Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 14 Dec 2016 16:28:09 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481729836vnfeuj95s4oolj9.htm/, Retrieved Fri, 01 Nov 2024 03:41:36 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299572, Retrieved Fri, 01 Nov 2024 03:41:36 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact129
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [multiple regression ] [2016-12-14 15:28:09] [8263efc94e08b372ab727a2b95bd56b1] [Current]
Feedback Forum

Post a new message
Dataseries X:
13	4	2	3
13	3	2	4
14	4	2	3
11	4	4	4
12	3	3	3
14	4	1	2
12	2	3	2
12	4	1	1
12	2	4	1
13	4	2	4
14	4	5	1
12	3	2	3
17	4	4	5
15	3	4	2
14	3	3	2
11	2	1	2
15	4	5	3
9	4	3	3
11	3	3	3
13	5	2	5
12	3	2	3
14	4	1	2
12	4	2	4
14	2	2	2
13	4	3	2
14	3	2	4
14	2	2	2
14	4	3	5
14	4	1	2
12	3	1	1
11	2	2	4
15	5	5	1
10	2	2	3
15	3	3	4
14	4	1	3
12	3	1	2
14	3	4	5
14	3	2	2
12	4	2	2
12	3	2	4
12	4	2	2
13	4	2	3
13	4	5	1
15	4	4	4
12	3	2	3
12	2	2	2
13	5	5	5
12	3	2	3
8	4	3	3
12	5	2	4
14	2	2	2
13	4	4	3
9	5	1	4
14	5	5	2
12	3	3	2
12	3	1	1
17	4	2	1
13	4	3	3
10	3	4	3
12	3	2	2
15	5	2	2
13	4	4	3
13	4	2	4
14	4	4	3
11	2	2	2
14	2	3	4
14	4	4	4
15	4	4	4
16	5	2	5
12	4	4	2
14	4	2	3
12	3	3	2
15	1	1	1
14	3	2	4
14	4	4	3
12	1	1	2
14	2	1	3
12	4	1	2
12	4	1	1
14	3	1	3
14	2	3	3
15	2	1	1
12	3	1	1
16	2	5	3
10	5	4	4
12	3	3	3
13	4	4	1
15	2	3	4
11	4	3	4
11	5	5	4
12	4	1	2
12	2	1	1
12	3	3	3
15	3	2	2
12	3	3	3
11	3	3	2
16	1	2	1
12	3	4	2
11	3	3	2
16	4	2	3
14	4	2	1
13	2	2	1
14	4	3	3
14	3	1	1
12	4	3	3
14	3	3	3
14	4	3	4
12	4	3	4
12	2	3	4
12	4	4	4
13	4	4	3
16	4	3	4
13	3	1	3
11	3	2	1
15	4	1	3
13	4	2	4
10	4	1	5
16	3	2	2
12	3	1	3
12	3	4	3
12	2	2	3
13	4	2	1
12	2	1	4
14	3	2	3
11	4	3	4
14	2	2	2
14	3	3	3
12	3	3	3
12	2	2	2
14	4	3	3
12	3	2	1
13	4	4	4
14	2	1	3
12	3	4	3
17	5	2	5
12	2	3	2
16	3	3	1
12	2	2	1
12	4	2	3
12	4	2	1
14	4	3	3
14	2	3	3
14	3	3	3
13	3	2	3
15	4	4	2
11	3	1	2
13	5	2	4
14	3	3	3
15	4	3	4
11	4	1	2
12	4	3	3
11	5	3	4
12	5	1	1
12	4	1	4
14	4	3	1
11	3	3	2
15	4	4	4
12	2	1	2
15	4	3	1
11	3	1	1
12	3	2	4
12	5	2	4
11	5	3	3
14	5	3	3
13	3	3	3
12	1	3	4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299572&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299572&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299572&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
GWsom[t] = + 12.523 + 0.00203608SN1[t] + 0.198687SN2[t] -0.0289772SN4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
GWsom[t] =  +  12.523 +  0.00203608SN1[t] +  0.198687SN2[t] -0.0289772SN4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299572&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]GWsom[t] =  +  12.523 +  0.00203608SN1[t] +  0.198687SN2[t] -0.0289772SN4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299572&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299572&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
GWsom[t] = + 12.523 + 0.00203608SN1[t] + 0.198687SN2[t] -0.0289772SN4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+12.52 0.522+2.3990e+01 3.388e-55 1.694e-55
SN1+0.002036 0.1379+1.4760e-02 0.9882 0.4941
SN2+0.1987 0.118+1.6840e+00 0.09403 0.04701
SN4-0.02898 0.1176-2.4650e-01 0.8056 0.4028

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +12.52 &  0.522 & +2.3990e+01 &  3.388e-55 &  1.694e-55 \tabularnewline
SN1 & +0.002036 &  0.1379 & +1.4760e-02 &  0.9882 &  0.4941 \tabularnewline
SN2 & +0.1987 &  0.118 & +1.6840e+00 &  0.09403 &  0.04701 \tabularnewline
SN4 & -0.02898 &  0.1176 & -2.4650e-01 &  0.8056 &  0.4028 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299572&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+12.52[/C][C] 0.522[/C][C]+2.3990e+01[/C][C] 3.388e-55[/C][C] 1.694e-55[/C][/ROW]
[ROW][C]SN1[/C][C]+0.002036[/C][C] 0.1379[/C][C]+1.4760e-02[/C][C] 0.9882[/C][C] 0.4941[/C][/ROW]
[ROW][C]SN2[/C][C]+0.1987[/C][C] 0.118[/C][C]+1.6840e+00[/C][C] 0.09403[/C][C] 0.04701[/C][/ROW]
[ROW][C]SN4[/C][C]-0.02898[/C][C] 0.1176[/C][C]-2.4650e-01[/C][C] 0.8056[/C][C] 0.4028[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299572&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299572&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+12.52 0.522+2.3990e+01 3.388e-55 1.694e-55
SN1+0.002036 0.1379+1.4760e-02 0.9882 0.4941
SN2+0.1987 0.118+1.6840e+00 0.09403 0.04701
SN4-0.02898 0.1176-2.4650e-01 0.8056 0.4028







Multiple Linear Regression - Regression Statistics
Multiple R 0.134
R-squared 0.01796
Adjusted R-squared-0.0002276
F-TEST (value) 0.9875
F-TEST (DF numerator)3
F-TEST (DF denominator)162
p-value 0.4002
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.614
Sum Squared Residuals 421.9

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.134 \tabularnewline
R-squared &  0.01796 \tabularnewline
Adjusted R-squared & -0.0002276 \tabularnewline
F-TEST (value) &  0.9875 \tabularnewline
F-TEST (DF numerator) & 3 \tabularnewline
F-TEST (DF denominator) & 162 \tabularnewline
p-value &  0.4002 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  1.614 \tabularnewline
Sum Squared Residuals &  421.9 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299572&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.134[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.01796[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C]-0.0002276[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 0.9875[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]3[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]162[/C][/ROW]
[ROW][C]p-value[/C][C] 0.4002[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 1.614[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 421.9[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299572&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299572&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.134
R-squared 0.01796
Adjusted R-squared-0.0002276
F-TEST (value) 0.9875
F-TEST (DF numerator)3
F-TEST (DF denominator)162
p-value 0.4002
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 1.614
Sum Squared Residuals 421.9







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 12.84 0.1584
2 13 12.81 0.1894
3 14 12.84 1.158
4 11 13.21-2.21
5 12 13.04-1.038
6 14 12.67 1.328
7 12 13.07-1.065
8 12 12.7-0.7009
9 12 13.29-1.293
10 13 12.81 0.1874
11 14 13.5 0.5044
12 12 12.84-0.8396
13 17 13.18 3.819
14 15 13.27 1.734
15 14 13.07 0.9328
16 11 12.67-1.668
17 15 13.44 1.562
18 9 13.04-4.04
19 11 13.04-2.038
20 13 12.79 0.2143
21 12 12.84-0.8396
22 14 12.67 1.328
23 12 12.81-0.8126
24 14 12.87 1.133
25 13 13.07-0.06927
26 14 12.81 1.189
27 14 12.87 1.133
28 14 12.98 1.018
29 14 12.67 1.328
30 12 12.7-0.6988
31 11 12.81-1.809
32 15 13.5 1.502
33 10 12.84-2.838
34 15 13.01 1.991
35 14 12.64 1.357
36 12 12.67-0.6699
37 14 13.18 0.821
38 14 12.87 1.131
39 12 12.87-0.8706
40 12 12.81-0.8106
41 12 12.87-0.8706
42 13 12.84 0.1584
43 13 13.5-0.4956
44 15 13.21 1.79
45 12 12.84-0.8396
46 12 12.87-0.8665
47 13 13.38-0.3818
48 12 12.84-0.8396
49 8 13.04-5.04
50 12 12.81-0.8147
51 14 12.87 1.133
52 13 13.24-0.239
53 9 12.62-3.616
54 14 13.47 0.5313
55 12 13.07-1.067
56 12 12.7-0.6988
57 17 12.9 4.1
58 13 13.04-0.04029
59 10 13.24-3.237
60 12 12.87-0.8685
