Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationWed, 14 Dec 2016 16:32:34 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481729583oilni5os9f3hmn1.htm/, Retrieved Fri, 01 Nov 2024 03:26:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299567, Retrieved Fri, 01 Nov 2024 03:26:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact87
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [Structural N2477] [2016-12-14 15:32:34] [064355853487111be0140b49d1988237] [Current]
Feedback Forum

Post a new message
Dataseries X:
4150
4300
4300
4450
4500
4400
3950
2150
4350
4550
4600
4250
4350
4400
4300
4350
4350
4400
3850
2300
4300
4350
4350
4200
4150
4450
4300
4350
4300
4350
3900
2250
4300
4450
4400
4250
4250
4300
4450
3900
4350
4500
3800
2450
4400
4500
4500
4400
4450
4600
4700
4700
2950
3750
4050
2550
4600
5000
5100
4900
4950
5000
4950
5100
5250
5200
4300
2650
4950
5200
5350
5150
5350
5550
5400
5450
5450
5200
4400
2650
5100
5200
5300
4900
5200
5300
5250
5150
5050
4900
4150
2800
5100
5250
5200
5000
5150
5250
5250
5350
5450
5300
4300
3000
5300
5400
5550
5350
5500
5750
5750
5700
5800
5800
4600
3150
5500
5750
5950
5600
6100
6250
6150
6050
6300
5950




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time5 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299567&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]5 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299567&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299567&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
141504150000
243004215.855713961822.3926623516278264.24334735405450.391318341639585
343004274.469056301746.4281106684107514.63952822332860.25799699287798
444504356.7305330595611.127375274138675.05851666151210.415118873371314
545004428.6467613086413.878342112180554.34052286042430.370717762982887
644004434.0783829949113.599223680116-31.5697711969275-0.0535381513314505
739504252.609967587888.41443193028102-243.529966270741-1.25073160838092
821503415.30540588762-11.7683244186281-1007.71617487575-5.43773113798423
943503570.42450252205-7.93068341758971728.6997788196661.07311915108593
1045503977.062967959831.53548048428238446.623687363022.66405669946781
1146004308.758746912139.08053008435923190.7219948809842.12020467239079
1242504365.0505293436510.1600541602403-129.4154971153890.303014944143484
1343504409.301438952089.1873183210891-70.21355810279160.242863918438623
1444004423.34706844799.20807131407636-24.78860634920380.0317318338448133
1543004406.031281007588.4559525000504-99.1663411032078-0.155928339893393
1643504371.011598113476.91723648587631-9.97372507164114-0.255070999932599
1743504312.256280140334.7104228357211955.1154488129494-0.399693216219045
1844004245.089400347642.62478963504191174.64882716233-0.450110306940585
1938504015.0967045411-3.15755294617594-99.8823379946654-1.47773535679024
2023003772.06289325769-8.45967013712713-1404.18328287331-1.53280927886982
2143003748.19804870534-8.77526279340049556.177549059555-0.0986307184643678
2243503864.52799288397-6.37588233054309449.8866170606790.801104765211667
2343504005.90453967648-3.8557447830551302.0219607530710.945585567023217
2442004158.67193241275-1.84442044370184-3.427065048414161.00418663352225
2541504206.50522046407-1.56455821866899-70.91057784531480.323890860047163
2644504300.40122197425-0.4489105780481122.4723581635630.610515633191203
2743004340.847786605720.397894273250982-51.94759422659630.252162541704469
2843504330.595356588660.12019016672984422.2308158037739-0.0648342601892283
2943004255.26212493311-1.9459043244880164.9066003716572-0.463962021502771
3043504138.92886282227-4.9465715073652242.192815239486-0.714332273727183
3139004013.10876272959-7.8709456086008-79.7337572038334-0.763449380031305
3222503866.58737082964-10.9433230502711-1577.96223470001-0.881041522357165
3343003830.41062380815-11.456948848838476.650057980426-0.160721229535116
3444503923.60730721647-9.50950606351855497.0546102982020.666770166527391
3544004040.38854220136-7.40289616698006324.1742590385880.804445330478002
3642504156.74212379568-5.5875039370452158.47456132733170.789170956568891
3742504259.36892252019-4.11958777231249-39.8378122270160.691285158949729
3843004254.32662395448-4.134158972966245.9307934216777-0.0058457262901384
3944504327.55342684904-2.61970009348592101.2619337644930.482872956125312
4039004146.79757898028-6.6492663126002-198.649099836069-1.10271165101912
4143504117.70575125067-7.18852212046389238.358210377274-0.139249918040726
4245004119.54817411352-6.97188431288884377.9925786880140.0564698105509761
4338004002.827562612-9.50333940393554-172.672199213774-0.691343420900029
4424503993.18634834247-9.50633959869556-1543.14821704106-0.000872541224946507
4544004000.71844696208-9.15951573826752394.5524878335040.10803636441165
4645004040.88344967684-8.22382976058475445.4057351908690.31285563162479
4745004129.91676199124-6.50185103229377343.0308074781440.616863221525129
4844004243.58261389925-4.48243744507248122.9747803361820.76238622706497
4944504351.95839842147-2.5958834059472266.65481739878880.715543507536626
5046004443.74711333484-0.912752735295797130.1362466360320.595756114375049
5147004476.17326722836-0.257870080856801214.6821808287130.208965181603173
5247004626.656478627342.9538774513559332.28780355108880.940425289596933
5329503963.06649080294-11.9039619231526-831.785306295565-4.15965613634565
5437503597.16144936965-19.8679642608988249.449019233929-2.21768315710602
5540503745.91344947065-16.1430232141075257.8327794535411.06101749133997
5625503903.96834015356-12.4300734799263-1401.954657125271.09949991141133
5746004061.08075009322-8.97458497703418492.0992632815911.07160282664895
5850004300.43407528858-4.14332523578623630.9143697796351.57005021540173
5951004548.234011389780.564755160422386482.0847711119131.59293975219738
6049004712.149315838663.54575979971182142.6668907410261.03278007618371
6149504825.814072537945.5621961719398493.75194940785970.69567576498254
6250004858.528135928966.07597157013561133.9893977921570.171101819585854
6349504783.103984118184.45716065806459189.254701636498-0.511739690955833
6451004704.654428744552.73443024299219418.002749684424-0.519221017293622
6552505131.0008131044611.79675654796343.36802324768362.6525736348922
6652005214.4596201640413.344217928063-34.0513255927220.449597206938378
6743004883.014988666365.96010178194943-488.485839406362-2.16864474450546
6826504596.89860766093-0.165689629988651-1866.61470896368-1.84062891000026
6949504576.46891802246-0.579065536252833379.110077528878-0.127820155024703
7052004642.74931067470.746421218577984538.829631582160.421837358386948
