Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimabackwardselection.wasp
Title produced by softwareARIMA Backward Selection
Date of computationWed, 14 Dec 2016 16:33:04 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t148172982717zxee63ja4htao.htm/, Retrieved Fri, 01 Nov 2024 03:37:51 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299570, Retrieved Fri, 01 Nov 2024 03:37:51 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact94
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Backward Selection] [] [2016-12-14 15:33:04] [85f5800284aab30c091766186b093bb4] [Current]
Feedback Forum

Post a new message
Dataseries X:
1389
1398.6
1459
1545.2
1629.6
1675.2
1797.2
1739.2
1925.4
1908.4
2256.4
2217.6
2471.2
2634.4
2729.8
2752.6
3436.8
3579.8
3559.8
3234
3872.2
3996.8
4142.8
3992.2
4846.8
4757.4
4483.2
5033.4
5403.8
5280.8
5217
5422.2
6238
6254.8
6429
5942.4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299570&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299570&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299570&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.1759-0.214-0.0641-0.18961.1765-0.199-0.7432
(p-val)(0.8534 )(0.5749 )(0.827 )(0.8429 )(0.0042 )(0.5667 )(0.048 )
Estimates ( 2 )0-0.1537-0.0163-0.35751.1903-0.2127-0.7427
(p-val)(NA )(0.4561 )(0.9341 )(0.0764 )(0.0034 )(0.5351 )(0.0462 )
Estimates ( 3 )0-0.15310-0.35991.1829-0.2058-0.7393
(p-val)(NA )(0.4581 )(NA )(0.0723 )(0.0025 )(0.5325 )(0.0424 )
Estimates ( 4 )0-0.1780-0.35740.9560-0.5866
(p-val)(NA )(0.3963 )(NA )(0.0716 )(0 )(NA )(0.0465 )
Estimates ( 5 )000-0.43120.93330-0.4973
(p-val)(NA )(NA )(NA )(0.0251 )(0 )(NA )(0.0783 )
Estimates ( 6 )000-0.39090.743400
(p-val)(NA )(NA )(NA )(0.0752 )(0 )(NA )(NA )
Estimates ( 7 )00000.613300
(p-val)(NA )(NA )(NA )(NA )(1e-04 )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )

\begin{tabular}{lllllllll}
\hline
ARIMA Parameter Estimation and Backward Selection \tabularnewline
Iteration & ar1 & ar2 & ar3 & ma1 & sar1 & sar2 & sma1 \tabularnewline
Estimates ( 1 ) & -0.1759 & -0.214 & -0.0641 & -0.1896 & 1.1765 & -0.199 & -0.7432 \tabularnewline
(p-val) & (0.8534 ) & (0.5749 ) & (0.827 ) & (0.8429 ) & (0.0042 ) & (0.5667 ) & (0.048 ) \tabularnewline
Estimates ( 2 ) & 0 & -0.1537 & -0.0163 & -0.3575 & 1.1903 & -0.2127 & -0.7427 \tabularnewline
(p-val) & (NA ) & (0.4561 ) & (0.9341 ) & (0.0764 ) & (0.0034 ) & (0.5351 ) & (0.0462 ) \tabularnewline
Estimates ( 3 ) & 0 & -0.1531 & 0 & -0.3599 & 1.1829 & -0.2058 & -0.7393 \tabularnewline
(p-val) & (NA ) & (0.4581 ) & (NA ) & (0.0723 ) & (0.0025 ) & (0.5325 ) & (0.0424 ) \tabularnewline
Estimates ( 4 ) & 0 & -0.178 & 0 & -0.3574 & 0.956 & 0 & -0.5866 \tabularnewline
(p-val) & (NA ) & (0.3963 ) & (NA ) & (0.0716 ) & (0 ) & (NA ) & (0.0465 ) \tabularnewline
Estimates ( 5 ) & 0 & 0 & 0 & -0.4312 & 0.9333 & 0 & -0.4973 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (0.0251 ) & (0 ) & (NA ) & (0.0783 ) \tabularnewline
Estimates ( 6 ) & 0 & 0 & 0 & -0.3909 & 0.7434 & 0 & 0 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (0.0752 ) & (0 ) & (NA ) & (NA ) \tabularnewline