61 15 12.87 2.127
62 13 13.24-0.239
63 13 12.81 0.1874
64 14 13.24 0.761
65 11 12.87-1.867
66 14 13.01 0.9928
67 14 13.21 0.79
68 15 13.21 1.79
69 16 12.79 3.214
70 12 13.27-1.268
71 14 12.84 1.158
72 12 13.07-1.067
73 15 12.69 2.305
74 14 12.81 1.189
75 14 13.24 0.761
76 12 12.67-0.6658
77 14 12.64 1.361
78 12 12.67-0.6719
79 12 12.7-0.7009
80 14 12.64 1.359
81 14 13.04 0.9638
82 15 12.7 2.303
83 12 12.7-0.6988
84 16 13.43 2.566
85 10 13.21-3.212
86 12 13.04-1.038
87 13 13.3-0.2969
88 15 13.01 1.993
89 11 13.01-2.011
90 11 13.41-2.411
91 12 12.67-0.6719
92 12 12.7-0.6968
93 12 13.04-1.038
94 15 12.87 2.131
95 12 13.04-1.038
96 11 13.07-2.067
97 16 12.89 3.107
98 12 13.27-1.266
99 11 13.07-2.067
100 16 12.84 3.158
101 14 12.9 1.1
102 13 12.9 0.1045
103 14 13.04 0.9597
104 14 12.7 1.301
105 12 13.04-1.04
106 14 13.04 0.9617
107 14 13.01 0.9887
108 12 13.01-1.011
109 12 13.01-1.007
110 12 13.21-1.21
111 13 13.24-0.239
112 16 13.01 2.989
113 13 12.64 0.3591
114 11 12.9-1.898
115 15 12.64 2.357
116 13 12.81 0.1874
117 10 12.59-2.585
118 16 12.87 3.131
119 12 12.64-0.6409
120 12 13.24-1.237
121 12 12.84-0.8375
122 13 12.9 0.1004
123 12 12.61-0.6099
124 14 12.84 1.16
125 11 13.01-2.011
126 14 12.87 1.133
127 14 13.04 0.9617
128 12 13.04-1.038
129 12 12.87-0.8665
130 14 13.04 0.9597
131 12 12.9-0.8975
132 13 13.21-0.21
133 14 12.64 1.361
134 12 13.24-1.237
135 17 12.79 4.214
136 12 13.07-1.065
137 16 13.1 2.904
138 12 12.9-0.8955
139 12 12.84-0.8416
140 12 12.9-0.8996
141 14 13.04 0.9597
142 14 13.04 0.9638
143 14 13.04 0.9617
144 13 12.84 0.1604
145 15 13.27 1.732
146 11 12.67-1.67
147 13 12.81 0.1853
148 14 13.04 0.9617
149 15 13.01 1.989
150 11 12.67-1.672
151 12 13.04-1.04
152 11 13.01-2.013
153 12 12.7-0.7029
154 12 12.61-0.6139
155 14 13.1 0.9018
156 11 13.07-2.067
157 15 13.21 1.79
158 12 12.67-0.6678
159 15 13.1 1.902
160 11 12.7-1.699
161 12 12.81-0.8106
162 12 12.81-0.8147
163 11 13.04-2.042
164 14 13.04 0.9577
165 13 13.04-0.03826
166 12 13.01-1.005

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  13 &  12.84 &  0.1584 \tabularnewline
2 &  13 &  12.81 &  0.1894 \tabularnewline
3 &  14 &  12.84 &  1.158 \tabularnewline
4 &  11 &  13.21 & -2.21 \tabularnewline
5 &  12 &  13.04 & -1.038 \tabularnewline
6 &  14 &  12.67 &  1.328 \tabularnewline
7 &  12 &  13.07 & -1.065 \tabularnewline
8 &  12 &  12.7 & -0.7009 \tabularnewline
9 &  12 &  13.29 & -1.293 \tabularnewline
10 &  13 &  12.81 &  0.1874 \tabularnewline
11 &  14 &  13.5 &  0.5044 \tabularnewline
12 &  12 &  12.84 & -0.8396 \tabularnewline
13 &  17 &  13.18 &  3.819 \tabularnewline
14 &  15 &  13.27 &  1.734 \tabularnewline
15 &  14 &  13.07 &  0.9328 \tabularnewline
16 &  11 &  12.67 & -1.668 \tabularnewline
17 &  15 &  13.44 &  1.562 \tabularnewline
18 &  9 &  13.04 & -4.04 \tabularnewline
19 &  11 &  13.04 & -2.038 \tabularnewline
20 &  13 &  12.79 &  0.2143 \tabularnewline
21 &  12 &  12.84 & -0.8396 \tabularnewline
22 &  14 &  12.67 &  1.328 \tabularnewline
23 &  12 &  12.81 & -0.8126 \tabularnewline
24 &  14 &  12.87 &  1.133 \tabularnewline
25 &  13 &  13.07 & -0.06927 \tabularnewline
26 &  14 &  12.81 &  1.189 \tabularnewline
27 &  14 &  12.87 &  1.133 \tabularnewline
28 &  14 &  12.98 &  1.018 \tabularnewline
29 &  14 &  12.67 &  1.328 \tabularnewline
30 &  12 &  12.7 & -0.6988 \tabularnewline
31 &  11 &  12.81 & -1.809 \tabularnewline
32 &  15 &  13.5 &  1.502 \tabularnewline
33 &  10 &  12.84 & -2.838 \tabularnewline
34 &  15 &  13.01 &  1.991 \tabularnewline
35 &  14 &  12.64 &  1.357 \tabularnewline
36 &  12 &  12.67 & -0.6699 \tabularnewline
37 &  14 &  13.18 &  0.821 \tabularnewline
38 &  14 &  12.87 &  1.131 \tabularnewline
39 &  12 &  12.87 & -0.8706 \tabularnewline
40 &  12 &  12.81 & -0.8106 \tabularnewline
41 &  12 &  12.87 & -0.8706 \tabularnewline
42 &  13 &  12.84 &  0.1584 \tabularnewline
43 &  13 &  13.5 & -0.4956 \tabularnewline
44 &  15 &  13.21 &  1.79 \tabularnewline
45 &  12 &  12.84 & -0.8396 \tabularnewline
46 &  12 &  12.87 & -0.8665 \tabularnewline
47 &  13 &  13.38 & -0.3818 \tabularnewline
48 &  12 &  12.84 & -0.8396 \tabularnewline
49 &  8 &  13.04 & -5.04 \tabularnewline
50 &  12 &  12.81 & -0.8147 \tabularnewline
51 &  14 &  12.87 &  1.133 \tabularnewline
52 &  13 &  13.24 & -0.239 \tabularnewline
53 &  9 &  12.62 & -3.616 \tabularnewline
54 &  14 &  13.47 &  0.5313 \tabularnewline
55 &  12 &  13.07 & -1.067 \tabularnewline
56 &  12 &  12.7 & -0.6988 \tabularnewline
57 &  17 &  12.9 &  4.1 \tabularnewline
58 &  13 &  13.04 & -0.04029 \tabularnewline
59 &  10 &  13.24 & -3.237 \tabularnewline
60 &  12 &  12.87 & -0.8685 \tabularnewline
61 &  15 &  12.87 &  2.127 \tabularnewline
62 &  13 &  13.24 & -0.239 \tabularnewline
63 &  13 &  12.81 &  0.1874 \tabularnewline
64 &  14 &  13.24 &  0.761 \tabularnewline
65 &  11 &  12.87 & -1.867 \tabularnewline
66 &  14 &  13.01 &  0.9928 \tabularnewline
67 &  14 &  13.21 &  0.79 \tabularnewline
68 &  15 &  13.21 &  1.79 \tabularnewline
69 &  16 &  12.79 &  3.214 \tabularnewline
70 &  12 &  13.27 & -1.268 \tabularnewline
71 &  14 &  12.84 &  1.158 \tabularnewline
72 &  12 &  13.07 & -1.067 \tabularnewline
73 &  15 &  12.69 &  2.305 \tabularnewline
74 &  14 &  12.81 &  1.189 \tabularnewline
75 &  14 &  13.24 &  0.761 \tabularnewline
76 &  12 &  12.67 & -0.6658 \tabularnewline
77 &  14 &  12.64 &  1.361 \tabularnewline
78 &  12 &  12.67 & -0.6719 \tabularnewline
79 &  12 &  12.7 & -0.7009 \tabularnewline
80 &  14 &  12.64 &  1.359 \tabularnewline
81 &  14 &  13.04 &  0.9638 \tabularnewline
82 &  15 &  12.7 &  2.303 \tabularnewline
83 &  12 &  12.7 & -0.6988 \tabularnewline
84 &  16 &  13.43 &  2.566 \tabularnewline
85 &  10 &  13.21 & -3.212 \tabularnewline
86 &  12 &  13.04 & -1.038 \tabularnewline
87 &  13 &  13.3 & -0.2969 \tabularnewline
88 &  15 &  13.01 &  1.993 \tabularnewline
89 &  11 &  13.01 & -2.011 \tabularnewline
90 &  11 &  13.41 & -2.411 \tabularnewline
91 &  12 &  12.67 & -0.6719 \tabularnewline
92 &  12 &  12.7 & -0.6968 \tabularnewline
93 &  12 &  13.04 & -1.038 \tabularnewline
94 &  15 &  12.87 &  2.131 \tabularnewline
95 &  12 &  13.04 & -1.038 \tabularnewline
96 &  11 &  13.07 & -2.067 \tabularnewline
97 &  16 &  12.89 &  3.107 \tabularnewline
98 &  12 &  13.27 & -1.266 \tabularnewline
99 &  11 &  13.07 & -2.067 \tabularnewline
100 &  16 &  12.84 &  3.158 \tabularnewline
101 &  14 &  12.9 &  1.1 \tabularnewline
102 &  13 &  12.9 &  0.1045 \tabularnewline
103 &  14 &  13.04 &  0.9597 \tabularnewline
104 &  14 &  12.7 &  1.301 \tabularnewline
105 &  12 &  13.04 & -1.04 \tabularnewline
106 &  14 &  13.04 &  0.9617 \tabularnewline
107 &  14 &  13.01 &  0.9887 \tabularnewline
108 &  12 &  13.01 & -1.011 \tabularnewline
109 &  12 &  13.01 & -1.007 \tabularnewline
110 &  12 &  13.21 & -1.21 \tabularnewline
111 &  13 &  13.24 & -0.239 \tabularnewline
112 &  16 &  13.01 &  2.989 \tabularnewline
113 &  13 &  12.64 &  0.3591 \tabularnewline
114 &  11 &  12.9 & -1.898 \tabularnewline
115 &  15 &  12.64 &  2.357 \tabularnewline
116 &  13 &  12.81 &  0.1874 \tabularnewline
117 &  10 &  12.59 & -2.585 \tabularnewline
118 &  16 &  12.87 &  3.131 \tabularnewline