7153504780.520870730633.4004505799118531.7154013957760.864559118532027
7251504912.447025340215.8599525678201202.131693428690.810865713866138
7353505063.272337435598.64257101720704246.7998716183010.914066751857375
7455505211.6273412578911.3718999978569299.9547833079940.879695044580985
7554005263.3613282458712.1809635785737125.5668333526880.253647541088344
7654505276.5007076295912.2006656121597173.2369455819060.00601422043190346
7754505317.4809755350212.8028503692221124.6474097919280.180560854884412
7852005201.3575521476110.086394475451933.9309409601927-0.809662903039658
7944005013.123422924045.92309870802097-558.756637085621-1.24724030261205
8026504813.14602251721.65166660181108-2106.61539828313-1.29640709011494
8151004777.902478031630.898764524125085332.237378037245-0.232441775880988
8252004779.462843856760.912038307031916420.3552412822960.0041688917370335
8353004823.166162566261.75907891318855465.0657203005140.269644007403577
8449004833.198054746021.9217502673180564.52686803296750.0521263833755789
8552004911.570795920553.42781734577202267.4127016507240.481540880025463
8653004966.143966610134.44507150524969319.8091623497550.321890484307557
8752505028.773197588615.61874156663668205.2680088458020.365801428912128
8851505008.053301410755.07984742140176149.162283620572-0.165454015806497
8950504922.497216300253.20584438225224152.320564939352-0.569264956663321
9049004824.993717716831.11391947297084102.591641438417-0.632850414967123
9141504719.34945315878-1.10014007377431-540.082434427015-0.671395041621581
9228004760.11633188521-0.237589270583312-1971.604005584330.263477979470486
9351004776.813552247180.107993555769152318.5369590962070.106614301666666
9452504812.672537620430.830361077474706427.5089212656320.225101915846758
9552004803.649284389830.632812802440561399.057203253752-0.0620434269399973
9650004871.265122711631.97057232599748110.3369801327530.421738665605444
9751504902.397651341352.55355127226979239.594395438690.183570588507038
9852504923.696073309692.93025768003637321.1592341956220.117943196801268
9952504952.70067837163.45837307625969290.1482799107430.163963691176026
10053505015.863431740564.6774128735411317.7732782881310.375264839866713
10154505100.698579178126.32417701284908327.3391185038370.50376478545225
10253005136.134829347236.92400720253915155.8875372080820.183006854307942
10343005052.422611551415.05774135791516-727.573906904932-0.570017174088813
10430005017.509974977284.23772673521803-2006.54620786455-0.251475821384553
10553005009.943522527063.99687340977428293.295515132101-0.074283757919234
10654005002.914863799533.7731918681815400.111099884899-0.0693897347683654
10755505074.537437730245.14346608384842456.8398393272020.42702031914433
10853505159.537535654336.75260288669412168.5443030007360.502574032163778
10955005224.361968142957.92331854585287259.70121540550.365427147736738
11057505326.808871645899.83441152699727397.2584105533590.594655329428442
11157505417.5679093320611.477723008774310.2394385398880.508935451422225
11257005442.7598636287511.7574917772924253.4805941975160.08622595292113
11358005459.2075632582811.8535158035533339.5069254286440.0294866783094576
11458005510.01845533612.6525404178346279.3031693792140.244952050587029
11546005451.8357973823611.2000475767447-832.414683146208-0.445499027373188
11631505341.35766817688.71001098149746-2157.98714978916-0.765437254085252
11755005285.084529361287.38429047726967232.741110527723-0.408844721484369
11857505327.195227913998.09041674289968413.2777726006950.218495297541345
11959505425.609596256629.92223705048199499.6093187804220.568316517743071
12056005475.5190619885310.7321139557436113.5101796847250.251594131324804
12161005647.6872060376214.0024172237334408.0250806698621.01566089585461
12262505778.166061207616.3656992711653439.8855568706650.732697107176012
12361505834.7605302327217.1839352607386304.2076521701910.253013055996822
12460505838.9435124340616.9188105582875214.620931910486-0.0817552060322653
12563005886.6580379827717.5481323932213404.899692243650.193646398002618
12659505798.8677174239115.3931421596193180.010480917966-0.662423402261268

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 4150 & 4150 & 0 & 0 & 0 \tabularnewline
2 & 4300 & 4215.85571396182 & 2.39266235162782 & 64.2433473540545 & 0.391318341639585 \tabularnewline
3 & 4300 & 4274.46905630174 & 6.42811066841075 & 14.6395282233286 & 0.25799699287798 \tabularnewline
4 & 4450 & 4356.73053305956 & 11.1273752741386 & 75.0585166615121 & 0.415118873371314 \tabularnewline
5 & 4500 & 4428.64676130864 & 13.8783421121805 & 54.3405228604243 & 0.370717762982887 \tabularnewline
6 & 4400 & 4434.07838299491 & 13.599223680116 & -31.5697711969275 & -0.0535381513314505 \tabularnewline
7 & 3950 & 4252.60996758788 & 8.41443193028102 & -243.529966270741 & -1.25073160838092 \tabularnewline
8 & 2150 & 3415.30540588762 & -11.7683244186281 & -1007.71617487575 & -5.43773113798423 \tabularnewline
9 & 4350 & 3570.42450252205 & -7.93068341758971 & 728.699778819666 & 1.07311915108593 \tabularnewline
10 & 4550 & 3977.06296795983 & 1.53548048428238 & 446.62368736302 & 2.66405669946781 \tabularnewline
11 & 4600 & 4308.75874691213 & 9.08053008435923 & 190.721994880984 & 2.12020467239079 \tabularnewline
12 & 4250 & 4365.05052934365 & 10.1600541602403 & -129.415497115389 & 0.303014944143484 \tabularnewline
13 & 4350 & 4409.30143895208 & 9.1873183210891 & -70.2135581027916 & 0.242863918438623 \tabularnewline
14 & 4400 & 4423.3470684479 & 9.20807131407636 & -24.7886063492038 & 0.0317318338448133 \tabularnewline
15 & 4300 & 4406.03128100758 & 8.4559525000504 & -99.1663411032078 & -0.155928339893393 \tabularnewline
16 & 4350 & 4371.01159811347 & 6.91723648587631 & -9.97372507164114 & -0.255070999932599 \tabularnewline
17 & 4350 & 4312.25628014033 & 4.71042283572119 & 55.1154488129494 & -0.399693216219045 \tabularnewline
18 & 4400 & 4245.08940034764 & 2.62478963504191 & 174.64882716233 & -0.450110306940585 \tabularnewline
19 & 3850 & 4015.0967045411 & -3.15755294617594 & -99.8823379946654 & -1.47773535679024 \tabularnewline
20 & 2300 & 3772.06289325769 & -8.45967013712713 & -1404.18328287331 & -1.53280927886982 \tabularnewline
21 & 4300 & 3748.19804870534 & -8.77526279340049 & 556.177549059555 & -0.0986307184643678 \tabularnewline
22 & 4350 & 3864.52799288397 & -6.37588233054309 & 449.886617060679 & 0.801104765211667 \tabularnewline
23 & 4350 & 4005.90453967648 & -3.8557447830551 & 302.021960753071 & 0.945585567023217 \tabularnewline
24 & 4200 & 4158.67193241275 & -1.84442044370184 & -3.42706504841416 & 1.00418663352225 \tabularnewline