Estimates ( 7 ) & 0 & 0 & 0 & 0 & 0.6133 & 0 & 0 \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (1e-04 ) & (NA ) & (NA ) \tabularnewline
Estimates ( 8 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 9 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 10 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 11 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 12 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
Estimates ( 13 ) & NA & NA & NA & NA & NA & NA & NA \tabularnewline
(p-val) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) & (NA ) \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299570&T=1

[TABLE]
[ROW][C]ARIMA Parameter Estimation and Backward Selection[/C][/ROW]
[ROW][C]Iteration[/C][C]ar1[/C][C]ar2[/C][C]ar3[/C][C]ma1[/C][C]sar1[/C][C]sar2[/C][C]sma1[/C][/ROW]
[ROW][C]Estimates ( 1 )[/C][C]-0.1759[/C][C]-0.214[/C][C]-0.0641[/C][C]-0.1896[/C][C]1.1765[/C][C]-0.199[/C][C]-0.7432[/C][/ROW]
[ROW][C](p-val)[/C][C](0.8534 )[/C][C](0.5749 )[/C][C](0.827 )[/C][C](0.8429 )[/C][C](0.0042 )[/C][C](0.5667 )[/C][C](0.048 )[/C][/ROW]
[ROW][C]Estimates ( 2 )[/C][C]0[/C][C]-0.1537[/C][C]-0.0163[/C][C]-0.3575[/C][C]1.1903[/C][C]-0.2127[/C][C]-0.7427[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.4561 )[/C][C](0.9341 )[/C][C](0.0764 )[/C][C](0.0034 )[/C][C](0.5351 )[/C][C](0.0462 )[/C][/ROW]
[ROW][C]Estimates ( 3 )[/C][C]0[/C][C]-0.1531[/C][C]0[/C][C]-0.3599[/C][C]1.1829[/C][C]-0.2058[/C][C]-0.7393[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.4581 )[/C][C](NA )[/C][C](0.0723 )[/C][C](0.0025 )[/C][C](0.5325 )[/C][C](0.0424 )[/C][/ROW]
[ROW][C]Estimates ( 4 )[/C][C]0[/C][C]-0.178[/C][C]0[/C][C]-0.3574[/C][C]0.956[/C][C]0[/C][C]-0.5866[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](0.3963 )[/C][C](NA )[/C][C](0.0716 )[/C][C](0 )[/C][C](NA )[/C][C](0.0465 )[/C][/ROW]
[ROW][C]Estimates ( 5 )[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.4312[/C][C]0.9333[/C][C]0[/C][C]-0.4973[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0.0251 )[/C][C](0 )[/C][C](NA )[/C][C](0.0783 )[/C][/ROW]
[ROW][C]Estimates ( 6 )[/C][C]0[/C][C]0[/C][C]0[/C][C]-0.3909[/C][C]0.7434[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](0.0752 )[/C][C](0 )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 7 )[/C][C]0[/C][C]0[/C][C]0[/C][C]0[/C][C]0.6133[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](1e-04 )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 8 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 9 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 10 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 11 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 12 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[ROW][C]Estimates ( 13 )[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C](p-val)[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][C](NA )[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299570&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299570&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ARIMA Parameter Estimation and Backward Selection
