Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationWed, 14 Dec 2016 16:29:13 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481729382skgdqle4rwub8at.htm/, Retrieved Fri, 01 Nov 2024 03:38:33 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299565, Retrieved Fri, 01 Nov 2024 03:38:33 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact104
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-14 15:29:13] [85f5800284aab30c091766186b093bb4] [Current]
Feedback Forum

Post a new message
Dataseries X:
1389
1398.6
1459
1545.2
1629.6
1675.2
1797.2
1739.2
1925.4
1908.4
2256.4
2217.6
2471.2
2634.4
2729.8
2752.6
3436.8
3579.8
3559.8
3234
3872.2
3996.8
4142.8
3992.2
4846.8
4757.4
4483.2
5033.4
5403.8
5280.8
5217
5422.2
6238
6254.8
6429
5942.4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299565&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299565&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299565&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.24365-1.44150.079172
2-0.228935-1.35440.092144
3-0.194993-1.15360.128242
40.4395132.60020.006778
5-0.144995-0.85780.198419
6-0.115273-0.6820.249874
70.0168410.09960.460603
80.2652461.56920.062798
9-0.269758-1.59590.05975
100.0488410.28890.387164
11-0.052311-0.30950.379397
120.2795751.6540.053536
13-0.296525-1.75430.044069
140.0345130.20420.419697
15-0.120952-0.71560.239505

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & -0.24365 & -1.4415 & 0.079172 \tabularnewline
2 & -0.228935 & -1.3544 & 0.092144 \tabularnewline
3 & -0.194993 & -1.1536 & 0.128242 \tabularnewline
4 & 0.439513 & 2.6002 & 0.006778 \tabularnewline
5 & -0.144995 & -0.8578 & 0.198419 \tabularnewline
6 & -0.115273 & -0.682 & 0.249874 \tabularnewline
7 & 0.016841 & 0.0996 & 0.460603 \tabularnewline
8 & 0.265246 & 1.5692 & 0.062798 \tabularnewline
9 & -0.269758 & -1.5959 & 0.05975 \tabularnewline
10 & 0.048841 & 0.2889 & 0.387164 \tabularnewline
11 & -0.052311 & -0.3095 & 0.379397 \tabularnewline
12 & 0.279575 & 1.654 & 0.053536 \tabularnewline
13 & -0.296525 & -1.7543 & 0.044069 \tabularnewline
14 & 0.034513 & 0.2042 & 0.419697 \tabularnewline
15 & -0.120952 & -0.7156 & 0.239505 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299565&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.24365[/C][C]-1.4415[/C][C]0.079172[/C][/ROW]
[ROW][C]2[/C][C]-0.228935[/C][C]-1.3544[/C][C]0.092144[/C][/ROW]
[ROW][C]3[/C][C]-0.194993[/C][C]-1.1536[/C][C]0.128242[/C][/ROW]
[ROW][C]4[/C][C]0.439513[/C][C]2.6002[/C][C]0.006778[/C][/ROW]
[ROW][C]5[/C][C]-0.144995[/C][C]-0.8578[/C][C]0.198419[/C][/ROW]
[ROW][C]6[/C][C]-0.115273[/C][C]-0.682[/C][C]0.249874[/C][/ROW]
[ROW][C]7[/C][C]0.016841[/C][C]0.0996[/C][C]0.460603[/C][/ROW]
[ROW][C]8[/C][C]0.265246[/C][C]1.5692[/C][C]0.062798[/C][/ROW]
[ROW][C]9[/C][C]-0.269758[/C][C]-1.5959[/C][C]0.05975[/C][/ROW]
[ROW][C]10[/C][C]0.048841[/C][C]0.2889[/C][C]0.387164[/C][/ROW]
[ROW][C]11[/C][C]-0.052311[/C][C]-0.3095[/C][C]0.379397[/C][/ROW]
[ROW][C]12[/C][C]0.279575[/C][C]1.654[/C][C]0.053536[/C][/ROW]
[ROW][C]13[/C][C]-0.296525[/C][C]-1.7543[/C][C]0.044069[/C][/ROW]
[ROW][C]14[/C][C]0.034513[/C][C]0.2042[/C][C]0.419697[/C][/ROW]
[ROW][C]15[/C][C]-0.120952[/C][C]-0.7156[/C][C]0.239505[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299565&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299565&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
1-0.24365-1.44150.079172
2-0.228935-1.35440.092144
3-0.194993-1.15360.128242
40.4395132.60020.006778
5-0.144995-0.85780.198419
6-0.115273-0.6820.249874
70.0168410.09960.460603
80.2652461.56920.062798
9-0.269758-1.59590.05975
100.0488410.28890.387164
11-0.052311-0.30950.379397
120.2795751.6540.053536
13-0.296525-1.75430.044069
140.0345130.20420.419697
15-0.120952-0.71560.239505