25 & 4150 & 4206.50522046407 & -1.56455821866899 & -70.9105778453148 & 0.323890860047163 \tabularnewline
26 & 4450 & 4300.40122197425 & -0.4489105780481 & 122.472358163563 & 0.610515633191203 \tabularnewline
27 & 4300 & 4340.84778660572 & 0.397894273250982 & -51.9475942265963 & 0.252162541704469 \tabularnewline
28 & 4350 & 4330.59535658866 & 0.120190166729844 & 22.2308158037739 & -0.0648342601892283 \tabularnewline
29 & 4300 & 4255.26212493311 & -1.94590432448801 & 64.9066003716572 & -0.463962021502771 \tabularnewline
30 & 4350 & 4138.92886282227 & -4.9465715073652 & 242.192815239486 & -0.714332273727183 \tabularnewline
31 & 3900 & 4013.10876272959 & -7.8709456086008 & -79.7337572038334 & -0.763449380031305 \tabularnewline
32 & 2250 & 3866.58737082964 & -10.9433230502711 & -1577.96223470001 & -0.881041522357165 \tabularnewline
33 & 4300 & 3830.41062380815 & -11.456948848838 & 476.650057980426 & -0.160721229535116 \tabularnewline
34 & 4450 & 3923.60730721647 & -9.50950606351855 & 497.054610298202 & 0.666770166527391 \tabularnewline
35 & 4400 & 4040.38854220136 & -7.40289616698006 & 324.174259038588 & 0.804445330478002 \tabularnewline
36 & 4250 & 4156.74212379568 & -5.58750393704521 & 58.4745613273317 & 0.789170956568891 \tabularnewline
37 & 4250 & 4259.36892252019 & -4.11958777231249 & -39.837812227016 & 0.691285158949729 \tabularnewline
38 & 4300 & 4254.32662395448 & -4.1341589729662 & 45.9307934216777 & -0.0058457262901384 \tabularnewline
39 & 4450 & 4327.55342684904 & -2.61970009348592 & 101.261933764493 & 0.482872956125312 \tabularnewline
40 & 3900 & 4146.79757898028 & -6.6492663126002 & -198.649099836069 & -1.10271165101912 \tabularnewline
41 & 4350 & 4117.70575125067 & -7.18852212046389 & 238.358210377274 & -0.139249918040726 \tabularnewline
42 & 4500 & 4119.54817411352 & -6.97188431288884 & 377.992578688014 & 0.0564698105509761 \tabularnewline
43 & 3800 & 4002.827562612 & -9.50333940393554 & -172.672199213774 & -0.691343420900029 \tabularnewline
44 & 2450 & 3993.18634834247 & -9.50633959869556 & -1543.14821704106 & -0.000872541224946507 \tabularnewline
45 & 4400 & 4000.71844696208 & -9.15951573826752 & 394.552487833504 & 0.10803636441165 \tabularnewline
46 & 4500 & 4040.88344967684 & -8.22382976058475 & 445.405735190869 & 0.31285563162479 \tabularnewline
47 & 4500 & 4129.91676199124 & -6.50185103229377 & 343.030807478144 & 0.616863221525129 \tabularnewline
48 & 4400 & 4243.58261389925 & -4.48243744507248 & 122.974780336182 & 0.76238622706497 \tabularnewline
49 & 4450 & 4351.95839842147 & -2.59588340594722 & 66.6548173987888 & 0.715543507536626 \tabularnewline
50 & 4600 & 4443.74711333484 & -0.912752735295797 & 130.136246636032 & 0.595756114375049 \tabularnewline
51 & 4700 & 4476.17326722836 & -0.257870080856801 & 214.682180828713 & 0.208965181603173 \tabularnewline
52 & 4700 & 4626.65647862734 & 2.95387745135593 & 32.2878035510888 & 0.940425289596933 \tabularnewline
53 & 2950 & 3963.06649080294 & -11.9039619231526 & -831.785306295565 & -4.15965613634565 \tabularnewline
54 & 3750 & 3597.16144936965 & -19.8679642608988 & 249.449019233929 & -2.21768315710602 \tabularnewline
55 & 4050 & 3745.91344947065 & -16.1430232141075 & 257.832779453541 & 1.06101749133997 \tabularnewline
56 & 2550 & 3903.96834015356 & -12.4300734799263 & -1401.95465712527 & 1.09949991141133 \tabularnewline
57 & 4600 & 4061.08075009322 & -8.97458497703418 & 492.099263281591 & 1.07160282664895 \tabularnewline
58 & 5000 & 4300.43407528858 & -4.14332523578623 & 630.914369779635 & 1.57005021540173 \tabularnewline
59 & 5100 & 4548.23401138978 & 0.564755160422386 & 482.084771111913 & 1.59293975219738 \tabularnewline
60 & 4900 & 4712.14931583866 & 3.54575979971182 & 142.666890741026 & 1.03278007618371 \tabularnewline
61 & 4950 & 4825.81407253794 & 5.56219617193984 & 93.7519494078597 & 0.69567576498254 \tabularnewline
62 & 5000 & 4858.52813592896 & 6.07597157013561 & 133.989397792157 & 0.171101819585854 \tabularnewline
63 & 4950 & 4783.10398411818 & 4.45716065806459 & 189.254701636498 & -0.511739690955833 \tabularnewline
64 & 5100 & 4704.65442874455 & 2.73443024299219 & 418.002749684424 & -0.519221017293622 \tabularnewline
65 & 5250 & 5131.00081310446 & 11.7967565479634 & 3.3680232476836 & 2.6525736348922 \tabularnewline
66 & 5200 & 5214.45962016404 & 13.344217928063 & -34.051325592722 & 0.449597206938378 \tabularnewline
67 & 4300 & 4883.01498866636 & 5.96010178194943 & -488.485839406362 & -2.16864474450546 \tabularnewline
68 & 2650 & 4596.89860766093 & -0.165689629988651 & -1866.61470896368 & -1.84062891000026 \tabularnewline
69 & 4950 & 4576.46891802246 & -0.579065536252833 & 379.110077528878 & -0.127820155024703 \tabularnewline
70 & 5200 & 4642.7493106747 & 0.746421218577984 & 538.82963158216 & 0.421837358386948 \tabularnewline
71 & 5350 & 4780.52087073063 & 3.4004505799118 & 531.715401395776 & 0.864559118532027 \tabularnewline
72 & 5150 & 4912.44702534021 & 5.8599525678201 & 202.13169342869 & 0.810865713866138 \tabularnewline
73 & 5350 & 5063.27233743559 & 8.64257101720704 & 246.799871618301 & 0.914066751857375 \tabularnewline
74 & 5550 & 5211.62734125789 & 11.3718999978569 & 299.954783307994 & 0.879695044580985 \tabularnewline
75 & 5400 & 5263.36132824587 & 12.1809635785737 & 125.566833352688 & 0.253647541088344 \tabularnewline
76 & 5450 & 5276.50070762959 & 12.2006656121597 & 173.236945581906 & 0.00601422043190346 \tabularnewline
77 & 5450 & 5317.48097553502 & 12.8028503692221 & 124.647409791928 & 0.180560854884412 \tabularnewline
78 & 5200 & 5201.35755214761 & 10.0863944754519 & 33.9309409601927 & -0.809662903039658 \tabularnewline
79 & 4400 & 5013.12342292404 & 5.92309870802097 & -558.756637085621 & -1.24724030261205 \tabularnewline
80 & 2650 & 4813.1460225172 & 1.65166660181108 & -2106.61539828313 & -1.29640709011494 \tabularnewline
81 & 5100 & 4777.90247803163 & 0.898764524125085 & 332.237378037245 & -0.232441775880988 \tabularnewline
82 & 5200 & 4779.46284385676 & 0.912038307031916 & 420.355241282296 & 0.0041688917370335 \tabularnewline
83 & 5300 & 4823.16616256626 & 1.75907891318855 & 465.065720300514 & 0.269644007403577 \tabularnewline
84 & 4900 & 4833.19805474602 & 1.92175026731805 & 64.5268680329675 & 0.0521263833755789 \tabularnewline
85 & 5200 & 4911.57079592055 & 3.42781734577202 & 267.412701650724 & 0.481540880025463 \tabularnewline
86 & 5300 & 4966.14396661013 & 4.44507150524969 & 319.809162349755 & 0.321890484307557 \tabularnewline
87 & 5250 & 5028.77319758861 & 5.61874156663668 & 205.268008845802 & 0.365801428912128 \tabularnewline