119 &  12 &  12.64 & -0.6409 \tabularnewline
120 &  12 &  13.24 & -1.237 \tabularnewline
121 &  12 &  12.84 & -0.8375 \tabularnewline
122 &  13 &  12.9 &  0.1004 \tabularnewline
123 &  12 &  12.61 & -0.6099 \tabularnewline
124 &  14 &  12.84 &  1.16 \tabularnewline
125 &  11 &  13.01 & -2.011 \tabularnewline
126 &  14 &  12.87 &  1.133 \tabularnewline
127 &  14 &  13.04 &  0.9617 \tabularnewline
128 &  12 &  13.04 & -1.038 \tabularnewline
129 &  12 &  12.87 & -0.8665 \tabularnewline
130 &  14 &  13.04 &  0.9597 \tabularnewline
131 &  12 &  12.9 & -0.8975 \tabularnewline
132 &  13 &  13.21 & -0.21 \tabularnewline
133 &  14 &  12.64 &  1.361 \tabularnewline
134 &  12 &  13.24 & -1.237 \tabularnewline
135 &  17 &  12.79 &  4.214 \tabularnewline
136 &  12 &  13.07 & -1.065 \tabularnewline
137 &  16 &  13.1 &  2.904 \tabularnewline
138 &  12 &  12.9 & -0.8955 \tabularnewline
139 &  12 &  12.84 & -0.8416 \tabularnewline
140 &  12 &  12.9 & -0.8996 \tabularnewline
141 &  14 &  13.04 &  0.9597 \tabularnewline
142 &  14 &  13.04 &  0.9638 \tabularnewline
143 &  14 &  13.04 &  0.9617 \tabularnewline
144 &  13 &  12.84 &  0.1604 \tabularnewline
145 &  15 &  13.27 &  1.732 \tabularnewline
146 &  11 &  12.67 & -1.67 \tabularnewline
147 &  13 &  12.81 &  0.1853 \tabularnewline
148 &  14 &  13.04 &  0.9617 \tabularnewline
149 &  15 &  13.01 &  1.989 \tabularnewline
150 &  11 &  12.67 & -1.672 \tabularnewline
151 &  12 &  13.04 & -1.04 \tabularnewline
152 &  11 &  13.01 & -2.013 \tabularnewline
153 &  12 &  12.7 & -0.7029 \tabularnewline
154 &  12 &  12.61 & -0.6139 \tabularnewline
155 &  14 &  13.1 &  0.9018 \tabularnewline
156 &  11 &  13.07 & -2.067 \tabularnewline
157 &  15 &  13.21 &  1.79 \tabularnewline
158 &  12 &  12.67 & -0.6678 \tabularnewline
159 &  15 &  13.1 &  1.902 \tabularnewline
160 &  11 &  12.7 & -1.699 \tabularnewline
161 &  12 &  12.81 & -0.8106 \tabularnewline
162 &  12 &  12.81 & -0.8147 \tabularnewline
163 &  11 &  13.04 & -2.042 \tabularnewline
164 &  14 &  13.04 &  0.9577 \tabularnewline
165 &  13 &  13.04 & -0.03826 \tabularnewline
166 &  12 &  13.01 & -1.005 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299572&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 13[/C][C] 12.84[/C][C] 0.1584[/C][/ROW]
[ROW][C]2[/C][C] 13[/C][C] 12.81[/C][C] 0.1894[/C][/ROW]
[ROW][C]3[/C][C] 14[/C][C] 12.84[/C][C] 1.158[/C][/ROW]
[ROW][C]4[/C][C] 11[/C][C] 13.21[/C][C]-2.21[/C][/ROW]
[ROW][C]5[/C][C] 12[/C][C] 13.04[/C][C]-1.038[/C][/ROW]
[ROW][C]6[/C][C] 14[/C][C] 12.67[/C][C] 1.328[/C][/ROW]
[ROW][C]7[/C][C] 12[/C][C] 13.07[/C][C]-1.065[/C][/ROW]
[ROW][C]8[/C][C] 12[/C][C] 12.7[/C][C]-0.7009[/C][/ROW]
[ROW][C]9[/C][C] 12[/C][C] 13.29[/C][C]-1.293[/C][/ROW]
[ROW][C]10[/C][C] 13[/C][C] 12.81[/C][C] 0.1874[/C][/ROW]
[ROW][C]11[/C][C] 14[/C][C] 13.5[/C][C] 0.5044[/C][/ROW]
[ROW][C]12[/C][C] 12[/C][C] 12.84[/C][C]-0.8396[/C][/ROW]
[ROW][C]13[/C][C] 17[/C][C] 13.18[/C][C] 3.819[/C][/ROW]
[ROW][C]14[/C][C] 15[/C][C] 13.27[/C][C] 1.734[/C][/ROW]
[ROW][C]15[/C][C] 14[/C][C] 13.07[/C][C] 0.9328[/C][/ROW]
[ROW][C]16[/C][C] 11[/C][C] 12.67[/C][C]-1.668[/C][/ROW]
[ROW][C]17[/C][C] 15[/C][C] 13.44[/C][C] 1.562[/C][/ROW]
[ROW][C]18[/C][C] 9[/C][C] 13.04[/C][C]-4.04[/C][/ROW]
[ROW][C]19[/C][C] 11[/C][C] 13.04[/C][C]-2.038[/C][/ROW]
[ROW][C]20[/C][C] 13[/C][C] 12.79[/C][C] 0.2143[/C][/ROW]
[ROW][C]21[/C][C] 12[/C][C] 12.84[/C][C]-0.8396[/C][/ROW]
[ROW][C]22[/C][C] 14[/C][C] 12.67[/C][C] 1.328[/C][/ROW]
[ROW][C]23[/C][C] 12[/C][C] 12.81[/C][C]-0.8126[/C][/ROW]
[ROW][C]24[/C][C] 14[/C][C] 12.87[/C][C] 1.133[/C][/ROW]
[ROW][C]25[/C][C] 13[/C][C] 13.07[/C][C]-0.06927[/C][/ROW]
[ROW][C]26[/C][C] 14[/C][C] 12.81[/C][C] 1.189[/C][/ROW]
[ROW][C]27[/C][C] 14[/C][C] 12.87[/C][C] 1.133[/C][/ROW]
[ROW][C]28[/C][C] 14[/C][C] 12.98[/C][C] 1.018[/C][/ROW]
[ROW][C]29[/C][C] 14[/C][C] 12.67[/C][C] 1.328[/C][/ROW]
[ROW][C]30[/C][C] 12[/C][C] 12.7[/C][C]-0.6988[/C][/ROW]
[ROW][C]31[/C][C] 11[/C][C] 12.81[/C][C]-1.809[/C][/ROW]
[ROW][C]32[/C][C] 15[/C][C] 13.5[/C][C] 1.502[/C][/ROW]
[ROW][C]33[/C][C] 10[/C][C] 12.84[/C][C]-2.838[/C][/ROW]
[ROW][C]34[/C][C] 15[/C][C] 13.01[/C][C] 1.991[/C][/ROW]
[ROW][C]35[/C][C] 14[/C][C] 12.64[/C][C] 1.357[/C][/ROW]
[ROW][C]36[/C][C] 12[/C][C] 12.67[/C][C]-0.6699[/C][/ROW]
[ROW][C]37[/C][C] 14[/C][C] 13.18[/C][C] 0.821[/C][/ROW]
[ROW][C]38[/C][C] 14[/C][C] 12.87[/C][C] 1.131[/C][/ROW]
[ROW][C]39[/C][C] 12[/C][C] 12.87[/C][C]-0.8706[/C][/ROW]
[ROW][C]40[/C][C] 12[/C][C] 12.81[/C][C]-0.8106[/C][/ROW]
[ROW][C]41[/C][C] 12[/C][C] 12.87[/C][C]-0.8706[/C][/ROW]
[ROW][C]42[/C][C] 13[/C][C] 12.84[/C][C] 0.1584[/C][/ROW]
[ROW][C]43[/C][C] 13[/C][C] 13.5[/C][C]-0.4956[/C][/ROW]
[ROW][C]44[/C][C] 15[/C][C] 13.21[/C][C] 1.79[/C][/ROW]
[ROW][C]45[/C][C] 12[/C][C] 12.84[/C][C]-0.8396[/C][/ROW]
[ROW][C]46[/C][C] 12[/C][C] 12.87[/C][C]-0.8665[/C][/ROW]
[ROW][C]47[/C][C] 13[/C][C] 13.38[/C][C]-0.3818[/C][/ROW]
[ROW][C]48[/C][C] 12[/C][C] 12.84[/C][C]-0.8396[/C][/ROW]
[ROW][C]49[/C][C] 8[/C][C] 13.04[/C][C]-5.04[/C][/ROW]
[ROW][C]50[/C][C] 12[/C][C] 12.81[/C][C]-0.8147[/C][/ROW]
[ROW][C]51[/C][C] 14[/C][C] 12.87[/C][C] 1.133[/C][/ROW]
[ROW][C]52[/C][C] 13[/C][C] 13.24[/C][C]-0.239[/C][/ROW]
[ROW][C]53[/C][C] 9[/C][C] 12.62[/C][C]-3.616[/C][/ROW]
[ROW][C]54[/C][C] 14[/C][C] 13.47[/C][C] 0.5313[/C][/ROW]
[ROW][C]55[/C][C] 12[/C][C] 13.07[/C][C]-1.067[/C][/ROW]
[ROW][C]56[/C][C] 12[/C][C] 12.7[/C][C]-0.6988[/C][/ROW]
[ROW][C]57[/C][C] 17[/C][C] 12.9[/C][C] 4.1[/C][/ROW]
[ROW][C]58[/C][C] 13[/C][C] 13.04[/C][C]-0.04029[/C][/ROW]
[ROW][C]59[/C][C] 10[/C][C] 13.24[/C][C]-3.237[/C][/ROW]
[ROW][C]60[/C][C] 12[/C][C] 12.87[/C][C]-0.8685[/C][/ROW]
[ROW][C]61[/C][C] 15[/C][C] 12.87[/C][C] 2.127[/C][/ROW]
[ROW][C]62[/C][C] 13[/C][C] 13.24[/C][C]-0.239[/C][/ROW]
[ROW][C]63[/C][C] 13[/C][C] 12.81[/C][C] 0.1874[/C][/ROW]
[ROW][C]64[/C][C] 14[/C][C] 13.24[/C][C] 0.761[/C][/ROW]
[ROW][C]65[/C][C] 11[/C][C] 12.87[/C][C]-1.867[/C][/ROW]
[ROW][C]66[/C][C] 14[/C][C] 13.01[/C][C] 0.9928[/C][/ROW]
[ROW][C]67[/C][C] 14[/C][C] 13.21[/C][C] 0.79[/C][/ROW]
[ROW][C]68[/C][C] 15[/C][C] 13.21[/C][C] 1.79[/C][/ROW]
[ROW][C]69[/C][C] 16[/C][C] 12.79[/C][C] 3.214[/C][/ROW]
[ROW][C]70[/C][C] 12[/C][C] 13.27[/C][C]-1.268[/C][/ROW]
[ROW][C]71[/C][C] 14[/C][C] 12.84[/C][C] 1.158[/C][/ROW]
[ROW][C]72[/C][C] 12[/C][C] 13.07[/C][C]-1.067[/C][/ROW]
[ROW][C]73[/C][C] 15[/C][C] 12.69[/C][C] 2.305[/C][/ROW]
[ROW][C]74[/C][C] 14[/C][C] 12.81[/C][C] 1.189[/C][/ROW]
[ROW][C]75[/C][C] 14[/C][C] 13.24[/C][C] 0.761[/C][/ROW]
[ROW][C]76[/C][C] 12[/C][C] 12.67[/C][C]-0.6658[/C][/ROW]
[ROW][C]77[/C][C] 14[/C][C] 12.64[/C][C] 1.361[/C][/ROW]
[ROW][C]78[/C][C] 12[/C][C] 12.67[/C][C]-0.6719[/C][/ROW]
[ROW][C]79[/C][C] 12[/C][C] 12.7[/C][C]-0.7009[/C][/ROW]
[ROW][C]80[/C][C] 14[/C][C] 12.64[/C][C] 1.359[/C][/ROW]
[ROW][C]81[/C][C] 14[/C][C] 13.04[/C][C] 0.9638[/C][/ROW]
[ROW][C]82[/C][C] 15[/C][C] 12.7[/C][C] 2.303[/C][/ROW]
[ROW][C]83[/C][C] 12[/C][C] 12.7[/C][C]-0.6988[/C][/ROW]
[ROW][C]84[/C][C] 16[/C][C] 13.43[/C][C] 2.566[/C][/ROW]
[ROW][C]85[/C][C] 10[/C][C] 13.21[/C][C]-3.212[/C][/ROW]
[ROW][C]86[/C][C] 12[/C][C] 13.04[/C][C]-1.038[/C][/ROW]
