]4686.53[/C][C]5866.67[/C][C]-1180.14[/C][C]513.472[/C][/ROW]
[ROW][C]44[/C][C]4400[/C][C]4353.19[/C][C]5750[/C][C]-1396.81[/C][C]46.8056[/C][/ROW]
[ROW][C]45[/C][C]4800[/C][C]5053.19[/C][C]5800[/C][C]-746.806[/C][C]-253.194[/C][/ROW]
[ROW][C]46[/C][C]2800[/C][C]5842.08[/C][C]5850[/C][C]-7.91667[/C][C]-3042.08[/C][/ROW]
[ROW][C]47[/C][C]3600[/C][C]6455.97[/C][C]5950[/C][C]505.972[/C][C]-2855.97[/C][/ROW]
[ROW][C]48[/C][C]8000[/C][C]6586.53[/C][C]5983.33[/C][C]603.194[/C][C]1413.47[/C][/ROW]
[ROW][C]49[/C][C]6400[/C][C]6352.64[/C][C]5716.67[/C][C]635.972[/C][C]47.3611[/C][/ROW]
[ROW][C]50[/C][C]6800[/C][C]6805.97[/C][C]5633.33[/C][C]1172.64[/C][C]-5.97222[/C][/ROW]
[ROW][C]51[/C][C]11200[/C][C]7682.64[/C][C]5633.33[/C][C]2049.31[/C][C]3517.36[/C][/ROW]
[ROW][C]52[/C][C]6400[/C][C]5325.97[/C][C]5700[/C][C]-374.028[/C][C]1074.03[/C][/ROW]
[ROW][C]53[/C][C]8000[/C][C]5632.64[/C][C]5933.33[/C][C]-300.694[/C][C]2367.36[/C][/ROW]
[ROW][C]54[/C][C]2800[/C][C]5089.31[/C][C]6050[/C][C]-960.694[/C][C]-2289.31[/C][/ROW]
[ROW][C]55[/C][C]1600[/C][C]4786.53[/C][C]5966.67[/C][C]-1180.14[/C][C]-3186.53[/C][/ROW]
[ROW][C]56[/C][C]6000[/C][C]4403.19[/C][C]5800[/C][C]-1396.81[/C][C]1596.81[/C][/ROW]
[ROW][C]57[/C][C]3200[/C][C]4819.86[/C][C]5566.67[/C][C]-746.806[/C][C]-1619.86[/C][/ROW]
[ROW][C]58[/C][C]6000[/C][C]5275.42[/C][C]5283.33[/C][C]-7.91667[/C][C]724.583[/C][/ROW]
[ROW][C]59[/C][C]6000[/C][C]5505.97[/C][C]5000[/C][C]505.972[/C][C]494.028[/C][/ROW]
[ROW][C]60[/C][C]8400[/C][C]5636.53[/C][C]5033.33[/C][C]603.194[/C][C]2763.47[/C][/ROW]
[ROW][C]61[/C][C]4000[/C][C]6102.64[/C][C]5466.67[/C][C]635.972[/C][C]-2102.64[/C][/ROW]
[ROW][C]62[/C][C]5200[/C][C]6822.64[/C][C]5650[/C][C]1172.64[/C][C]-1622.64[/C][/ROW]
[ROW][C]63[/C][C]7200[/C][C]7749.31[/C][C]5700[/C][C]2049.31[/C][C]-549.306[/C][/ROW]
[ROW][C]64[/C][C]3600[/C][C]5459.31[/C][C]5833.33[/C][C]-374.028[/C][C]-1859.31[/C][/ROW]
[ROW][C]65[/C][C]4000[/C][C]5532.64[/C][C]5833.33[/C][C]-300.694[/C][C]-1532.64[/C][/ROW]
[ROW][C]66[/C][C]7600[/C][C]4772.64[/C][C]5733.33[/C][C]-960.694[/C][C]2827.36[/C][/ROW]
[ROW][C]67[/C][C]7200[/C][C]4653.19[/C][C]5833.33[/C][C]-1180.14[/C][C]2546.81[/C][/ROW]
[ROW][C]68[/C][C]4800[/C][C]4586.53[/C][C]5983.33[/C][C]-1396.81[/C][C]213.472[/C][/ROW]
[ROW][C]69[/C][C]5600[/C][C]5303.19[/C][C]6050[/C][C]-746.806[/C][C]296.806[/C][/ROW]
[ROW][C]70[/C][C]6800[/C][C]6208.75[/C][C]6216.67[/C][C]-7.91667[/C][C]591.25[/C][/ROW]
[ROW][C]71[/C][C]5200[/C][C]7055.97[/C][C]6550[/C][C]505.972[/C][C]-1855.97[/C][/ROW]
[ROW][C]72[/C][C]6800[/C][C]7269.86[/C][C]6666.67[/C][C]603.194[/C][C]-469.861[/C][/ROW]
[ROW][C]73[/C][C]8000[/C][C]NA[/C][C]NA[/C][C]635.972[/C][C]NA[/C][/ROW]
[ROW][C]74[/C][C]4800[/C][C]NA[/C][C]NA[/C][C]1172.64[/C][C]NA[/C][/ROW]
[ROW][C]75[/C][C]9200[/C][C]NA[/C][C]NA[/C][C]2049.31[/C][C]NA[/C][/ROW]
[ROW][C]76[/C][C]5600[/C][C]NA[/C][C]NA[/C][C]-374.028[/C][C]NA[/C][/ROW]