88 & 5150 & 5008.05330141075 & 5.07984742140176 & 149.162283620572 & -0.165454015806497 \tabularnewline
89 & 5050 & 4922.49721630025 & 3.20584438225224 & 152.320564939352 & -0.569264956663321 \tabularnewline
90 & 4900 & 4824.99371771683 & 1.11391947297084 & 102.591641438417 & -0.632850414967123 \tabularnewline
91 & 4150 & 4719.34945315878 & -1.10014007377431 & -540.082434427015 & -0.671395041621581 \tabularnewline
92 & 2800 & 4760.11633188521 & -0.237589270583312 & -1971.60400558433 & 0.263477979470486 \tabularnewline
93 & 5100 & 4776.81355224718 & 0.107993555769152 & 318.536959096207 & 0.106614301666666 \tabularnewline
94 & 5250 & 4812.67253762043 & 0.830361077474706 & 427.508921265632 & 0.225101915846758 \tabularnewline
95 & 5200 & 4803.64928438983 & 0.632812802440561 & 399.057203253752 & -0.0620434269399973 \tabularnewline
96 & 5000 & 4871.26512271163 & 1.97057232599748 & 110.336980132753 & 0.421738665605444 \tabularnewline
97 & 5150 & 4902.39765134135 & 2.55355127226979 & 239.59439543869 & 0.183570588507038 \tabularnewline
98 & 5250 & 4923.69607330969 & 2.93025768003637 & 321.159234195622 & 0.117943196801268 \tabularnewline
99 & 5250 & 4952.7006783716 & 3.45837307625969 & 290.148279910743 & 0.163963691176026 \tabularnewline
100 & 5350 & 5015.86343174056 & 4.6774128735411 & 317.773278288131 & 0.375264839866713 \tabularnewline
101 & 5450 & 5100.69857917812 & 6.32417701284908 & 327.339118503837 & 0.50376478545225 \tabularnewline
102 & 5300 & 5136.13482934723 & 6.92400720253915 & 155.887537208082 & 0.183006854307942 \tabularnewline
103 & 4300 & 5052.42261155141 & 5.05774135791516 & -727.573906904932 & -0.570017174088813 \tabularnewline
104 & 3000 & 5017.50997497728 & 4.23772673521803 & -2006.54620786455 & -0.251475821384553 \tabularnewline
105 & 5300 & 5009.94352252706 & 3.99687340977428 & 293.295515132101 & -0.074283757919234 \tabularnewline
106 & 5400 & 5002.91486379953 & 3.7731918681815 & 400.111099884899 & -0.0693897347683654 \tabularnewline
107 & 5550 & 5074.53743773024 & 5.14346608384842 & 456.839839327202 & 0.42702031914433 \tabularnewline
108 & 5350 & 5159.53753565433 & 6.75260288669412 & 168.544303000736 & 0.502574032163778 \tabularnewline
109 & 5500 & 5224.36196814295 & 7.92331854585287 & 259.7012154055 & 0.365427147736738 \tabularnewline
110 & 5750 & 5326.80887164589 & 9.83441152699727 & 397.258410553359 & 0.594655329428442 \tabularnewline
111 & 5750 & 5417.56790933206 & 11.477723008774 & 310.239438539888 & 0.508935451422225 \tabularnewline
112 & 5700 & 5442.75986362875 & 11.7574917772924 & 253.480594197516 & 0.08622595292113 \tabularnewline
113 & 5800 & 5459.20756325828 & 11.8535158035533 & 339.506925428644 & 0.0294866783094576 \tabularnewline
114 & 5800 & 5510.018455336 & 12.6525404178346 & 279.303169379214 & 0.244952050587029 \tabularnewline
115 & 4600 & 5451.83579738236 & 11.2000475767447 & -832.414683146208 & -0.445499027373188 \tabularnewline
116 & 3150 & 5341.3576681768 & 8.71001098149746 & -2157.98714978916 & -0.765437254085252 \tabularnewline
117 & 5500 & 5285.08452936128 & 7.38429047726967 & 232.741110527723 & -0.408844721484369 \tabularnewline
118 & 5750 & 5327.19522791399 & 8.09041674289968 & 413.277772600695 & 0.218495297541345 \tabularnewline
119 & 5950 & 5425.60959625662 & 9.92223705048199 & 499.609318780422 & 0.568316517743071 \tabularnewline
120 & 5600 & 5475.51906198853 & 10.7321139557436 & 113.510179684725 & 0.251594131324804 \tabularnewline
121 & 6100 & 5647.68720603762 & 14.0024172237334 & 408.025080669862 & 1.01566089585461 \tabularnewline
122 & 6250 & 5778.1660612076 & 16.3656992711653 & 439.885556870665 & 0.732697107176012 \tabularnewline
123 & 6150 & 5834.76053023272 & 17.1839352607386 & 304.207652170191 & 0.253013055996822 \tabularnewline
124 & 6050 & 5838.94351243406 & 16.9188105582875 & 214.620931910486 & -0.0817552060322653 \tabularnewline
125 & 6300 & 5886.65803798277 & 17.5481323932213 & 404.89969224365 & 0.193646398002618 \tabularnewline
126 & 5950 & 5798.86771742391 & 15.3931421596193 & 180.010480917966 & -0.662423402261268 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299567&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]4150[/C][C]4150[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]4300[/C][C]4215.85571396182[/C][C]2.39266235162782[/C][C]64.2433473540545[/C][C]0.391318341639585[/C][/ROW]
[ROW][C]3[/C][C]4300[/C][C]4274.46905630174[/C][C]6.42811066841075[/C][C]14.6395282233286[/C][C]0.25799699287798[/C][/ROW]
[ROW][C]4[/C][C]4450[/C][C]4356.73053305956[/C][C]11.1273752741386[/C][C]75.0585166615121[/C][C]0.415118873371314[/C][/ROW]
[ROW][C]5[/C][C]4500[/C][C]4428.64676130864[/C][C]13.8783421121805[/C][C]54.3405228604243[/C][C]0.370717762982887[/C][/ROW]
[ROW][C]6[/C][C]4400[/C][C]4434.07838299491[/C][C]13.599223680116[/C][C]-31.5697711969275[/C][C]-0.0535381513314505[/C][/ROW]
[ROW][C]7[/C][C]3950[/C][C]4252.60996758788[/C][C]8.41443193028102[/C][C]-243.529966270741[/C][C]-1.25073160838092[/C][/ROW]
[ROW][C]8[/C][C]2150[/C][C]3415.30540588762[/C][C]-11.7683244186281[/C][C]-1007.71617487575[/C][C]-5.43773113798423[/C][/ROW]
[ROW][C]9[/C][C]4350[/C][C]3570.42450252205[/C][C]-7.93068341758971[/C][C]728.699778819666[/C][C]1.07311915108593[/C][/ROW]
[ROW][C]10[/C][C]4550[/C][C]3977.06296795983[/C][C]1.53548048428238[/C][C]446.62368736302[/C][C]2.66405669946781[/C][/ROW]
[ROW][C]11[/C][C]4600[/C][C]4308.75874691213[/C][C]9.08053008435923[/C][C]190.721994880984[/C][C]2.12020467239079[/C][/ROW]
[ROW][C]12[/C][C]4250[/C][C]4365.05052934365[/C][C]10.1600541602403[/C][C]-129.415497115389[/C][C]0.303014944143484[/C][/ROW]
[ROW][C]13[/C][C]4350[/C][C]4409.30143895208[/C][C]9.1873183210891[/C][C]-70.2135581027916[/C][C]0.242863918438623[/C][/ROW]
[ROW][C]14[/C][C]4400[/C][C]4423.3470684479[/C][C]9.20807131407636[/C][C]-24.7886063492038[/C][C]0.0317318338448133[/C][/ROW]
[ROW][C]15[/C][C]4300[/C][C]4406.03128100758[/C][C]8.4559525000504[/C][C]-99.1663411032078[/C][C]-0.155928339893393[/C][/ROW]
[ROW][C]16[/C][C]4350[/C][C]4371.01159811347[/C][C]6.91723648587631[/C][C]-9.97372507164114[/C][C]-0.255070999932599[/C][/ROW]
[ROW][C]17[/C][C]4350[/C][C]4312.25628014033[/C][C]4.71042283572119[/C][C]55.1154488129494[/C][C]-0.399693216219045[/C][/ROW]
[ROW][C]18[/C][C]4400[/C][C]4245.08940034764[/C][C]2.62478963504191[/C][C]174.64882716233[/C][C]-0.450110306940585[/C][/ROW]
[ROW][C]19[/C][C]3850[/C][C]4015.0967045411[/C][C]-3.15755294617594[/C][C]-99.8823379946654[/C][C]-1.47773535679024[/C][/ROW]
[ROW][C]20[/C][C]2300[/C][C]3772.06289325769[/C][C]-8.45967013712713[/C][C]-1404.18328287331[/C][C]-1.53280927886982[/C][/ROW]