[ROW][C]87[/C][C] 13[/C][C] 13.3[/C][C]-0.2969[/C][/ROW]
[ROW][C]88[/C][C] 15[/C][C] 13.01[/C][C] 1.993[/C][/ROW]
[ROW][C]89[/C][C] 11[/C][C] 13.01[/C][C]-2.011[/C][/ROW]
[ROW][C]90[/C][C] 11[/C][C] 13.41[/C][C]-2.411[/C][/ROW]
[ROW][C]91[/C][C] 12[/C][C] 12.67[/C][C]-0.6719[/C][/ROW]
[ROW][C]92[/C][C] 12[/C][C] 12.7[/C][C]-0.6968[/C][/ROW]
[ROW][C]93[/C][C] 12[/C][C] 13.04[/C][C]-1.038[/C][/ROW]
[ROW][C]94[/C][C] 15[/C][C] 12.87[/C][C] 2.131[/C][/ROW]
[ROW][C]95[/C][C] 12[/C][C] 13.04[/C][C]-1.038[/C][/ROW]
[ROW][C]96[/C][C] 11[/C][C] 13.07[/C][C]-2.067[/C][/ROW]
[ROW][C]97[/C][C] 16[/C][C] 12.89[/C][C] 3.107[/C][/ROW]
[ROW][C]98[/C][C] 12[/C][C] 13.27[/C][C]-1.266[/C][/ROW]
[ROW][C]99[/C][C] 11[/C][C] 13.07[/C][C]-2.067[/C][/ROW]
[ROW][C]100[/C][C] 16[/C][C] 12.84[/C][C] 3.158[/C][/ROW]
[ROW][C]101[/C][C] 14[/C][C] 12.9[/C][C] 1.1[/C][/ROW]
[ROW][C]102[/C][C] 13[/C][C] 12.9[/C][C] 0.1045[/C][/ROW]
[ROW][C]103[/C][C] 14[/C][C] 13.04[/C][C] 0.9597[/C][/ROW]
[ROW][C]104[/C][C] 14[/C][C] 12.7[/C][C] 1.301[/C][/ROW]
[ROW][C]105[/C][C] 12[/C][C] 13.04[/C][C]-1.04[/C][/ROW]
[ROW][C]106[/C][C] 14[/C][C] 13.04[/C][C] 0.9617[/C][/ROW]
[ROW][C]107[/C][C] 14[/C][C] 13.01[/C][C] 0.9887[/C][/ROW]
[ROW][C]108[/C][C] 12[/C][C] 13.01[/C][C]-1.011[/C][/ROW]
[ROW][C]109[/C][C] 12[/C][C] 13.01[/C][C]-1.007[/C][/ROW]
[ROW][C]110[/C][C] 12[/C][C] 13.21[/C][C]-1.21[/C][/ROW]
[ROW][C]111[/C][C] 13[/C][C] 13.24[/C][C]-0.239[/C][/ROW]
[ROW][C]112[/C][C] 16[/C][C] 13.01[/C][C] 2.989[/C][/ROW]
[ROW][C]113[/C][C] 13[/C][C] 12.64[/C][C] 0.3591[/C][/ROW]
[ROW][C]114[/C][C] 11[/C][C] 12.9[/C][C]-1.898[/C][/ROW]
[ROW][C]115[/C][C] 15[/C][C] 12.64[/C][C] 2.357[/C][/ROW]
[ROW][C]116[/C][C] 13[/C][C] 12.81[/C][C] 0.1874[/C][/ROW]
[ROW][C]117[/C][C] 10[/C][C] 12.59[/C][C]-2.585[/C][/ROW]
[ROW][C]118[/C][C] 16[/C][C] 12.87[/C][C] 3.131[/C][/ROW]
[ROW][C]119[/C][C] 12[/C][C] 12.64[/C][C]-0.6409[/C][/ROW]
[ROW][C]120[/C][C] 12[/C][C] 13.24[/C][C]-1.237[/C][/ROW]
[ROW][C]121[/C][C] 12[/C][C] 12.84[/C][C]-0.8375[/C][/ROW]
[ROW][C]122[/C][C] 13[/C][C] 12.9[/C][C] 0.1004[/C][/ROW]
[ROW][C]123[/C][C] 12[/C][C] 12.61[/C][C]-0.6099[/C][/ROW]
[ROW][C]124[/C][C] 14[/C][C] 12.84[/C][C] 1.16[/C][/ROW]
[ROW][C]125[/C][C] 11[/C][C] 13.01[/C][C]-2.011[/C][/ROW]
[ROW][C]126[/C][C] 14[/C][C] 12.87[/C][C] 1.133[/C][/ROW]
[ROW][C]127[/C][C] 14[/C][C] 13.04[/C][C] 0.9617[/C][/ROW]
[ROW][C]128[/C][C] 12[/C][C] 13.04[/C][C]-1.038[/C][/ROW]
[ROW][C]129[/C][C] 12[/C][C] 12.87[/C][C]-0.8665[/C][/ROW]
[ROW][C]130[/C][C] 14[/C][C] 13.04[/C][C] 0.9597[/C][/ROW]
[ROW][C]131[/C][C] 12[/C][C] 12.9[/C][C]-0.8975[/C][/ROW]
[ROW][C]132[/C][C] 13[/C][C] 13.21[/C][C]-0.21[/C][/ROW]
[ROW][C]133[/C][C] 14[/C][C] 12.64[/C][C] 1.361[/C][/ROW]
[ROW][C]134[/C][C] 12[/C][C] 13.24[/C][C]-1.237[/C][/ROW]
[ROW][C]135[/C][C] 17[/C][C] 12.79[/C][C] 4.214[/C][/ROW]
[ROW][C]136[/C][C] 12[/C][C] 13.07[/C][C]-1.065[/C][/ROW]
[ROW][C]137[/C][C] 16[/C][C] 13.1[/C][C] 2.904[/C][/ROW]
[ROW][C]138[/C][C] 12[/C][C] 12.9[/C][C]-0.8955[/C][/ROW]
[ROW][C]139[/C][C] 12[/C][C] 12.84[/C][C]-0.8416[/C][/ROW]
[ROW][C]140[/C][C] 12[/C][C] 12.9[/C][C]-0.8996[/C][/ROW]
[ROW][C]141[/C][C] 14[/C][C] 13.04[/C][C] 0.9597[/C][/ROW]
[ROW][C]142[/C][C] 14[/C][C] 13.04[/C][C] 0.9638[/C][/ROW]
[ROW][C]143[/C][C] 14[/C][C] 13.04[/C][C] 0.9617[/C][/ROW]
[ROW][C]144[/C][C] 13[/C][C] 12.84[/C][C] 0.1604[/C][/ROW]
[ROW][C]145[/C][C] 15[/C][C] 13.27[/C][C] 1.732[/C][/ROW]
[ROW][C]146[/C][C] 11[/C][C] 12.67[/C][C]-1.67[/C][/ROW]
[ROW][C]147[/C][C] 13[/C][C] 12.81[/C][C] 0.1853[/C][/ROW]
[ROW][C]148[/C][C] 14[/C][C] 13.04[/C][C] 0.9617[/C][/ROW]
[ROW][C]149[/C][C] 15[/C][C] 13.01[/C][C] 1.989[/C][/ROW]
[ROW][C]150[/C][C] 11[/C][C] 12.67[/C][C]-1.672[/C][/ROW]
[ROW][C]151[/C][C] 12[/C][C] 13.04[/C][C]-1.04[/C][/ROW]
[ROW][C]152[/C][C] 11[/C][C] 13.01[/C][C]-2.013[/C][/ROW]
[ROW][C]153[/C][C] 12[/C][C] 12.7[/C][C]-0.7029[/C][/ROW]
[ROW][C]154[/C][C] 12[/C][C] 12.61[/C][C]-0.6139[/C][/ROW]
[ROW][C]155[/C][C] 14[/C][C] 13.1[/C][C] 0.9018[/C][/ROW]
[ROW][C]156[/C][C] 11[/C][C] 13.07[/C][C]-2.067[/C][/ROW]
[ROW][C]157[/C][C] 15[/C][C] 13.21[/C][C] 1.79[/C][/ROW]
[ROW][C]158[/C][C] 12[/C][C] 12.67[/C][C]-0.6678[/C][/ROW]
[ROW][C]159[/C][C] 15[/C][C] 13.1[/C][C] 1.902[/C][/ROW]
[ROW][C]160[/C][C] 11[/C][C] 12.7[/C][C]-1.699[/C][/ROW]
[ROW][C]161[/C][C] 12[/C][C] 12.81[/C][C]-0.8106[/C][/ROW]
[ROW][C]162[/C][C] 12[/C][C] 12.81[/C][C]-0.8147[/C][/ROW]
[ROW][C]163[/C][C] 11[/C][C] 13.04[/C][C]-2.042[/C][/ROW]
[ROW][C]164[/C][C] 14[/C][C] 13.04[/C][C] 0.9577[/C][/ROW]
[ROW][C]165[/C][C] 13[/C][C] 13.04[/C][C]-0.03826[/C][/ROW]
[ROW][C]166[/C][C] 12[/C][C] 13.01[/C][C]-1.005[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299572&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299572&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 13 12.84 0.1584
2 13 12.81 0.1894
3 14 12.84 1.158
4 11 13.21-2.21
5 12 13.04-1.038
6 14 12.67 1.328
7 12 13.07-1.065
8 12 12.7-0.7009
9 12 13.29-1.293
10 13 12.81 0.1874
11 14 13.5 0.5044
12 12 12.84-0.8396
13 17 13.18 3.819
14 15 13.27 1.734
15 14 13.07 0.9328
16 11 12.67-1.668
17 15 13.44 1.562
18 9 13.04-4.04
19 11 13.04-2.038
20 13 12.79 0.2143
21 12 12.84-0.8396
22 14 12.67 1.328
23 12 12.81-0.8126
24 14 12.87 1.133
25 13 13.07-0.06927
26 14 12.81 1.189
27 14 12.87 1.133
28 14 12.98 1.018
29 14 12.67 1.328
30 12 12.7-0.6988
31 11 12.81-1.809
32 15 13.5 1.502
33 10 12.84-2.838
34 15 13.01 1.991
35 14 12.64 1.357
36 12 12.67-0.6699
37 14 13.18 0.821
38 14 12.87 1.131
39 12 12.87-0.8706
40 12 12.81-0.8106
41 12 12.87-0.8706
42 13 12.84 0.1584
43 13 13.5-0.4956
44 15 13.21 1.79
45 12 12.84-0.8396
46 12 12.87-0.8665
47 13 13.38-0.3818
48 12 12.84-0.8396
49 8 13.04-5.04
50 12 12.81-0.8147
51 14 12.87 1.133
52 13 13.24-0.239
53 9 12.62-3.616
54 14 13.47 0.5313
55 12 13.07-1.067
56 12 12.7-0.6988
57 17 12.9 4.1
58 13 13.04-0.04029
59 10 13.24-3.237
60 12 12.87-0.8685
61 15 12.87 2.127
62 13 13.24-0.239
63 13 12.81 0.1874
64 14 13.24 0.761
65 11 12.87-1.867
66 14 13.01 0.9928
67 14 13.21 0.79
68 15 13.21 1.79
69 16 12.79 3.214
70 12 13.27-1.268
71 14 12.84 1.158
72 12 13.07-1.067
73 15 12.69 2.305
74 14 12.81 1.189
75 14 13.24 0.761
76 12 12.67-0.6658
77 14 12.64 1.361
78 12 12.67-0.6719
79 12 12.7-0.7009
80 14 12.64 1.359
81 14 13.04 0.9638
82 15 12.7 2.303
83 12 12.7-0.6988
84 16 13.43 2.566
85 10 13.21-3.212
86 12 13.04-1.038
87 13 13.3-0.2969
88 15 13.01 1.993
89 11 13.01-2.011
90 11 13.41-2.411
91 12 12.67-0.6719
92 12 12.7-0.6968
93 12 13.04-1.038
94 15 12.87 2.131
95 12 13.04-1.038
96 11 13.07-2.067
97 16 12.89 3.107
98 12 13.27-1.266
99 11 13.07-2.067
100 16 12.84 3.158
101 14 12.9 1.1
102 13 12.9 0.1045
103 14 13.04 0.9597
104 14 12.7 1.301
105 12 13.04-1.04
106 14 13.04 0.9617
107 14 13.01 0.9887
108 12 13.01-1.011
109 12 13.01-1.007
110 12 13.21-1.21
111 13 13.24-0.239
112 16 13.01 2.989
113 13 12.64 0.3591
114 11 12.9-1.898
115 15 12.64 2.357
116 13 12.81 0.1874
117 10 12.59-2.585
118 16 12.87 3.131
119 12 12.64-0.6409
120 12 13.24-1.237
121 12 12.84-0.8375
122 13 12.9 0.1004
123 12 12.61-0.6099
124 14 12.84 1.16
125 11 13.01-2.011
126 14 12.87 1.133
127 14 13.04 0.9617
128 12 13.04-1.038