Iterationar1ar2ar3ma1sar1sar2sma1
Estimates ( 1 )-0.1759-0.214-0.0641-0.18961.1765-0.199-0.7432
(p-val)(0.8534 )(0.5749 )(0.827 )(0.8429 )(0.0042 )(0.5667 )(0.048 )
Estimates ( 2 )0-0.1537-0.0163-0.35751.1903-0.2127-0.7427
(p-val)(NA )(0.4561 )(0.9341 )(0.0764 )(0.0034 )(0.5351 )(0.0462 )
Estimates ( 3 )0-0.15310-0.35991.1829-0.2058-0.7393
(p-val)(NA )(0.4581 )(NA )(0.0723 )(0.0025 )(0.5325 )(0.0424 )
Estimates ( 4 )0-0.1780-0.35740.9560-0.5866
(p-val)(NA )(0.3963 )(NA )(0.0716 )(0 )(NA )(0.0465 )
Estimates ( 5 )000-0.43120.93330-0.4973
(p-val)(NA )(NA )(NA )(0.0251 )(0 )(NA )(0.0783 )
Estimates ( 6 )000-0.39090.743400
(p-val)(NA )(NA )(NA )(0.0752 )(0 )(NA )(NA )
Estimates ( 7 )00000.613300
(p-val)(NA )(NA )(NA )(NA )(1e-04 )(NA )(NA )
Estimates ( 8 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 9 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 10 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 11 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 12 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )
Estimates ( 13 )NANANANANANANA
(p-val)(NA )(NA )(NA )(NA )(NA )(NA )(NA )







Estimated ARIMA Residuals
Value
1.38899821065744
5.98156941497415
42.1545636346628
73.860558533653
99.5953394059465
63.7452651194519
100.585570630014
-82.9035133295089
91.0717810698727
-15.3038736581215
251.328698080598
102.550497259651
155.27165970194
236.527749390936
-70.8351231274015
23.9548311618666
505.049234417753
219.092796526297
-5.27929409975379
-344.811924225905
-5.17719847822981
16.2771262835781
167.229244586358
156.948553978476
441.539270038009
-9.43786982943493
-386.418289987939
511.110057269787
-65.0914762092143
-81.9865709347141
107.981036120765
-161.585647824417
477.303870651619
294.795223109913
336.851955184175
-507.47096372942

\begin{tabular}{lllllllll}
\hline
Estimated ARIMA Residuals \tabularnewline
Value \tabularnewline
1.38899821065744 \tabularnewline
5.98156941497415 \tabularnewline
42.1545636346628 \tabularnewline
73.860558533653 \tabularnewline
99.5953394059465 \tabularnewline
63.7452651194519 \tabularnewline
100.585570630014 \tabularnewline
-82.9035133295089 \tabularnewline
91.0717810698727 \tabularnewline
-15.3038736581215 \tabularnewline
251.328698080598 \tabularnewline
102.550497259651 \tabularnewline
155.27165970194 \tabularnewline
236.527749390936 \tabularnewline
-70.8351231274015 \tabularnewline
23.9548311618666 \tabularnewline
505.049234417753 \tabularnewline
219.092796526297 \tabularnewline
-5.27929409975379 \tabularnewline
-344.811924225905 \tabularnewline
-5.17719847822981 \tabularnewline
16.2771262835781 \tabularnewline
167.229244586358 \tabularnewline
156.948553978476 \tabularnewline
441.539270038009 \tabularnewline
-9.43786982943493 \tabularnewline
-386.418289987939 \tabularnewline
511.110057269787 \tabularnewline
-65.0914762092143 \tabularnewline
-81.9865709347141 \tabularnewline
107.981036120765 \tabularnewline
-161.585647824417 \tabularnewline
477.303870651619 \tabularnewline
294.795223109913 \tabularnewline
336.851955184175 \tabularnewline