[ROW][C]21[/C][C]4300[/C][C]3748.19804870534[/C][C]-8.77526279340049[/C][C]556.177549059555[/C][C]-0.0986307184643678[/C][/ROW]
[ROW][C]22[/C][C]4350[/C][C]3864.52799288397[/C][C]-6.37588233054309[/C][C]449.886617060679[/C][C]0.801104765211667[/C][/ROW]
[ROW][C]23[/C][C]4350[/C][C]4005.90453967648[/C][C]-3.8557447830551[/C][C]302.021960753071[/C][C]0.945585567023217[/C][/ROW]
[ROW][C]24[/C][C]4200[/C][C]4158.67193241275[/C][C]-1.84442044370184[/C][C]-3.42706504841416[/C][C]1.00418663352225[/C][/ROW]
[ROW][C]25[/C][C]4150[/C][C]4206.50522046407[/C][C]-1.56455821866899[/C][C]-70.9105778453148[/C][C]0.323890860047163[/C][/ROW]
[ROW][C]26[/C][C]4450[/C][C]4300.40122197425[/C][C]-0.4489105780481[/C][C]122.472358163563[/C][C]0.610515633191203[/C][/ROW]
[ROW][C]27[/C][C]4300[/C][C]4340.84778660572[/C][C]0.397894273250982[/C][C]-51.9475942265963[/C][C]0.252162541704469[/C][/ROW]
[ROW][C]28[/C][C]4350[/C][C]4330.59535658866[/C][C]0.120190166729844[/C][C]22.2308158037739[/C][C]-0.0648342601892283[/C][/ROW]
[ROW][C]29[/C][C]4300[/C][C]4255.26212493311[/C][C]-1.94590432448801[/C][C]64.9066003716572[/C][C]-0.463962021502771[/C][/ROW]
[ROW][C]30[/C][C]4350[/C][C]4138.92886282227[/C][C]-4.9465715073652[/C][C]242.192815239486[/C][C]-0.714332273727183[/C][/ROW]
[ROW][C]31[/C][C]3900[/C][C]4013.10876272959[/C][C]-7.8709456086008[/C][C]-79.7337572038334[/C][C]-0.763449380031305[/C][/ROW]
[ROW][C]32[/C][C]2250[/C][C]3866.58737082964[/C][C]-10.9433230502711[/C][C]-1577.96223470001[/C][C]-0.881041522357165[/C][/ROW]
[ROW][C]33[/C][C]4300[/C][C]3830.41062380815[/C][C]-11.456948848838[/C][C]476.650057980426[/C][C]-0.160721229535116[/C][/ROW]
[ROW][C]34[/C][C]4450[/C][C]3923.60730721647[/C][C]-9.50950606351855[/C][C]497.054610298202[/C][C]0.666770166527391[/C][/ROW]
[ROW][C]35[/C][C]4400[/C][C]4040.38854220136[/C][C]-7.40289616698006[/C][C]324.174259038588[/C][C]0.804445330478002[/C][/ROW]
[ROW][C]36[/C][C]4250[/C][C]4156.74212379568[/C][C]-5.58750393704521[/C][C]58.4745613273317[/C][C]0.789170956568891[/C][/ROW]
[ROW][C]37[/C][C]4250[/C][C]4259.36892252019[/C][C]-4.11958777231249[/C][C]-39.837812227016[/C][C]0.691285158949729[/C][/ROW]
[ROW][C]38[/C][C]4300[/C][C]4254.32662395448[/C][C]-4.1341589729662[/C][C]45.9307934216777[/C][C]-0.0058457262901384[/C][/ROW]
[ROW][C]39[/C][C]4450[/C][C]4327.55342684904[/C][C]-2.61970009348592[/C][C]101.261933764493[/C][C]0.482872956125312[/C][/ROW]
[ROW][C]40[/C][C]3900[/C][C]4146.79757898028[/C][C]-6.6492663126002[/C][C]-198.649099836069[/C][C]-1.10271165101912[/C][/ROW]
[ROW][C]41[/C][C]4350[/C][C]4117.70575125067[/C][C]-7.18852212046389[/C][C]238.358210377274[/C][C]-0.139249918040726[/C][/ROW]
[ROW][C]42[/C][C]4500[/C][C]4119.54817411352[/C][C]-6.97188431288884[/C][C]377.992578688014[/C][C]0.0564698105509761[/C][/ROW]
[ROW][C]43[/C][C]3800[/C][C]4002.827562612[/C][C]-9.50333940393554[/C][C]-172.672199213774[/C][C]-0.691343420900029[/C][/ROW]
[ROW][C]44[/C][C]2450[/C][C]3993.18634834247[/C][C]-9.50633959869556[/C][C]-1543.14821704106[/C][C]-0.000872541224946507[/C][/ROW]
[ROW][C]45[/C][C]4400[/C][C]4000.71844696208[/C][C]-9.15951573826752[/C][C]394.552487833504[/C][C]0.10803636441165[/C][/ROW]
[ROW][C]46[/C][C]4500[/C][C]4040.88344967684[/C][C]-8.22382976058475[/C][C]445.405735190869[/C][C]0.31285563162479[/C][/ROW]
[ROW][C]47[/C][C]4500[/C][C]4129.91676199124[/C][C]-6.50185103229377[/C][C]343.030807478144[/C][C]0.616863221525129[/C][/ROW]
[ROW][C]48[/C][C]4400[/C][C]4243.58261389925[/C][C]-4.48243744507248[/C][C]122.974780336182[/C][C]0.76238622706497[/C][/ROW]
[ROW][C]49[/C][C]4450[/C][C]4351.95839842147[/C][C]-2.59588340594722[/C][C]66.6548173987888[/C][C]0.715543507536626[/C][/ROW]
[ROW][C]50[/C][C]4600[/C][C]4443.74711333484[/C][C]-0.912752735295797[/C][C]130.136246636032[/C][C]0.595756114375049[/C][/ROW]
[ROW][C]51[/C][C]4700[/C][C]4476.17326722836[/C][C]-0.257870080856801[/C][C]214.682180828713[/C][C]0.208965181603173[/C][/ROW]
[ROW][C]52[/C][C]4700[/C][C]4626.65647862734[/C][C]2.95387745135593[/C][C]32.2878035510888[/C][C]0.940425289596933[/C][/ROW]
[ROW][C]53[/C][C]2950[/C][C]3963.06649080294[/C][C]-11.9039619231526[/C][C]-831.785306295565[/C][C]-4.15965613634565[/C][/ROW]
[ROW][C]54[/C][C]3750[/C][C]3597.16144936965[/C][C]-19.8679642608988[/C][C]249.449019233929[/C][C]-2.21768315710602[/C][/ROW]
[ROW][C]55[/C][C]4050[/C][C]3745.91344947065[/C][C]-16.1430232141075[/C][C]257.832779453541[/C][C]1.06101749133997[/C][/ROW]
[ROW][C]56[/C][C]2550[/C][C]3903.96834015356[/C][C]-12.4300734799263[/C][C]-1401.95465712527[/C][C]1.09949991141133[/C][/ROW]
[ROW][C]57[/C][C]4600[/C][C]4061.08075009322[/C][C]-8.97458497703418[/C][C]492.099263281591[/C][C]1.07160282664895[/C][/ROW]
[ROW][C]58[/C][C]5000[/C][C]4300.43407528858[/C][C]-4.14332523578623[/C][C]630.914369779635[/C][C]1.57005021540173[/C][/ROW]
[ROW][C]59[/C][C]5100[/C][C]4548.23401138978[/C][C]0.564755160422386[/C][C]482.084771111913[/C][C]1.59293975219738[/C][/ROW]
[ROW][C]60[/C][C]4900[/C][C]4712.14931583866[/C][C]3.54575979971182[/C][C]142.666890741026[/C][C]1.03278007618371[/C][/ROW]
[ROW][C]61[/C][C]4950[/C][C]4825.81407253794[/C][C]5.56219617193984[/C][C]93.7519494078597[/C][C]0.69567576498254[/C][/ROW]
[ROW][C]62[/C][C]5000[/C][C]4858.52813592896[/C][C]6.07597157013561[/C][C]133.989397792157[/C][C]0.171101819585854[/C][/ROW]
[ROW][C]63[/C][C]4950[/C][C]4783.10398411818[/C][C]4.45716065806459[/C][C]189.254701636498[/C][C]-0.511739690955833[/C][/ROW]
[ROW][C]64[/C][C]5100[/C][C]4704.65442874455[/C][C]2.73443024299219[/C][C]418.002749684424[/C][C]-0.519221017293622[/C][/ROW]
[ROW][C]65[/C][C]5250[/C][C]5131.00081310446[/C][C]11.7967565479634[/C][C]3.3680232476836[/C][C]2.6525736348922[/C][/ROW]
[ROW][C]66[/C][C]5200[/C][C]5214.45962016404[/C][C]13.344217928063[/C][C]-34.051325592722[/C][C]0.449597206938378[/C][/ROW]
[ROW][C]67[/C][C]4300[/C][C]4883.01498866636[/C][C]5.96010178194943[/C][C]-488.485839406362[/C][C]-2.16864474450546[/C][/ROW]
[ROW][C]68[/C][C]2650[/C][C]4596.89860766093[/C][C]-0.165689629988651[/C][C]-1866.61470896368[/C][C]-1.84062891000026[/C][/ROW]
[ROW][C]69[/C][C]4950[/C][C]4576.46891802246[/C][C]-0.579065536252833[/C][C]379.110077528878[/C][C]-0.127820155024703[/C][/ROW]
[ROW][C]70[/C][C]5200[/C][C]4642.7493106747[/C][C]0.746421218577984[/C][C]538.82963158216[/C][C]0.421837358386948[/C][/ROW]
[ROW][C]71[/C][C]5350[/C][C]4780.52087073063[/C][C]3.4004505799118[/C][C]531.715401395776[/C][C]0.864559118532027[/C][/ROW]
[ROW][C]72[/C][C]5150[/C][C]4912.44702534021[/C][C]5.8599525678201[/C][C]202.13169342869[/C][C]0.810865713866138[/C][/ROW]