129 12 12.87-0.8665
130 14 13.04 0.9597
131 12 12.9-0.8975
132 13 13.21-0.21
133 14 12.64 1.361
134 12 13.24-1.237
135 17 12.79 4.214
136 12 13.07-1.065
137 16 13.1 2.904
138 12 12.9-0.8955
139 12 12.84-0.8416
140 12 12.9-0.8996
141 14 13.04 0.9597
142 14 13.04 0.9638
143 14 13.04 0.9617
144 13 12.84 0.1604
145 15 13.27 1.732
146 11 12.67-1.67
147 13 12.81 0.1853
148 14 13.04 0.9617
149 15 13.01 1.989
150 11 12.67-1.672
151 12 13.04-1.04
152 11 13.01-2.013
153 12 12.7-0.7029
154 12 12.61-0.6139
155 14 13.1 0.9018
156 11 13.07-2.067
157 15 13.21 1.79
158 12 12.67-0.6678
159 15 13.1 1.902
160 11 12.7-1.699
161 12 12.81-0.8106
162 12 12.81-0.8147
163 11 13.04-2.042
164 14 13.04 0.9577
165 13 13.04-0.03826
166 12 13.01-1.005







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.03743 0.07487 0.9626
8 0.1054 0.2108 0.8946
9 0.09201 0.184 0.908
10 0.04313 0.08626 0.9569
11 0.1071 0.2142 0.8929
12 0.0645 0.129 0.9355
13 0.439 0.878 0.561
14 0.4957 0.9914 0.5043
15 0.45 0.9001 0.55
16 0.3728 0.7455 0.6272
17 0.3022 0.6045 0.6978
18 0.7986 0.4028 0.2014
19 0.8052 0.3897 0.1948
20 0.7561 0.4878 0.2439
21 0.699 0.602 0.301
22 0.6866 0.6267 0.3134
23 0.6413 0.7173 0.3587
24 0.6676 0.6649 0.3324
25 0.6059 0.7882 0.3941
26 0.5868 0.8264 0.4132
27 0.5797 0.8407 0.4203
28 0.5283 0.9434 0.4717
29 0.5057 0.9886 0.4943
30 0.4499 0.8998 0.5501
31 0.4409 0.8818 0.5591
32 0.3988 0.7976 0.6012
33 0.4548 0.9095 0.5452
34 0.4975 0.995 0.5025
35 0.4714 0.9429 0.5286
36 0.4194 0.8389 0.5806
37 0.3765 0.7531 0.6235
38 0.3587 0.7174 0.6413
39 0.3322 0.6645 0.6677
40 0.2934 0.5869 0.7066
41 0.2676 0.5353 0.7324
42 0.2252 0.4503 0.7748
43 0.1979 0.3959 0.8021
44 0.19 0.3799 0.81
45 0.1625 0.325 0.8375
46 0.135 0.2699 0.865
47 0.1291 0.2583 0.8709
48 0.1085 0.217 0.8915
49 0.4961 0.9922 0.5039
50 0.4684 0.9368 0.5316
51 0.4625 0.9251 0.5375
52 0.4158 0.8317 0.5842
53 0.6013 0.7975 0.3987
54 0.5579 0.8843 0.4421
55 0.527 0.946 0.473
56 0.4845 0.9689 0.5155
57 0.7326 0.5348 0.2674
58 0.6922 0.6157 0.3078
59 0.7948 0.4103 0.2052
60 0.7679 0.4642 0.2321
61 0.7856 0.4288 0.2144
62 0.7509 0.4982 0.2491
63 0.7138 0.5724 0.2862
64 0.682 0.6359 0.318
65 0.6844 0.6312 0.3156
66 0.6721 0.6558 0.3279
67 0.6394 0.7212 0.3606
68 0.6475 0.7051 0.3525
69 0.7519 0.4961 0.2481
70 0.7388 0.5224 0.2612
71 0.72 0.56 0.28
72 0.6952 0.6097 0.3048
73 0.7571 0.4859 0.2429
74 0.7416 0.5168 0.2584
75 0.7125 0.575 0.2875
76 0.6827 0.6345 0.3173
77 0.6732 0.6537 0.3268
78 0.6391 0.7218 0.3609
79 0.6041 0.7917 0.3959
80 0.5908 0.8185 0.4092
81 0.5634 0.8731 0.4366
82 0.6082 0.7836 0.3918
83 0.5726 0.8547 0.4274
84 0.6404 0.7191 0.3596
85 0.7494 0.5012 0.2506
86 0.727 0.5459 0.273
87 0.6892 0.6216 0.3108
88 0.7106 0.5788 0.2894
89 0.729 0.542 0.271
90 0.7719 0.4562 0.2281
91 0.7429 0.5143 0.2571
92 0.7117 0.5765 0.2883
93 0.688 0.6239 0.312
94 0.7158 0.5684 0.2842
95 0.6922 0.6155 0.3078
96 0.7182 0.5636 0.2818
97 0.8206 0.3589 0.1794
98 0.8101 0.3798 0.1899
99 0.8316 0.3367 0.1684
100 0.9016 0.1968 0.0984
101 0.8896 0.2208 0.1104
102 0.8663 0.2673 0.1337
103 0.8477 0.3045 0.1523
104 0.8435 0.313 0.1565
105 0.8289 0.3422 0.1711
106 0.8083 0.3834 0.1917
107 0.7852 0.4296 0.2148
108 0.7664 0.4672 0.2336
109 0.7425 0.515 0.2575
110 0.7384 0.5232 0.2616
111 0.7038 0.5924 0.2962
112 0.7861 0.4278 0.2139
113 0.7553 0.4894 0.2447
114 0.7661 0.4677 0.2339
115 0.8272 0.3456 0.1728
116 0.7948 0.4103 0.2052
117 0.8318 0.3364 0.1682
118 0.9199 0.1602 0.0801
119 0.9 0.2 0.09999
120 0.9002 0.1997 0.09984
121 0.8797 0.2407 0.1203
122 0.8523 0.2953 0.1477
123 0.8208 0.3584 0.1792
124 0.8103 0.3794 0.1897
125 0.8492 0.3016 0.1508
126 0.8471 0.3059 0.1529
127 0.8229 0.3542 0.1771
128 0.806 0.388 0.194
129 0.7696 0.4608 0.2304
130 0.7344 0.5313 0.2656
131 0.6914 0.6172 0.3086
132 0.6586 0.6828 0.3414
133 0.7076 0.5847 0.2924
134 0.7391 0.5218 0.2609
135 0.9712 0.05769 0.02885
136 0.9719 0.05611 0.02805
137 0.9877 0.02463 0.01232
138 0.9822 0.03564 0.01782
139 0.9739 0.05229 0.02614
140 0.964 0.07201 0.036
141 0.9522 0.09556 0.04778
142 0.9386 0.1227 0.06136
143 0.9226 0.1547 0.07736
144 0.9019 0.1963 0.09813
145 0.8798 0.2404 0.1202
146 0.8442 0.3116 0.1558
147 0.8082 0.3836 0.1918
148 0.7766 0.4468 0.2234
149 0.8596 0.2808 0.1404
150 0.8159 0.3682 0.1841
151 0.7704 0.4592 0.2296
152 0.8144 0.3712 0.1856
153 0.7378 0.5245 0.2622
154 0.6767 0.6467 0.3233
155 0.5799 0.8402 0.4201
156 0.7383 0.5233 0.2617
157 0.7 0.6 0.3
158 0.5899 0.8202 0.4101
159 0.601 0.798 0.399

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
7 &  0.03743 &  0.07487 &  0.9626 \tabularnewline
8 &  0.1054 &  0.2108 &  0.8946 \tabularnewline
9 &  0.09201 &  0.184 &  0.908 \tabularnewline
10 &  0.04313 &  0.08626 &  0.9569 \tabularnewline
11 &  0.1071 &  0.2142 &  0.8929 \tabularnewline
12 &  0.0645 &  0.129 &  0.9355 \tabularnewline
13 &  0.439 &  0.878 &  0.561 \tabularnewline
14 &  0.4957 &  0.9914 &  0.5043 \tabularnewline
15 &  0.45 &  0.9001 &  0.55 \tabularnewline
16 &  0.3728 &  0.7455 &  0.6272 \tabularnewline
17 &  0.3022 &  0.6045 &  0.6978 \tabularnewline
18 &  0.7986 &  0.4028 &  0.2014 \tabularnewline
19 &  0.8052 &  0.3897 &  0.1948 \tabularnewline
20 &  0.7561 &  0.4878 &  0.2439 \tabularnewline
21 &  0.699 &  0.602 &  0.301 \tabularnewline
22 &  0.6866 &  0.6267 &  0.3134 \tabularnewline
23 &  0.6413 &  0.7173 &  0.3587 \tabularnewline
24 &  0.6676 &  0.6649 &  0.3324 \tabularnewline
25 &  0.6059 &  0.7882 &  0.3941 \tabularnewline
26 &  0.5868 &  0.8264 &  0.4132 \tabularnewline
27 &  0.5797 &  0.8407 &  0.4203 \tabularnewline
28 &  0.5283 &  0.9434 &  0.4717 \tabularnewline
29 &  0.5057 &  0.9886 &  0.4943 \tabularnewline
30 &  0.4499 &  0.8998 &  0.5501 \tabularnewline
31 &  0.4409 &  0.8818 &  0.5591 \tabularnewline
32 &  0.3988 &  0.7976 &  0.6012 \tabularnewline
33 &  0.4548 &  0.9095 &  0.5452 \tabularnewline
34 &  0.4975 &  0.995 &  0.5025 \tabularnewline
35 &  0.4714 &  0.9429 &  0.5286 \tabularnewline
36 &  0.4194 &  0.8389 &  0.5806 \tabularnewline
37 &  0.3765 &  0.7531 &  0.6235 \tabularnewline
38 &  0.3587 &  0.7174 &  0.6413 \tabularnewline
39 &  0.3322 &  0.6645 &  0.6677 \tabularnewline
40 &  0.2934 &  0.5869 &  0.7066 \tabularnewline
41 &  0.2676 &  0.5353 &  0.7324 \tabularnewline
42 &  0.2252 &  0.4503 &  0.7748 \tabularnewline
43 &  0.1979 &  0.3959 &  0.8021 \tabularnewline
44 &  0.19 &  0.3799 &  0.81 \tabularnewline
45 &  0.1625 &  0.325 &  0.8375 \tabularnewline
46 &  0.135 &  0.2699 &  0.865 \tabularnewline
47 &  0.1291 &  0.2583 &  0.8709 \tabularnewline
48 &  0.1085 &  0.217 &  0.8915 \tabularnewline
49 &  0.4961 &  0.9922 &  0.5039 \tabularnewline
50 &  0.4684 &  0.9368 &  0.5316 \tabularnewline
51 &  0.4625 &  0.9251 &  0.5375 \tabularnewline
52 &  0.4158 &  0.8317 &  0.5842 \tabularnewline
53 &  0.6013 &  0.7975 &  0.3987 \tabularnewline
54 &  0.5579 &  0.8843 &  0.4421 \tabularnewline
55 &  0.527 &  0.946 &  0.473 \tabularnewline
56 &  0.4845 &  0.9689 &  0.5155 \tabularnewline
57 &  0.7326 &  0.5348 &  0.2674 \tabularnewline
58 &  0.6922 &  0.6157 &  0.3078 \tabularnewline
59 &  0.7948 &  0.4103 &  0.2052 \tabularnewline