-507.47096372942 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299570&T=2

[TABLE]
[ROW][C]Estimated ARIMA Residuals[/C][/ROW]
[ROW][C]Value[/C][/ROW]
[ROW][C]1.38899821065744[/C][/ROW]
[ROW][C]5.98156941497415[/C][/ROW]
[ROW][C]42.1545636346628[/C][/ROW]
[ROW][C]73.860558533653[/C][/ROW]
[ROW][C]99.5953394059465[/C][/ROW]
[ROW][C]63.7452651194519[/C][/ROW]
[ROW][C]100.585570630014[/C][/ROW]
[ROW][C]-82.9035133295089[/C][/ROW]
[ROW][C]91.0717810698727[/C][/ROW]
[ROW][C]-15.3038736581215[/C][/ROW]
[ROW][C]251.328698080598[/C][/ROW]
[ROW][C]102.550497259651[/C][/ROW]
[ROW][C]155.27165970194[/C][/ROW]
[ROW][C]236.527749390936[/C][/ROW]
[ROW][C]-70.8351231274015[/C][/ROW]
[ROW][C]23.9548311618666[/C][/ROW]
[ROW][C]505.049234417753[/C][/ROW]
[ROW][C]219.092796526297[/C][/ROW]
[ROW][C]-5.27929409975379[/C][/ROW]
[ROW][C]-344.811924225905[/C][/ROW]
[ROW][C]-5.17719847822981[/C][/ROW]
[ROW][C]16.2771262835781[/C][/ROW]
[ROW][C]167.229244586358[/C][/ROW]
[ROW][C]156.948553978476[/C][/ROW]
[ROW][C]441.539270038009[/C][/ROW]
[ROW][C]-9.43786982943493[/C][/ROW]
[ROW][C]-386.418289987939[/C][/ROW]
[ROW][C]511.110057269787[/C][/ROW]
[ROW][C]-65.0914762092143[/C][/ROW]
[ROW][C]-81.9865709347141[/C][/ROW]
[ROW][C]107.981036120765[/C][/ROW]
[ROW][C]-161.585647824417[/C][/ROW]
[ROW][C]477.303870651619[/C][/ROW]
[ROW][C]294.795223109913[/C][/ROW]
[ROW][C]336.851955184175[/C][/ROW]
[ROW][C]-507.47096372942[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299570&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299570&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated ARIMA Residuals
Value
1.38899821065744
5.98156941497415
42.1545636346628
73.860558533653
99.5953394059465
63.7452651194519
100.585570630014
-82.9035133295089
91.0717810698727
-15.3038736581215
251.328698080598
102.550497259651
155.27165970194
236.527749390936
-70.8351231274015
23.9548311618666
505.049234417753
219.092796526297
-5.27929409975379
-344.811924225905
-5.17719847822981
16.2771262835781
167.229244586358
156.948553978476
441.539270038009
-9.43786982943493
-386.418289987939
511.110057269787
-65.0914762092143
-81.9865709347141
107.981036120765
-161.585647824417
477.303870651619
294.795223109913
336.851955184175
-507.47096372942



Parameters (Session):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 4 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
Parameters (R input):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 4 ; par6 = 3 ; par7 = 1 ; par8 = 2 ; par9 = 1 ;
R code (references can be found in the software module):
library(lattice)
if (par1 == 'TRUE') par1 <- TRUE
if (par1 == 'FALSE') par1 <- FALSE
par2 <- as.numeric(par2) #Box-Cox lambda transformation parameter
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #degree (p) of the non-seasonal AR(p) polynomial
par7 <- as.numeric(par7) #degree (q) of the non-seasonal MA(q) polynomial
par8 <- as.numeric(par8) #degree (P) of the seasonal AR(P) polynomial
par9 <- as.numeric(par9) #degree (Q) of the seasonal MA(Q) polynomial
armaGR <- function(arima.out, names, n){
try1 <- arima.out$coef