[ROW][C]73[/C][C]5350[/C][C]5063.27233743559[/C][C]8.64257101720704[/C][C]246.799871618301[/C][C]0.914066751857375[/C][/ROW]
[ROW][C]74[/C][C]5550[/C][C]5211.62734125789[/C][C]11.3718999978569[/C][C]299.954783307994[/C][C]0.879695044580985[/C][/ROW]
[ROW][C]75[/C][C]5400[/C][C]5263.36132824587[/C][C]12.1809635785737[/C][C]125.566833352688[/C][C]0.253647541088344[/C][/ROW]
[ROW][C]76[/C][C]5450[/C][C]5276.50070762959[/C][C]12.2006656121597[/C][C]173.236945581906[/C][C]0.00601422043190346[/C][/ROW]
[ROW][C]77[/C][C]5450[/C][C]5317.48097553502[/C][C]12.8028503692221[/C][C]124.647409791928[/C][C]0.180560854884412[/C][/ROW]
[ROW][C]78[/C][C]5200[/C][C]5201.35755214761[/C][C]10.0863944754519[/C][C]33.9309409601927[/C][C]-0.809662903039658[/C][/ROW]
[ROW][C]79[/C][C]4400[/C][C]5013.12342292404[/C][C]5.92309870802097[/C][C]-558.756637085621[/C][C]-1.24724030261205[/C][/ROW]
[ROW][C]80[/C][C]2650[/C][C]4813.1460225172[/C][C]1.65166660181108[/C][C]-2106.61539828313[/C][C]-1.29640709011494[/C][/ROW]
[ROW][C]81[/C][C]5100[/C][C]4777.90247803163[/C][C]0.898764524125085[/C][C]332.237378037245[/C][C]-0.232441775880988[/C][/ROW]
[ROW][C]82[/C][C]5200[/C][C]4779.46284385676[/C][C]0.912038307031916[/C][C]420.355241282296[/C][C]0.0041688917370335[/C][/ROW]
[ROW][C]83[/C][C]5300[/C][C]4823.16616256626[/C][C]1.75907891318855[/C][C]465.065720300514[/C][C]0.269644007403577[/C][/ROW]
[ROW][C]84[/C][C]4900[/C][C]4833.19805474602[/C][C]1.92175026731805[/C][C]64.5268680329675[/C][C]0.0521263833755789[/C][/ROW]
[ROW][C]85[/C][C]5200[/C][C]4911.57079592055[/C][C]3.42781734577202[/C][C]267.412701650724[/C][C]0.481540880025463[/C][/ROW]
[ROW][C]86[/C][C]5300[/C][C]4966.14396661013[/C][C]4.44507150524969[/C][C]319.809162349755[/C][C]0.321890484307557[/C][/ROW]
[ROW][C]87[/C][C]5250[/C][C]5028.77319758861[/C][C]5.61874156663668[/C][C]205.268008845802[/C][C]0.365801428912128[/C][/ROW]
[ROW][C]88[/C][C]5150[/C][C]5008.05330141075[/C][C]5.07984742140176[/C][C]149.162283620572[/C][C]-0.165454015806497[/C][/ROW]
[ROW][C]89[/C][C]5050[/C][C]4922.49721630025[/C][C]3.20584438225224[/C][C]152.320564939352[/C][C]-0.569264956663321[/C][/ROW]
[ROW][C]90[/C][C]4900[/C][C]4824.99371771683[/C][C]1.11391947297084[/C][C]102.591641438417[/C][C]-0.632850414967123[/C][/ROW]
[ROW][C]91[/C][C]4150[/C][C]4719.34945315878[/C][C]-1.10014007377431[/C][C]-540.082434427015[/C][C]-0.671395041621581[/C][/ROW]
[ROW][C]92[/C][C]2800[/C][C]4760.11633188521[/C][C]-0.237589270583312[/C][C]-1971.60400558433[/C][C]0.263477979470486[/C][/ROW]
[ROW][C]93[/C][C]5100[/C][C]4776.81355224718[/C][C]0.107993555769152[/C][C]318.536959096207[/C][C]0.106614301666666[/C][/ROW]
[ROW][C]94[/C][C]5250[/C][C]4812.67253762043[/C][C]0.830361077474706[/C][C]427.508921265632[/C][C]0.225101915846758[/C][/ROW]
[ROW][C]95[/C][C]5200[/C][C]4803.64928438983[/C][C]0.632812802440561[/C][C]399.057203253752[/C][C]-0.0620434269399973[/C][/ROW]
[ROW][C]96[/C][C]5000[/C][C]4871.26512271163[/C][C]1.97057232599748[/C][C]110.336980132753[/C][C]0.421738665605444[/C][/ROW]
[ROW][C]97[/C][C]5150[/C][C]4902.39765134135[/C][C]2.55355127226979[/C][C]239.59439543869[/C][C]0.183570588507038[/C][/ROW]
[ROW][C]98[/C][C]5250[/C][C]4923.69607330969[/C][C]2.93025768003637[/C][C]321.159234195622[/C][C]0.117943196801268[/C][/ROW]
[ROW][C]99[/C][C]5250[/C][C]4952.7006783716[/C][C]3.45837307625969[/C][C]290.148279910743[/C][C]0.163963691176026[/C][/ROW]
[ROW][C]100[/C][C]5350[/C][C]5015.86343174056[/C][C]4.6774128735411[/C][C]317.773278288131[/C][C]0.375264839866713[/C][/ROW]
[ROW][C]101[/C][C]5450[/C][C]5100.69857917812[/C][C]6.32417701284908[/C][C]327.339118503837[/C][C]0.50376478545225[/C][/ROW]
[ROW][C]102[/C][C]5300[/C][C]5136.13482934723[/C][C]6.92400720253915[/C][C]155.887537208082[/C][C]0.183006854307942[/C][/ROW]
[ROW][C]103[/C][C]4300[/C][C]5052.42261155141[/C][C]5.05774135791516[/C][C]-727.573906904932[/C][C]-0.570017174088813[/C][/ROW]
[ROW][C]104[/C][C]3000[/C][C]5017.50997497728[/C][C]4.23772673521803[/C][C]-2006.54620786455[/C][C]-0.251475821384553[/C][/ROW]
[ROW][C]105[/C][C]5300[/C][C]5009.94352252706[/C][C]3.99687340977428[/C][C]293.295515132101[/C][C]-0.074283757919234[/C][/ROW]
[ROW][C]106[/C][C]5400[/C][C]5002.91486379953[/C][C]3.7731918681815[/C][C]400.111099884899[/C][C]-0.0693897347683654[/C][/ROW]
[ROW][C]107[/C][C]5550[/C][C]5074.53743773024[/C][C]5.14346608384842[/C][C]456.839839327202[/C][C]0.42702031914433[/C][/ROW]
[ROW][C]108[/C][C]5350[/C][C]5159.53753565433[/C][C]6.75260288669412[/C][C]168.544303000736[/C][C]0.502574032163778[/C][/ROW]
[ROW][C]109[/C][C]5500[/C][C]5224.36196814295[/C][C]7.92331854585287[/C][C]259.7012154055[/C][C]0.365427147736738[/C][/ROW]
[ROW][C]110[/C][C]5750[/C][C]5326.80887164589[/C][C]9.83441152699727[/C][C]397.258410553359[/C][C]0.594655329428442[/C][/ROW]
[ROW][C]111[/C][C]5750[/C][C]5417.56790933206[/C][C]11.477723008774[/C][C]310.239438539888[/C][C]0.508935451422225[/C][/ROW]
[ROW][C]112[/C][C]5700[/C][C]5442.75986362875[/C][C]11.7574917772924[/C][C]253.480594197516[/C][C]0.08622595292113[/C][/ROW]
[ROW][C]113[/C][C]5800[/C][C]5459.20756325828[/C][C]11.8535158035533[/C][C]339.506925428644[/C][C]0.0294866783094576[/C][/ROW]
[ROW][C]114[/C][C]5800[/C][C]5510.018455336[/C][C]12.6525404178346[/C][C]279.303169379214[/C][C]0.244952050587029[/C][/ROW]
[ROW][C]115[/C][C]4600[/C][C]5451.83579738236[/C][C]11.2000475767447[/C][C]-832.414683146208[/C][C]-0.445499027373188[/C][/ROW]
[ROW][C]116[/C][C]3150[/C][C]5341.3576681768[/C][C]8.71001098149746[/C][C]-2157.98714978916[/C][C]-0.765437254085252[/C][/ROW]
[ROW][C]117[/C][C]5500[/C][C]5285.08452936128[/C][C]7.38429047726967[/C][C]232.741110527723[/C][C]-0.408844721484369[/C][/ROW]
[ROW][C]118[/C][C]5750[/C][C]5327.19522791399[/C][C]8.09041674289968[/C][C]413.277772600695[/C][C]0.218495297541345[/C][/ROW]
[ROW][C]119[/C][C]5950[/C][C]5425.60959625662[/C][C]9.92223705048199[/C][C]499.609318780422[/C][C]0.568316517743071[/C][/ROW]
[ROW][C]120[/C][C]5600[/C][C]5475.51906198853[/C][C]10.7321139557436[/C][C]113.510179684725[/C][C]0.251594131324804[/C][/ROW]
[ROW][C]121[/C][C]6100[/C][C]5647.68720603762[/C][C]14.0024172237334[/C][C]408.025080669862[/C][C]1.01566089585461[/C][/ROW]
[ROW][C]122[/C][C]6250[/C][C]5778.1660612076[/C][C]16.3656992711653[/C][C]439.885556870665[/C][C]0.732697107176012[/C][/ROW]
[ROW][C]123[/C][C]6150[/C][C]5834.76053023272[/C][C]17.1839352607386[/C][C]304.207652170191[/C][C]0.253013055996822[/C][/ROW]
[ROW][C]124[/C][C]6050[/C][C]5838.94351243406[/C][C]16.9188105582875[/C][C]214.620931910486[/C][C]-0.0817552060322653[/C][/ROW]