60 &  0.7679 &  0.4642 &  0.2321 \tabularnewline
61 &  0.7856 &  0.4288 &  0.2144 \tabularnewline
62 &  0.7509 &  0.4982 &  0.2491 \tabularnewline
63 &  0.7138 &  0.5724 &  0.2862 \tabularnewline
64 &  0.682 &  0.6359 &  0.318 \tabularnewline
65 &  0.6844 &  0.6312 &  0.3156 \tabularnewline
66 &  0.6721 &  0.6558 &  0.3279 \tabularnewline
67 &  0.6394 &  0.7212 &  0.3606 \tabularnewline
68 &  0.6475 &  0.7051 &  0.3525 \tabularnewline
69 &  0.7519 &  0.4961 &  0.2481 \tabularnewline
70 &  0.7388 &  0.5224 &  0.2612 \tabularnewline
71 &  0.72 &  0.56 &  0.28 \tabularnewline
72 &  0.6952 &  0.6097 &  0.3048 \tabularnewline
73 &  0.7571 &  0.4859 &  0.2429 \tabularnewline
74 &  0.7416 &  0.5168 &  0.2584 \tabularnewline
75 &  0.7125 &  0.575 &  0.2875 \tabularnewline
76 &  0.6827 &  0.6345 &  0.3173 \tabularnewline
77 &  0.6732 &  0.6537 &  0.3268 \tabularnewline
78 &  0.6391 &  0.7218 &  0.3609 \tabularnewline
79 &  0.6041 &  0.7917 &  0.3959 \tabularnewline
80 &  0.5908 &  0.8185 &  0.4092 \tabularnewline
81 &  0.5634 &  0.8731 &  0.4366 \tabularnewline
82 &  0.6082 &  0.7836 &  0.3918 \tabularnewline
83 &  0.5726 &  0.8547 &  0.4274 \tabularnewline
84 &  0.6404 &  0.7191 &  0.3596 \tabularnewline
85 &  0.7494 &  0.5012 &  0.2506 \tabularnewline
86 &  0.727 &  0.5459 &  0.273 \tabularnewline
87 &  0.6892 &  0.6216 &  0.3108 \tabularnewline
88 &  0.7106 &  0.5788 &  0.2894 \tabularnewline
89 &  0.729 &  0.542 &  0.271 \tabularnewline
90 &  0.7719 &  0.4562 &  0.2281 \tabularnewline
91 &  0.7429 &  0.5143 &  0.2571 \tabularnewline
92 &  0.7117 &  0.5765 &  0.2883 \tabularnewline
93 &  0.688 &  0.6239 &  0.312 \tabularnewline
94 &  0.7158 &  0.5684 &  0.2842 \tabularnewline
95 &  0.6922 &  0.6155 &  0.3078 \tabularnewline
96 &  0.7182 &  0.5636 &  0.2818 \tabularnewline
97 &  0.8206 &  0.3589 &  0.1794 \tabularnewline
98 &  0.8101 &  0.3798 &  0.1899 \tabularnewline
99 &  0.8316 &  0.3367 &  0.1684 \tabularnewline
100 &  0.9016 &  0.1968 &  0.0984 \tabularnewline
101 &  0.8896 &  0.2208 &  0.1104 \tabularnewline
102 &  0.8663 &  0.2673 &  0.1337 \tabularnewline
103 &  0.8477 &  0.3045 &  0.1523 \tabularnewline
104 &  0.8435 &  0.313 &  0.1565 \tabularnewline
105 &  0.8289 &  0.3422 &  0.1711 \tabularnewline
106 &  0.8083 &  0.3834 &  0.1917 \tabularnewline
107 &  0.7852 &  0.4296 &  0.2148 \tabularnewline
108 &  0.7664 &  0.4672 &  0.2336 \tabularnewline
109 &  0.7425 &  0.515 &  0.2575 \tabularnewline
110 &  0.7384 &  0.5232 &  0.2616 \tabularnewline
111 &  0.7038 &  0.5924 &  0.2962 \tabularnewline
112 &  0.7861 &  0.4278 &  0.2139 \tabularnewline
113 &  0.7553 &  0.4894 &  0.2447 \tabularnewline
114 &  0.7661 &  0.4677 &  0.2339 \tabularnewline
115 &  0.8272 &  0.3456 &  0.1728 \tabularnewline
116 &  0.7948 &  0.4103 &  0.2052 \tabularnewline
117 &  0.8318 &  0.3364 &  0.1682 \tabularnewline
118 &  0.9199 &  0.1602 &  0.0801 \tabularnewline
119 &  0.9 &  0.2 &  0.09999 \tabularnewline
120 &  0.9002 &  0.1997 &  0.09984 \tabularnewline
121 &  0.8797 &  0.2407 &  0.1203 \tabularnewline
122 &  0.8523 &  0.2953 &  0.1477 \tabularnewline
123 &  0.8208 &  0.3584 &  0.1792 \tabularnewline
124 &  0.8103 &  0.3794 &  0.1897 \tabularnewline
125 &  0.8492 &  0.3016 &  0.1508 \tabularnewline
126 &  0.8471 &  0.3059 &  0.1529 \tabularnewline
127 &  0.8229 &  0.3542 &  0.1771 \tabularnewline
128 &  0.806 &  0.388 &  0.194 \tabularnewline
129 &  0.7696 &  0.4608 &  0.2304 \tabularnewline
130 &  0.7344 &  0.5313 &  0.2656 \tabularnewline
131 &  0.6914 &  0.6172 &  0.3086 \tabularnewline
132 &  0.6586 &  0.6828 &  0.3414 \tabularnewline
133 &  0.7076 &  0.5847 &  0.2924 \tabularnewline
134 &  0.7391 &  0.5218 &  0.2609 \tabularnewline
135 &  0.9712 &  0.05769 &  0.02885 \tabularnewline
136 &  0.9719 &  0.05611 &  0.02805 \tabularnewline
137 &  0.9877 &  0.02463 &  0.01232 \tabularnewline
138 &  0.9822 &  0.03564 &  0.01782 \tabularnewline
139 &  0.9739 &  0.05229 &  0.02614 \tabularnewline
140 &  0.964 &  0.07201 &  0.036 \tabularnewline
141 &  0.9522 &  0.09556 &  0.04778 \tabularnewline
142 &  0.9386 &  0.1227 &  0.06136 \tabularnewline
143 &  0.9226 &  0.1547 &  0.07736 \tabularnewline
144 &  0.9019 &  0.1963 &  0.09813 \tabularnewline
145 &  0.8798 &  0.2404 &  0.1202 \tabularnewline
146 &  0.8442 &  0.3116 &  0.1558 \tabularnewline
147 &  0.8082 &  0.3836 &  0.1918 \tabularnewline
148 &  0.7766 &  0.4468 &  0.2234 \tabularnewline
149 &  0.8596 &  0.2808 &  0.1404 \tabularnewline
150 &  0.8159 &  0.3682 &  0.1841 \tabularnewline
151 &  0.7704 &  0.4592 &  0.2296 \tabularnewline
152 &  0.8144 &  0.3712 &  0.1856 \tabularnewline
153 &  0.7378 &  0.5245 &  0.2622 \tabularnewline
154 &  0.6767 &  0.6467 &  0.3233 \tabularnewline
155 &  0.5799 &  0.8402 &  0.4201 \tabularnewline
156 &  0.7383 &  0.5233 &  0.2617 \tabularnewline
157 &  0.7 &  0.6 &  0.3 \tabularnewline
158 &  0.5899 &  0.8202 &  0.4101 \tabularnewline
159 &  0.601 &  0.798 &  0.399 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299572&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]7[/C][C] 0.03743[/C][C] 0.07487[/C][C] 0.9626[/C][/ROW]
[ROW][C]8[/C][C] 0.1054[/C][C] 0.2108[/C][C] 0.8946[/C][/ROW]
[ROW][C]9[/C][C] 0.09201[/C][C] 0.184[/C][C] 0.908[/C][/ROW]
[ROW][C]10[/C][C] 0.04313[/C][C] 0.08626[/C][C] 0.9569[/C][/ROW]
[ROW][C]11[/C][C] 0.1071[/C][C] 0.2142[/C][C] 0.8929[/C][/ROW]
[ROW][C]12[/C][C] 0.0645[/C][C] 0.129[/C][C] 0.9355[/C][/ROW]
[ROW][C]13[/C][C] 0.439[/C][C] 0.878[/C][C] 0.561[/C][/ROW]
[ROW][C]14[/C][C] 0.4957[/C][C] 0.9914[/C][C] 0.5043[/C][/ROW]
[ROW][C]15[/C][C] 0.45[/C][C] 0.9001[/C][C] 0.55[/C][/ROW]
[ROW][C]16[/C][C] 0.3728[/C][C] 0.7455[/C][C] 0.6272[/C][/ROW]
[ROW][C]17[/C][C] 0.3022[/C][C] 0.6045[/C][C] 0.6978[/C][/ROW]
[ROW][C]18[/C][C] 0.7986[/C][C] 0.4028[/C][C] 0.2014[/C][/ROW]
[ROW][C]19[/C][C] 0.8052[/C][C] 0.3897[/C][C] 0.1948[/C][/ROW]
[ROW][C]20[/C][C] 0.7561[/C][C] 0.4878[/C][C] 0.2439[/C][/ROW]
[ROW][C]21[/C][C] 0.699[/C][C] 0.602[/C][C] 0.301[/C][/ROW]
[ROW][C]22[/C][C] 0.6866[/C][C] 0.6267[/C][C] 0.3134[/C][/ROW]
[ROW][C]23[/C][C] 0.6413[/C][C] 0.7173[/C][C] 0.3587[/C][/ROW]
[ROW][C]24[/C][C] 0.6676[/C][C] 0.6649[/C][C] 0.3324[/C][/ROW]
[ROW][C]25[/C][C] 0.6059[/C][C] 0.7882[/C][C] 0.3941[/C][/ROW]
[ROW][C]26[/C][C] 0.5868[/C][C] 0.8264[/C][C] 0.4132[/C][/ROW]
[ROW][C]27[/C][C] 0.5797[/C][C] 0.8407[/C][C] 0.4203[/C][/ROW]
[ROW][C]28[/C][C] 0.5283[/C][C] 0.9434[/C][C] 0.4717[/C][/ROW]
[ROW][C]29[/C][C] 0.5057[/C][C] 0.9886[/C][C] 0.4943[/C][/ROW]
[ROW][C]30[/C][C] 0.4499[/C][C] 0.8998[/C][C] 0.5501[/C][/ROW]
[ROW][C]31[/C][C] 0.4409[/C][C] 0.8818[/C][C] 0.5591[/C][/ROW]
[ROW][C]32[/C][C] 0.3988[/C][C] 0.7976[/C][C] 0.6012[/C][/ROW]
[ROW][C]33[/C][C] 0.4548[/C][C] 0.9095[/C][C] 0.5452[/C][/ROW]
[ROW][C]34[/C][C] 0.4975[/C][C] 0.995[/C][C] 0.5025[/C][/ROW]
[ROW][C]35[/C][C] 0.4714[/C][C] 0.9429[/C][C] 0.5286[/C][/ROW]
[ROW][C]36[/C][C] 0.4194[/C][C] 0.8389[/C][C] 0.5806[/C][/ROW]
[ROW][C]37[/C][C] 0.3765[/C][C] 0.7531[/C][C] 0.6235[/C][/ROW]
[ROW][C]38[/C][C] 0.3587[/C][C] 0.7174[/C][C] 0.6413[/C][/ROW]
[ROW][C]39[/C][C] 0.3322[/C][C] 0.6645[/C][C] 0.6677[/C][/ROW]
[ROW][C]40[/C][C] 0.2934[/C][C] 0.5869[/C][C] 0.7066[/C][/ROW]