try2 <- sqrt(diag(arima.out$var.coef))
try.data.frame <- data.frame(matrix(NA,ncol=4,nrow=length(names)))
dimnames(try.data.frame) <- list(names,c('coef','std','tstat','pv'))
try.data.frame[,1] <- try1
for(i in 1:length(try2)) try.data.frame[which(rownames(try.data.frame)==names(try2)[i]),2] <- try2[i]
try.data.frame[,3] <- try.data.frame[,1] / try.data.frame[,2]
try.data.frame[,4] <- round((1-pt(abs(try.data.frame[,3]),df=n-(length(try2)+1)))*2,5)
vector <- rep(NA,length(names))
vector[is.na(try.data.frame[,4])] <- 0
maxi <- which.max(try.data.frame[,4])
continue <- max(try.data.frame[,4],na.rm=TRUE) > .05
vector[maxi] <- 0
list(summary=try.data.frame,next.vector=vector,continue=continue)
}
arimaSelect <- function(series, order=c(13,0,0), seasonal=list(order=c(2,0,0),period=12), include.mean=F){
nrc <- order[1]+order[3]+seasonal$order[1]+seasonal$order[3]
coeff <- matrix(NA, nrow=nrc*2, ncol=nrc)
pval <- matrix(NA, nrow=nrc*2, ncol=nrc)
mylist <- rep(list(NULL), nrc)
names <- NULL
if(order[1] > 0) names <- paste('ar',1:order[1],sep='')
if(order[3] > 0) names <- c( names , paste('ma',1:order[3],sep='') )
if(seasonal$order[1] > 0) names <- c(names, paste('sar',1:seasonal$order[1],sep=''))
if(seasonal$order[3] > 0) names <- c(names, paste('sma',1:seasonal$order[3],sep=''))
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML')
mylist[[1]] <- arima.out
last.arma <- armaGR(arima.out, names, length(series))
mystop <- FALSE
i <- 1
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- 2
aic <- arima.out$aic
while(!mystop){
mylist[[i]] <- arima.out
arima.out <- arima(series, order=order, seasonal=seasonal, include.mean=include.mean, method='ML', fixed=last.arma$next.vector)
aic <- c(aic, arima.out$aic)
last.arma <- armaGR(arima.out, names, length(series))
mystop <- !last.arma$continue
coeff[i,] <- last.arma[[1]][,1]
pval [i,] <- last.arma[[1]][,4]
i <- i+1
}
list(coeff, pval, mylist, aic=aic)
}
arimaSelectplot <- function(arimaSelect.out,noms,choix){
noms <- names(arimaSelect.out[[3]][[1]]$coef)
coeff <- arimaSelect.out[[1]]
k <- min(which(is.na(coeff[,1])))-1
coeff <- coeff[1:k,]
pval <- arimaSelect.out[[2]][1:k,]
aic <- arimaSelect.out$aic[1:k]
coeff[coeff==0] <- NA
n <- ncol(coeff)
if(missing(choix)) choix <- k
layout(matrix(c(1,1,1,2,
3,3,3,2,
3,3,3,4,
5,6,7,7),nr=4),
widths=c(10,35,45,15),
heights=c(30,30,15,15))
couleurs <- rainbow(75)[1:50]#(50)
ticks <- pretty(coeff)
par(mar=c(1,1,3,1))
plot(aic,k:1-.5,type='o',pch=21,bg='blue',cex=2,axes=F,lty=2,xpd=NA)
points(aic[choix],k-choix+.5,pch=21,cex=4,bg=2,xpd=NA)
title('aic',line=2)
par(mar=c(3,0,0,0))
plot(0,axes=F,xlab='',ylab='',xlim=range(ticks),ylim=c(.1,1))
rect(xleft = min(ticks) + (0:49)/50*(max(ticks)-min(ticks)),
xright = min(ticks) + (1:50)/50*(max(ticks)-min(ticks)),
ytop = rep(1,50),
ybottom= rep(0,50),col=couleurs,border=NA)
axis(1,ticks)
rect(xleft=min(ticks),xright=max(ticks),ytop=1,ybottom=0)
text(mean(coeff,na.rm=T),.5,'coefficients',cex=2,font=2)
par(mar=c(1,1,3,1))
image(1:n,1:k,t(coeff[k:1,]),axes=F,col=couleurs,zlim=range(ticks))
for(i in 1:n) for(j in 1:k) if(!is.na(coeff[j,i])) {