[ROW][C]125[/C][C]6300[/C][C]5886.65803798277[/C][C]17.5481323932213[/C][C]404.89969224365[/C][C]0.193646398002618[/C][/ROW]
[ROW][C]126[/C][C]5950[/C][C]5798.86771742391[/C][C]15.3931421596193[/C][C]180.010480917966[/C][C]-0.662423402261268[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299567&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299567&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
141504150000
243004215.855713961822.3926623516278264.24334735405450.391318341639585
343004274.469056301746.4281106684107514.63952822332860.25799699287798
444504356.7305330595611.127375274138675.05851666151210.415118873371314
545004428.6467613086413.878342112180554.34052286042430.370717762982887
644004434.0783829949113.599223680116-31.5697711969275-0.0535381513314505
739504252.609967587888.41443193028102-243.529966270741-1.25073160838092
821503415.30540588762-11.7683244186281-1007.71617487575-5.43773113798423
943503570.42450252205-7.93068341758971728.6997788196661.07311915108593
1045503977.062967959831.53548048428238446.623687363022.66405669946781
1146004308.758746912139.08053008435923190.7219948809842.12020467239079
1242504365.0505293436510.1600541602403-129.4154971153890.303014944143484
1343504409.301438952089.1873183210891-70.21355810279160.242863918438623
1444004423.34706844799.20807131407636-24.78860634920380.0317318338448133
1543004406.031281007588.4559525000504-99.1663411032078-0.155928339893393
1643504371.011598113476.91723648587631-9.97372507164114-0.255070999932599
1743504312.256280140334.7104228357211955.1154488129494-0.399693216219045
1844004245.089400347642.62478963504191174.64882716233-0.450110306940585
1938504015.0967045411-3.15755294617594-99.8823379946654-1.47773535679024
2023003772.06289325769-8.45967013712713-1404.18328287331-1.53280927886982
2143003748.19804870534-8.77526279340049556.177549059555-0.0986307184643678
2243503864.52799288397-6.37588233054309449.8866170606790.801104765211667
2343504005.90453967648-3.8557447830551302.0219607530710.945585567023217
2442004158.67193241275-1.84442044370184-3.427065048414161.00418663352225
2541504206.50522046407-1.56455821866899-70.91057784531480.323890860047163
2644504300.40122197425-0.4489105780481122.4723581635630.610515633191203
2743004340.847786605720.397894273250982-51.94759422659630.252162541704469
2843504330.595356588660.12019016672984422.2308158037739-0.0648342601892283
2943004255.26212493311-1.9459043244880164.9066003716572-0.463962021502771
3043504138.92886282227-4.9465715073652242.192815239486-0.714332273727183
3139004013.10876272959-7.8709456086008-79.7337572038334-0.763449380031305
3222503866.58737082964-10.9433230502711-1577.96223470001-0.881041522357165
3343003830.41062380815-11.456948848838476.650057980426-0.160721229535116
3444503923.60730721647-9.50950606351855497.0546102982020.666770166527391
3544004040.38854220136-7.40289616698006324.1742590385880.804445330478002
3642504156.74212379568-5.5875039370452158.47456132733170.789170956568891
3742504259.36892252019-4.11958777231249-39.8378122270160.691285158949729
3843004254.32662395448-4.134158972966245.9307934216777-0.0058457262901384
3944504327.55342684904-2.61970009348592101.2619337644930.482872956125312
4039004146.79757898028-6.6492663126002-198.649099836069-1.10271165101912
4143504117.70575125067-7.18852212046389238.358210377274-0.139249918040726
4245004119.54817411352-6.97188431288884377.9925786880140.0564698105509761
4338004002.827562612-9.50333940393554-172.672199213774-0.691343420900029
4424503993.18634834247-9.50633959869556-1543.14821704106-0.000872541224946507
4544004000.71844696208-9.15951573826752394.5524878335040.10803636441165
4645004040.88344967684-8.22382976058475445.4057351908690.31285563162479
4745004129.91676199124-6.50185103229377343.0308074781440.616863221525129
4844004243.58261389925-4.48243744507248122.9747803361820.76238622706497
4944504351.95839842147-2.5958834059472266.65481739878880.715543507536626
5046004443.74711333484-0.912752735295797130.1362466360320.595756114375049
5147004476.17326722836-0.257870080856801214.6821808287130.208965181603173
5247004626.656478627342.9538774513559332.28780355108880.940425289596933
5329503963.06649080294-11.9039619231526-831.785306295565-4.15965613634565
5437503597.16144936965-19.8679642608988249.449019233929-2.21768315710602
5540503745.91344947065-16.1430232141075257.8327794535411.06101749133997
5625503903.96834015356-12.4300734799263-1401.954657125271.09949991141133
5746004061.08075009322-8.97458497703418492.0992632815911.07160282664895
5850004300.43407528858-4.14332523578623630.9143697796351.57005021540173
5951004548.234011389780.564755160422386482.0847711119131.59293975219738
6049004712.149315838663.54575979971182142.6668907410261.03278007618371
6149504825.814072537945.5621961719398493.75194940785970.69567576498254
6250004858.528135928966.07597157013561133.9893977921570.171101819585854
6349504783.103984118184.45716065806459189.254701636498-0.511739690955833
6451004704.654428744552.73443024299219418.002749684424-0.519221017293622
6552505131.0008131044611.79675654796343.36802324768362.6525736348922
6652005214.4596201640413.344217928063-34.0513255927220.449597206938378
6743004883.014988666365.96010178194943-488.485839406362-2.16864474450546
6826504596.89860766093-0.165689629988651-1866.61470896368-1.84062891000026
6949504576.46891802246-0.579065536252833379.110077528878-0.127820155024703
7052004642.74931067470.746421218577984538.829631582160.421837358386948
7153504780.520870730633.4004505799118531.7154013957760.864559118532027
7251504912.447025340215.8599525678201202.131693428690.810865713866138
7353505063.272337435598.64257101720704246.7998716183010.914066751857375
7455505211.6273412578911.3718999978569299.9547833079940.879695044580985
7554005263.3613282458712.1809635785737125.5668333526880.253647541088344
7654505276.5007076295912.2006656121597173.2369455819060.00601422043190346
7754505317.4809755350212.8028503692221124.6474097919280.180560854884412
7852005201.3575521476110.086394475451933.9309409601927-0.809662903039658
7944005013.123422924045.92309870802097-558.756637085621-1.24724030261205
8026504813.14602251721.65166660181108-2106.61539828313-1.29640709011494
8151004777.902478031630.898764524125085332.237378037245-0.232441775880988
8252004779.462843856760.912038307031916420.3552412822960.0041688917370335
8353004823.166162566261.75907891318855465.0657203005140.269644007403577
8449004833.198054746021.9217502673180564.52686803296750.0521263833755789
8552004911.570795920553.42781734577202267.4127016507240.481540880025463
8653004966.143966610134.44507150524969319.8091623497550.321890484307557