[ROW][C]41[/C][C] 0.2676[/C][C] 0.5353[/C][C] 0.7324[/C][/ROW]
[ROW][C]42[/C][C] 0.2252[/C][C] 0.4503[/C][C] 0.7748[/C][/ROW]
[ROW][C]43[/C][C] 0.1979[/C][C] 0.3959[/C][C] 0.8021[/C][/ROW]
[ROW][C]44[/C][C] 0.19[/C][C] 0.3799[/C][C] 0.81[/C][/ROW]
[ROW][C]45[/C][C] 0.1625[/C][C] 0.325[/C][C] 0.8375[/C][/ROW]
[ROW][C]46[/C][C] 0.135[/C][C] 0.2699[/C][C] 0.865[/C][/ROW]
[ROW][C]47[/C][C] 0.1291[/C][C] 0.2583[/C][C] 0.8709[/C][/ROW]
[ROW][C]48[/C][C] 0.1085[/C][C] 0.217[/C][C] 0.8915[/C][/ROW]
[ROW][C]49[/C][C] 0.4961[/C][C] 0.9922[/C][C] 0.5039[/C][/ROW]
[ROW][C]50[/C][C] 0.4684[/C][C] 0.9368[/C][C] 0.5316[/C][/ROW]
[ROW][C]51[/C][C] 0.4625[/C][C] 0.9251[/C][C] 0.5375[/C][/ROW]
[ROW][C]52[/C][C] 0.4158[/C][C] 0.8317[/C][C] 0.5842[/C][/ROW]
[ROW][C]53[/C][C] 0.6013[/C][C] 0.7975[/C][C] 0.3987[/C][/ROW]
[ROW][C]54[/C][C] 0.5579[/C][C] 0.8843[/C][C] 0.4421[/C][/ROW]
[ROW][C]55[/C][C] 0.527[/C][C] 0.946[/C][C] 0.473[/C][/ROW]
[ROW][C]56[/C][C] 0.4845[/C][C] 0.9689[/C][C] 0.5155[/C][/ROW]
[ROW][C]57[/C][C] 0.7326[/C][C] 0.5348[/C][C] 0.2674[/C][/ROW]
[ROW][C]58[/C][C] 0.6922[/C][C] 0.6157[/C][C] 0.3078[/C][/ROW]
[ROW][C]59[/C][C] 0.7948[/C][C] 0.4103[/C][C] 0.2052[/C][/ROW]
[ROW][C]60[/C][C] 0.7679[/C][C] 0.4642[/C][C] 0.2321[/C][/ROW]
[ROW][C]61[/C][C] 0.7856[/C][C] 0.4288[/C][C] 0.2144[/C][/ROW]
[ROW][C]62[/C][C] 0.7509[/C][C] 0.4982[/C][C] 0.2491[/C][/ROW]
[ROW][C]63[/C][C] 0.7138[/C][C] 0.5724[/C][C] 0.2862[/C][/ROW]
[ROW][C]64[/C][C] 0.682[/C][C] 0.6359[/C][C] 0.318[/C][/ROW]
[ROW][C]65[/C][C] 0.6844[/C][C] 0.6312[/C][C] 0.3156[/C][/ROW]
[ROW][C]66[/C][C] 0.6721[/C][C] 0.6558[/C][C] 0.3279[/C][/ROW]
[ROW][C]67[/C][C] 0.6394[/C][C] 0.7212[/C][C] 0.3606[/C][/ROW]
[ROW][C]68[/C][C] 0.6475[/C][C] 0.7051[/C][C] 0.3525[/C][/ROW]
[ROW][C]69[/C][C] 0.7519[/C][C] 0.4961[/C][C] 0.2481[/C][/ROW]
[ROW][C]70[/C][C] 0.7388[/C][C] 0.5224[/C][C] 0.2612[/C][/ROW]
[ROW][C]71[/C][C] 0.72[/C][C] 0.56[/C][C] 0.28[/C][/ROW]
[ROW][C]72[/C][C] 0.6952[/C][C] 0.6097[/C][C] 0.3048[/C][/ROW]
[ROW][C]73[/C][C] 0.7571[/C][C] 0.4859[/C][C] 0.2429[/C][/ROW]
[ROW][C]74[/C][C] 0.7416[/C][C] 0.5168[/C][C] 0.2584[/C][/ROW]
[ROW][C]75[/C][C] 0.7125[/C][C] 0.575[/C][C] 0.2875[/C][/ROW]
[ROW][C]76[/C][C] 0.6827[/C][C] 0.6345[/C][C] 0.3173[/C][/ROW]
[ROW][C]77[/C][C] 0.6732[/C][C] 0.6537[/C][C] 0.3268[/C][/ROW]
[ROW][C]78[/C][C] 0.6391[/C][C] 0.7218[/C][C] 0.3609[/C][/ROW]
[ROW][C]79[/C][C] 0.6041[/C][C] 0.7917[/C][C] 0.3959[/C][/ROW]
[ROW][C]80[/C][C] 0.5908[/C][C] 0.8185[/C][C] 0.4092[/C][/ROW]
[ROW][C]81[/C][C] 0.5634[/C][C] 0.8731[/C][C] 0.4366[/C][/ROW]
[ROW][C]82[/C][C] 0.6082[/C][C] 0.7836[/C][C] 0.3918[/C][/ROW]
[ROW][C]83[/C][C] 0.5726[/C][C] 0.8547[/C][C] 0.4274[/C][/ROW]
[ROW][C]84[/C][C] 0.6404[/C][C] 0.7191[/C][C] 0.3596[/C][/ROW]
[ROW][C]85[/C][C] 0.7494[/C][C] 0.5012[/C][C] 0.2506[/C][/ROW]
[ROW][C]86[/C][C] 0.727[/C][C] 0.5459[/C][C] 0.273[/C][/ROW]
[ROW][C]87[/C][C] 0.6892[/C][C] 0.6216[/C][C] 0.3108[/C][/ROW]
[ROW][C]88[/C][C] 0.7106[/C][C] 0.5788[/C][C] 0.2894[/C][/ROW]
[ROW][C]89[/C][C] 0.729[/C][C] 0.542[/C][C] 0.271[/C][/ROW]
[ROW][C]90[/C][C] 0.7719[/C][C] 0.4562[/C][C] 0.2281[/C][/ROW]
[ROW][C]91[/C][C] 0.7429[/C][C] 0.5143[/C][C] 0.2571[/C][/ROW]
[ROW][C]92[/C][C] 0.7117[/C][C] 0.5765[/C][C] 0.2883[/C][/ROW]
[ROW][C]93[/C][C] 0.688[/C][C] 0.6239[/C][C] 0.312[/C][/ROW]
[ROW][C]94[/C][C] 0.7158[/C][C] 0.5684[/C][C] 0.2842[/C][/ROW]
[ROW][C]95[/C][C] 0.6922[/C][C] 0.6155[/C][C] 0.3078[/C][/ROW]
[ROW][C]96[/C][C] 0.7182[/C][C] 0.5636[/C][C] 0.2818[/C][/ROW]
[ROW][C]97[/C][C] 0.8206[/C][C] 0.3589[/C][C] 0.1794[/C][/ROW]
[ROW][C]98[/C][C] 0.8101[/C][C] 0.3798[/C][C] 0.1899[/C][/ROW]
[ROW][C]99[/C][C] 0.8316[/C][C] 0.3367[/C][C] 0.1684[/C][/ROW]
[ROW][C]100[/C][C] 0.9016[/C][C] 0.1968[/C][C] 0.0984[/C][/ROW]
[ROW][C]101[/C][C] 0.8896[/C][C] 0.2208[/C][C] 0.1104[/C][/ROW]
[ROW][C]102[/C][C] 0.8663[/C][C] 0.2673[/C][C] 0.1337[/C][/ROW]
[ROW][C]103[/C][C] 0.8477[/C][C] 0.3045[/C][C] 0.1523[/C][/ROW]
[ROW][C]104[/C][C] 0.8435[/C][C] 0.313[/C][C] 0.1565[/C][/ROW]
[ROW][C]105[/C][C] 0.8289[/C][C] 0.3422[/C][C] 0.1711[/C][/ROW]
[ROW][C]106[/C][C] 0.8083[/C][C] 0.3834[/C][C] 0.1917[/C][/ROW]
[ROW][C]107[/C][C] 0.7852[/C][C] 0.4296[/C][C] 0.2148[/C][/ROW]
[ROW][C]108[/C][C] 0.7664[/C][C] 0.4672[/C][C] 0.2336[/C][/ROW]
[ROW][C]109[/C][C] 0.7425[/C][C] 0.515[/C][C] 0.2575[/C][/ROW]
[ROW][C]110[/C][C] 0.7384[/C][C] 0.5232[/C][C] 0.2616[/C][/ROW]
[ROW][C]111[/C][C] 0.7038[/C][C] 0.5924[/C][C] 0.2962[/C][/ROW]
[ROW][C]112[/C][C] 0.7861[/C][C] 0.4278[/C][C] 0.2139[/C][/ROW]
[ROW][C]113[/C][C] 0.7553[/C][C] 0.4894[/C][C] 0.2447[/C][/ROW]
[ROW][C]114[/C][C] 0.7661[/C][C] 0.4677[/C][C] 0.2339[/C][/ROW]
[ROW][C]115[/C][C] 0.8272[/C][C] 0.3456[/C][C] 0.1728[/C][/ROW]
[ROW][C]116[/C][C] 0.7948[/C][C] 0.4103[/C][C] 0.2052[/C][/ROW]
[ROW][C]117[/C][C] 0.8318[/C][C] 0.3364[/C][C] 0.1682[/C][/ROW]
[ROW][C]118[/C][C] 0.9199[/C][C] 0.1602[/C][C] 0.0801[/C][/ROW]
[ROW][C]119[/C][C] 0.9[/C][C] 0.2[/C][C] 0.09999[/C][/ROW]
[ROW][C]120[/C][C] 0.9002[/C][C] 0.1997[/C][C] 0.09984[/C][/ROW]
[ROW][C]121[/C][C] 0.8797[/C][C] 0.2407[/C][C] 0.1203[/C][/ROW]
[ROW][C]122[/C][C] 0.8523[/C][C] 0.2953[/C][C] 0.1477[/C][/ROW]
[ROW][C]123[/C][C] 0.8208[/C][C] 0.3584[/C][C] 0.1792[/C][/ROW]
[ROW][C]124[/C][C] 0.8103[/C][C] 0.3794[/C][C] 0.1897[/C][/ROW]
[ROW][C]125[/C][C] 0.8492[/C][C] 0.3016[/C][C] 0.1508[/C][/ROW]
[ROW][C]126[/C][C] 0.8471[/C][C] 0.3059[/C][C] 0.1529[/C][/ROW]
[ROW][C]127[/C][C] 0.8229[/C][C] 0.3542[/C][C] 0.1771[/C][/ROW]
[ROW][C]128[/C][C] 0.806[/C][C] 0.388[/C][C] 0.194[/C][/ROW]
[ROW][C]129[/C][C] 0.7696[/C][C] 0.4608[/C][C] 0.2304[/C][/ROW]
[ROW][C]130[/C][C] 0.7344[/C][C] 0.5313[/C][C] 0.2656[/C][/ROW]
[ROW][C]131[/C][C] 0.6914[/C][C] 0.6172[/C][C] 0.3086[/C][/ROW]
[ROW][C]132[/C][C] 0.6586[/C][C] 0.6828[/C][C] 0.3414[/C][/ROW]
[ROW][C]133[/C][C] 0.7076[/C][C] 0.5847[/C][C] 0.2924[/C][/ROW]
[ROW][C]134[/C][C] 0.7391[/C][C] 0.5218[/C][C] 0.2609[/C][/ROW]
[ROW][C]135[/C][C] 0.9712[/C][C] 0.05769[/C][C] 0.02885[/C][/ROW]
[ROW][C]136[/C][C] 0.9719[/C][C] 0.05611[/C][C] 0.02805[/C][/ROW]
[ROW][C]137[/C][C] 0.9877[/C][C] 0.02463[/C][C] 0.01232[/C][/ROW]
[ROW][C]138[/C][C] 0.9822[/C][C] 0.03564[/C][C] 0.01782[/C][/ROW]
[ROW][C]139[/C][C] 0.9739[/C][C] 0.05229[/C][C] 0.02614[/C][/ROW]
[ROW][C]140[/C][C] 0.964[/C][C] 0.07201[/C][C] 0.036[/C][/ROW]
[ROW][C]141[/C][C] 0.9522[/C][C] 0.09556[/C][C] 0.04778[/C][/ROW]
[ROW][C]142[/C][C] 0.9386[/C][C] 0.1227[/C][C] 0.06136[/C][/ROW]
[ROW][C]143[/C][C] 0.9226[/C][C] 0.1547[/C][C] 0.07736[/C][/ROW]
[ROW][C]144[/C][C] 0.9019[/C][C] 0.1963[/C][C] 0.09813[/C][/ROW]
[ROW][C]145[/C][C] 0.8798[/C][C] 0.2404[/C][C] 0.1202[/C][/ROW]
[ROW][C]146[/C][C] 0.8442[/C][C] 0.3116[/C][C] 0.1558[/C][/ROW]
[ROW][C]147[/C][C] 0.8082[/C][C] 0.3836[/C][C] 0.1918[/C][/ROW]
[ROW][C]148[/C][C] 0.7766[/C][C] 0.4468[/C][C] 0.2234[/C][/ROW]
[ROW][C]149[/C][C] 0.8596[/C][C] 0.2808[/C][C] 0.1404[/C][/ROW]
[ROW][C]150[/C][C] 0.8159[/C][C] 0.3682[/C][C] 0.1841[/C][/ROW]
[ROW][C]151[/C][C] 0.7704[/C][C] 0.4592[/C][C] 0.2296[/C][/ROW]
[ROW][C]152[/C][C] 0.8144[/C][C] 0.3712[/C][C] 0.1856[/C][/ROW]