[ROW][C]77[/C][C]10000[/C][C]NA[/C][C]NA[/C][C]-300.694[/C][C]NA[/C][/ROW]
[ROW][C]78[/C][C]4400[/C][C]NA[/C][C]NA[/C][C]-960.694[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299579&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299579&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
17600NANA635.972NA
22800NANA1172.64NA
38800NANA2049.31NA
46800NANA-374.028NA
56000NANA-300.694NA
63200NANA-960.694NA
744004036.535216.67-1180.14363.472
848003803.195200-1396.81996.806
952004353.195100-746.806846.806
1044004758.754766.67-7.91667-358.75
1168005005.974500505.9721794.03
1228004903.194300603.194-2103.19
1356004835.974200635.972764.028
1444005239.314066.671172.64-839.306
1548006082.644033.332049.31-1282.64
1628003909.314283.33-374.028-1109.31
1736004199.314500-300.694-599.306
188003722.644683.33-960.694-2922.64
1944003686.534866.67-1180.14713.472
2016003753.195150-1396.81-2153.19
2176004686.535433.33-746.8062913.47
2280005625.425633.33-7.916672374.58
2384006405.975900505.9721994.03
2456006886.536283.33603.194-1286.53
2572007152.646516.67635.97247.3611
2696007772.6466001172.641827.36
2764008565.976516.672049.31-2165.97
2860005875.976250-374.028124.028
2968005815.976116.67-300.694984.028
3068005139.316100-960.6941660.69
3140004986.536166.67-1180.14-986.528
3240004736.536133.33-1396.81-736.528
3332005419.866166.67-746.806-2219.86
3460006325.426333.33-7.91667-325.417
3572006805.976300505.972394.028
3664006753.196150603.194-353.194
3780006785.976150635.9721214.03
3880007389.316216.671172.64610.694
3988008349.3163002049.31450.694
4076005859.316233.33-374.0281740.69
4144005649.315950-300.694-1249.31
4256004905.975866.67-960.694694.028
4352004686.535866.67-1180.14513.472
4444004353.195750-1396.8146.8056
4548005053.195800-746.806-253.194
4628005842.085850-7.91667-3042.08
4736006455.975950505.972-2855.97
4880006586.535983.33603.1941413.47
4964006352.645716.67635.97247.3611
5068006805.975633.331172.64-5.97222
51112007682.645633.332049.313517.36
5264005325.975700-374.0281074.03
5380005632.645933.33-300.6942367.36
5428005089.316050-960.694-2289.31
5516004786.535966.67-1180.14-3186.53
5660004403.195800-1396.811596.81
5732004819.865566.67-746.806-1619.86
5860005275.425283.33-7.91667724.583
5960005505.975000505.972494.028
6084005636.535033.33603.1942763.47
6140006102.645466.67635.972-2102.64
6252006822.6456501172.64-1622.64
6372007749.3157002049.31-549.306
6436005459.315833.33-374.028-1859.31
6540005532.645833.33-300.694-1532.64
6676004772.645733.33-960.6942827.36
6772004653.195833.33-1180.142546.81
6848004586.535983.33-1396.81213.472
6956005303.196050-746.806296.806
7068006208.756216.67-7.91667591.25
7152007055.976550505.972-1855.97
7268007269.866666.67603.194-469.861
738000NANA635.972NA
744800NANA1172.64NA
759200NANA2049.31NA
765600NANA-374.028NA
7710000NANA-300.694NA
784400NANA-960.694NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')