8752505028.773197588615.61874156663668205.2680088458020.365801428912128
8851505008.053301410755.07984742140176149.162283620572-0.165454015806497
8950504922.497216300253.20584438225224152.320564939352-0.569264956663321
9049004824.993717716831.11391947297084102.591641438417-0.632850414967123
9141504719.34945315878-1.10014007377431-540.082434427015-0.671395041621581
9228004760.11633188521-0.237589270583312-1971.604005584330.263477979470486
9351004776.813552247180.107993555769152318.5369590962070.106614301666666
9452504812.672537620430.830361077474706427.5089212656320.225101915846758
9552004803.649284389830.632812802440561399.057203253752-0.0620434269399973
9650004871.265122711631.97057232599748110.3369801327530.421738665605444
9751504902.397651341352.55355127226979239.594395438690.183570588507038
9852504923.696073309692.93025768003637321.1592341956220.117943196801268
9952504952.70067837163.45837307625969290.1482799107430.163963691176026
10053505015.863431740564.6774128735411317.7732782881310.375264839866713
10154505100.698579178126.32417701284908327.3391185038370.50376478545225
10253005136.134829347236.92400720253915155.8875372080820.183006854307942
10343005052.422611551415.05774135791516-727.573906904932-0.570017174088813
10430005017.509974977284.23772673521803-2006.54620786455-0.251475821384553
10553005009.943522527063.99687340977428293.295515132101-0.074283757919234
10654005002.914863799533.7731918681815400.111099884899-0.0693897347683654
10755505074.537437730245.14346608384842456.8398393272020.42702031914433
10853505159.537535654336.75260288669412168.5443030007360.502574032163778
10955005224.361968142957.92331854585287259.70121540550.365427147736738
11057505326.808871645899.83441152699727397.2584105533590.594655329428442
11157505417.5679093320611.477723008774310.2394385398880.508935451422225
11257005442.7598636287511.7574917772924253.4805941975160.08622595292113
11358005459.2075632582811.8535158035533339.5069254286440.0294866783094576
11458005510.01845533612.6525404178346279.3031693792140.244952050587029
11546005451.8357973823611.2000475767447-832.414683146208-0.445499027373188
11631505341.35766817688.71001098149746-2157.98714978916-0.765437254085252
11755005285.084529361287.38429047726967232.741110527723-0.408844721484369
11857505327.195227913998.09041674289968413.2777726006950.218495297541345
11959505425.609596256629.92223705048199499.6093187804220.568316517743071
12056005475.5190619885310.7321139557436113.5101796847250.251594131324804
12161005647.6872060376214.0024172237334408.0250806698621.01566089585461
12262505778.166061207616.3656992711653439.8855568706650.732697107176012
12361505834.7605302327217.1839352607386304.2076521701910.253013055996822
12460505838.9435124340616.9188105582875214.620931910486-0.0817552060322653
12563005886.6580379827717.5481323932213404.899692243650.193646398002618
12659505798.8677174239115.3931421596193180.010480917966-0.662423402261268







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
15082.669785123235827.77379005886-745.10400493562
23645.155533456375849.93502698919-2204.77949353282
35986.643080660375872.09626391953114.546816740837
46178.850323619385894.25750084987284.592822769511
56322.842534401815916.41873778021406.423796621592
65940.790254452365938.579974710552.21027974181254
76332.698030212445960.74121164089371.956818571548
86459.292739190725982.90244857123476.390290619492
96373.668369964096005.06368550157368.604684462517
106290.234767298276027.22492243191263.009844866357
116533.304367895216049.38615936225483.918208532964
126249.77733183446071.54739629259178.229935541811

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 5082.66978512323 & 5827.77379005886 & -745.10400493562 \tabularnewline
2 & 3645.15553345637 & 5849.93502698919 & -2204.77949353282 \tabularnewline
3 & 5986.64308066037 & 5872.09626391953 & 114.546816740837 \tabularnewline
4 & 6178.85032361938 & 5894.25750084987 & 284.592822769511 \tabularnewline
5 & 6322.84253440181 & 5916.41873778021 & 406.423796621592 \tabularnewline
6 & 5940.79025445236 & 5938.57997471055 & 2.21027974181254 \tabularnewline
7 & 6332.69803021244 & 5960.74121164089 & 371.956818571548 \tabularnewline
8 & 6459.29273919072 & 5982.90244857123 & 476.390290619492 \tabularnewline
9 & 6373.66836996409 & 6005.06368550157 & 368.604684462517 \tabularnewline
10 & 6290.23476729827 & 6027.22492243191 & 263.009844866357 \tabularnewline
11 & 6533.30436789521 & 6049.38615936225 & 483.918208532964 \tabularnewline
12 & 6249.7773318344 & 6071.54739629259 & 178.229935541811 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299567&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]5082.66978512323[/C][C]5827.77379005886[/C][C]-745.10400493562[/C][/ROW]
[ROW][C]2[/C][C]3645.15553345637[/C][C]5849.93502698919[/C][C]-2204.77949353282[/C][/ROW]
[ROW][C]3[/C][C]5986.64308066037[/C][C]5872.09626391953[/C][C]114.546816740837[/C][/ROW]
[ROW][C]4[/C][C]6178.85032361938[/C][C]5894.25750084987[/C][C]284.592822769511[/C][/ROW]
[ROW][C]5[/C][C]6322.84253440181[/C][C]5916.41873778021[/C][C]406.423796621592[/C][/ROW]
[ROW][C]6[/C][C]5940.79025445236[/C][C]5938.57997471055[/C][C]2.21027974181254[/C][/ROW]
[ROW][C]7[/C][C]6332.69803021244[/C][C]5960.74121164089[/C][C]371.956818571548[/C][/ROW]
[ROW][C]8[/C][C]6459.29273919072[/C][C]5982.90244857123[/C][C]476.390290619492[/C][/ROW]
[ROW][C]9[/C][C]6373.66836996409[/C][C]6005.06368550157[/C][C]368.604684462517[/C][/ROW]
[ROW][C]10[/C][C]6290.23476729827[/C][C]6027.22492243191[/C][C]263.009844866357[/C][/ROW]
[ROW][C]11[/C][C]6533.30436789521[/C][C]6049.38615936225[/C][C]483.918208532964[/C][/ROW]
[ROW][C]12[/C][C]6249.7773318344[/C][C]6071.54739629259[/C][C]178.229935541811[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299567&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299567&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
15082.669785123235827.77379005886-745.10400493562
23645.155533456375849.93502698919-2204.77949353282
35986.643080660375872.09626391953114.546816740837
46178.850323619385894.25750084987284.592822769511
56322.842534401815916.41873778021406.423796621592
65940.790254452365938.579974710552.21027974181254
76332.698030212445960.74121164089371.956818571548
86459.292739190725982.90244857123476.390290619492
96373.668369964096005.06368550157368.604684462517
106290.234767298276027.22492243191263.009844866357
116533.304367895216049.38615936225483.918208532964
126249.77733183446071.54739629259178.229935541811



Parameters (Session):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')