[ROW][C]153[/C][C] 0.7378[/C][C] 0.5245[/C][C] 0.2622[/C][/ROW]
[ROW][C]154[/C][C] 0.6767[/C][C] 0.6467[/C][C] 0.3233[/C][/ROW]
[ROW][C]155[/C][C] 0.5799[/C][C] 0.8402[/C][C] 0.4201[/C][/ROW]
[ROW][C]156[/C][C] 0.7383[/C][C] 0.5233[/C][C] 0.2617[/C][/ROW]
[ROW][C]157[/C][C] 0.7[/C][C] 0.6[/C][C] 0.3[/C][/ROW]
[ROW][C]158[/C][C] 0.5899[/C][C] 0.8202[/C][C] 0.4101[/C][/ROW]
[ROW][C]159[/C][C] 0.601[/C][C] 0.798[/C][C] 0.399[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299572&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299572&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.03743 0.07487 0.9626
8 0.1054 0.2108 0.8946
9 0.09201 0.184 0.908
10 0.04313 0.08626 0.9569
11 0.1071 0.2142 0.8929
12 0.0645 0.129 0.9355
13 0.439 0.878 0.561
14 0.4957 0.9914 0.5043
15 0.45 0.9001 0.55
16 0.3728 0.7455 0.6272
17 0.3022 0.6045 0.6978
18 0.7986 0.4028 0.2014
19 0.8052 0.3897 0.1948
20 0.7561 0.4878 0.2439
21 0.699 0.602 0.301
22 0.6866 0.6267 0.3134
23 0.6413 0.7173 0.3587
24 0.6676 0.6649 0.3324
25 0.6059 0.7882 0.3941
26 0.5868 0.8264 0.4132
27 0.5797 0.8407 0.4203
28 0.5283 0.9434 0.4717
29 0.5057 0.9886 0.4943
30 0.4499 0.8998 0.5501
31 0.4409 0.8818 0.5591
32 0.3988 0.7976 0.6012
33 0.4548 0.9095 0.5452
34 0.4975 0.995 0.5025
35 0.4714 0.9429 0.5286
36 0.4194 0.8389 0.5806
37 0.3765 0.7531 0.6235
38 0.3587 0.7174 0.6413
39 0.3322 0.6645 0.6677
40 0.2934 0.5869 0.7066
41 0.2676 0.5353 0.7324
42 0.2252 0.4503 0.7748
43 0.1979 0.3959 0.8021
44 0.19 0.3799 0.81
45 0.1625 0.325 0.8375
46 0.135 0.2699 0.865
47 0.1291 0.2583 0.8709
48 0.1085 0.217 0.8915
49 0.4961 0.9922 0.5039
50 0.4684 0.9368 0.5316
51 0.4625 0.9251 0.5375
52 0.4158 0.8317 0.5842
53 0.6013 0.7975 0.3987
54 0.5579 0.8843 0.4421
55 0.527 0.946 0.473
56 0.4845 0.9689 0.5155
57 0.7326 0.5348 0.2674
58 0.6922 0.6157 0.3078
59 0.7948 0.4103 0.2052
60 0.7679 0.4642 0.2321
61 0.7856 0.4288 0.2144
62 0.7509 0.4982 0.2491
63 0.7138 0.5724 0.2862
64 0.682 0.6359 0.318
65 0.6844 0.6312 0.3156
66 0.6721 0.6558 0.3279
67 0.6394 0.7212 0.3606
68 0.6475 0.7051 0.3525
69 0.7519 0.4961 0.2481
70 0.7388 0.5224 0.2612
71 0.72 0.56 0.28
72 0.6952 0.6097 0.3048
73 0.7571 0.4859 0.2429
74 0.7416 0.5168 0.2584
75 0.7125 0.575 0.2875
76 0.6827 0.6345 0.3173
77 0.6732 0.6537 0.3268
78 0.6391 0.7218 0.3609
79 0.6041 0.7917 0.3959
80 0.5908 0.8185 0.4092
81 0.5634 0.8731 0.4366
82 0.6082 0.7836 0.3918
83 0.5726 0.8547 0.4274
84 0.6404 0.7191 0.3596
85 0.7494 0.5012 0.2506
86 0.727 0.5459 0.273
87 0.6892 0.6216 0.3108
88 0.7106 0.5788 0.2894
89 0.729 0.542 0.271
90 0.7719 0.4562 0.2281
91 0.7429 0.5143 0.2571
92 0.7117 0.5765 0.2883
93 0.688 0.6239 0.312
94 0.7158 0.5684 0.2842
95 0.6922 0.6155 0.3078
96 0.7182 0.5636 0.2818
97 0.8206 0.3589 0.1794
98 0.8101 0.3798 0.1899
99 0.8316 0.3367 0.1684
100 0.9016 0.1968 0.0984
101 0.8896 0.2208 0.1104
102 0.8663 0.2673 0.1337
103 0.8477 0.3045 0.1523
104 0.8435 0.313 0.1565
105 0.8289 0.3422 0.1711
106 0.8083 0.3834 0.1917
107 0.7852 0.4296 0.2148
108 0.7664 0.4672 0.2336
109 0.7425 0.515 0.2575
110 0.7384 0.5232 0.2616
111 0.7038 0.5924 0.2962
112 0.7861 0.4278 0.2139
113 0.7553 0.4894 0.2447
114 0.7661 0.4677 0.2339
115 0.8272 0.3456 0.1728
116 0.7948 0.4103 0.2052
117 0.8318 0.3364 0.1682
118 0.9199 0.1602 0.0801
119 0.9 0.2 0.09999
120 0.9002 0.1997 0.09984
121 0.8797 0.2407 0.1203
122 0.8523 0.2953 0.1477
123 0.8208 0.3584 0.1792
124 0.8103 0.3794 0.1897
125 0.8492 0.3016 0.1508
126 0.8471 0.3059 0.1529
127 0.8229 0.3542 0.1771
128 0.806 0.388 0.194
129 0.7696 0.4608 0.2304
130 0.7344 0.5313 0.2656
131 0.6914 0.6172 0.3086
132 0.6586 0.6828 0.3414
133 0.7076 0.5847 0.2924
134 0.7391 0.5218 0.2609
135 0.9712 0.05769 0.02885
136 0.9719 0.05611 0.02805
137 0.9877 0.02463 0.01232
138 0.9822 0.03564 0.01782
139 0.9739 0.05229 0.02614
140 0.964 0.07201 0.036
141 0.9522 0.09556 0.04778
142 0.9386 0.1227 0.06136
143 0.9226 0.1547 0.07736
144 0.9019 0.1963 0.09813
145 0.8798 0.2404 0.1202
146 0.8442 0.3116 0.1558
147 0.8082 0.3836 0.1918
148 0.7766 0.4468 0.2234
149 0.8596 0.2808 0.1404
150 0.8159 0.3682 0.1841
151 0.7704 0.4592 0.2296
152 0.8144 0.3712 0.1856
153 0.7378 0.5245 0.2622
154 0.6767 0.6467 0.3233
155 0.5799 0.8402 0.4201
156 0.7383 0.5233 0.2617
157 0.7 0.6 0.3
158 0.5899 0.8202 0.4101
159 0.601 0.798 0.399







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level20.0130719OK
10% type I error level90.0588235OK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 2 & 0.0130719 & OK \tabularnewline
10% type I error level & 9 & 0.0588235 & OK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299572&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]2[/C][C]0.0130719[/C][C]OK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]9[/C][C]0.0588235[/C][C]OK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299572&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299572&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level20.0130719OK
10% type I error level90.0588235OK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8983, df1 = 2, df2 = 160, p-value = 0.1532
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.285, df1 = 6, df2 = 156, p-value = 0.03841
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.88708, df1 = 2, df2 = 160, p-value = 0.4139

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8983, df1 = 2, df2 = 160, p-value = 0.1532
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.285, df1 = 6, df2 = 156, p-value = 0.03841
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.88708, df1 = 2, df2 = 160, p-value = 0.4139
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299572&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8983, df1 = 2, df2 = 160, p-value = 0.1532
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.285, df1 = 6, df2 = 156, p-value = 0.03841
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.88708, df1 = 2, df2 = 160, p-value = 0.4139
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299572&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299572&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 1.8983, df1 = 2, df2 = 160, p-value = 0.1532
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 2.285, df1 = 6, df2 = 156, p-value = 0.03841
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 0.88708, df1 = 2, df2 = 160, p-value = 0.4139







Variance Inflation Factors (Multicollinearity)
> vif
     SN1      SN2      SN4 
1.118579 1.086694 1.111108 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     SN1      SN2      SN4 
1.118579 1.086694 1.111108 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299572&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     SN1      SN2      SN4 
1.118579 1.086694 1.111108 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299572&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299572&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     SN1      SN2      SN4 
1.118579 1.086694 1.111108 



Parameters (Session):
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = ; par5 = ;
R code (references can be found in the software module):
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')