if(pval[j,i]<.01) symb = 'green'
else if( (pval[j,i]<.05) & (pval[j,i]>=.01)) symb = 'orange'
else if( (pval[j,i]<.1) & (pval[j,i]>=.05)) symb = 'red'
else symb = 'black'
polygon(c(i+.5 ,i+.2 ,i+.5 ,i+.5),
c(k-j+0.5,k-j+0.5,k-j+0.8,k-j+0.5),
col=symb)
if(j==choix) {
rect(xleft=i-.5,
xright=i+.5,
ybottom=k-j+1.5,
ytop=k-j+.5,
lwd=4)
text(i,
k-j+1,
round(coeff[j,i],2),
cex=1.2,
font=2)
}
else{
rect(xleft=i-.5,xright=i+.5,ybottom=k-j+1.5,ytop=k-j+.5)
text(i,k-j+1,round(coeff[j,i],2),cex=1.2,font=1)
}
}
axis(3,1:n,noms)
par(mar=c(0.5,0,0,0.5))
plot(0,axes=F,xlab='',ylab='',type='n',xlim=c(0,8),ylim=c(-.2,.8))
cols <- c('green','orange','red','black')
niv <- c('0','0.01','0.05','0.1')
for(i in 0:3){
polygon(c(1+2*i ,1+2*i ,1+2*i-.5 ,1+2*i),
c(.4 ,.7 , .4 , .4),
col=cols[i+1])
text(2*i,0.5,niv[i+1],cex=1.5)
}
text(8,.5,1,cex=1.5)
text(4,0,'p-value',cex=2)
box()
residus <- arimaSelect.out[[3]][[choix]]$res
par(mar=c(1,2,4,1))
acf(residus,main='')
title('acf',line=.5)
par(mar=c(1,2,4,1))
pacf(residus,main='')
title('pacf',line=.5)
par(mar=c(2,2,4,1))
qqnorm(residus,main='')
title('qq-norm',line=.5)
qqline(residus)
residus
}
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
(selection <- arimaSelect(x, order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5)))
bitmap(file='test1.png')
resid <- arimaSelectplot(selection)
dev.off()
resid
bitmap(file='test2.png')
acf(resid,length(resid)/2, main='Residual Autocorrelation Function')
dev.off()
bitmap(file='test3.png')
pacf(resid,length(resid)/2, main='Residual Partial Autocorrelation Function')
dev.off()
bitmap(file='test4.png')
cpgram(resid, main='Residual Cumulative Periodogram')
dev.off()
bitmap(file='test5.png')
hist(resid, main='Residual Histogram', xlab='values of Residuals')
dev.off()
bitmap(file='test6.png')
densityplot(~resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test7.png')
qqnorm(resid, main='Residual Normal Q-Q Plot')
qqline(resid)
dev.off()
ncols <- length(selection[[1]][1,])
nrows <- length(selection[[2]][,1])-1
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ARIMA Parameter Estimation and Backward Selection', ncols+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Iteration', header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,names(selection[[3]][[1]]$coef)[i],header=TRUE)
}
a<-table.row.end(a)
for (j in 1:nrows) {
a<-table.row.start(a)
mydum <- 'Estimates ('
mydum <- paste(mydum,j)
mydum <- paste(mydum,')')
a<-table.element(a,mydum, header=TRUE)
for (i in 1:ncols) {
a<-table.element(a,round(selection[[1]][j,i],4))
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'(p-val)', header=TRUE)
for (i in 1:ncols) {
mydum <- '('
mydum <- paste(mydum,round(selection[[2]][j,i],4),sep='')
mydum <- paste(mydum,')')
a<-table.element(a,mydum)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated ARIMA Residuals', 1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Value', 1,TRUE)
a<-table.row.end(a)
for (i in (par4*par5+par3):length(resid)) {
a<-table.row.start(a)
a<-table.element(a,resid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')