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.24365-1.44150.079172
2-0.306496-1.81330.039188
3-0.401923-2.37780.011505
40.2183521.29180.102448
5-0.106495-0.630.266382
6-0.075586-0.44720.328754
70.1025380.60660.274007
80.1345180.79580.215752
9-0.161503-0.95550.172948
100.1390660.82270.208117
11-0.115696-0.68450.249094
120.1303790.77130.222843
13-0.078078-0.46190.3235
14-0.070005-0.41420.340644
15-0.212332-1.25620.108687

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & -0.24365 & -1.4415 & 0.079172 \tabularnewline
2 & -0.306496 & -1.8133 & 0.039188 \tabularnewline
3 & -0.401923 & -2.3778 & 0.011505 \tabularnewline
4 & 0.218352 & 1.2918 & 0.102448 \tabularnewline
5 & -0.106495 & -0.63 & 0.266382 \tabularnewline
6 & -0.075586 & -0.4472 & 0.328754 \tabularnewline
7 & 0.102538 & 0.6066 & 0.274007 \tabularnewline
8 & 0.134518 & 0.7958 & 0.215752 \tabularnewline
9 & -0.161503 & -0.9555 & 0.172948 \tabularnewline
10 & 0.139066 & 0.8227 & 0.208117 \tabularnewline
11 & -0.115696 & -0.6845 & 0.249094 \tabularnewline
12 & 0.130379 & 0.7713 & 0.222843 \tabularnewline
13 & -0.078078 & -0.4619 & 0.3235 \tabularnewline
14 & -0.070005 & -0.4142 & 0.340644 \tabularnewline
15 & -0.212332 & -1.2562 & 0.108687 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299565&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]-0.24365[/C][C]-1.4415[/C][C]0.079172[/C][/ROW]
[ROW][C]2[/C][C]-0.306496[/C][C]-1.8133[/C][C]0.039188[/C][/ROW]
[ROW][C]3[/C][C]-0.401923[/C][C]-2.3778[/C][C]0.011505[/C][/ROW]
[ROW][C]4[/C][C]0.218352[/C][C]1.2918[/C][C]0.102448[/C][/ROW]
[ROW][C]5[/C][C]-0.106495[/C][C]-0.63[/C][C]0.266382[/C][/ROW]
[ROW][C]6[/C][C]-0.075586[/C][C]-0.4472[/C][C]0.328754[/C][/ROW]
[ROW][C]7[/C][C]0.102538[/C][C]0.6066[/C][C]0.274007[/C][/ROW]
[ROW][C]8[/C][C]0.134518[/C][C]0.7958[/C][C]0.215752[/C][/ROW]
[ROW][C]9[/C][C]-0.161503[/C][C]-0.9555[/C][C]0.172948[/C][/ROW]
[ROW][C]10[/C][C]0.139066[/C][C]0.8227[/C][C]0.208117[/C][/ROW]
[ROW][C]11[/C][C]-0.115696[/C][C]-0.6845[/C][C]0.249094[/C][/ROW]
[ROW][C]12[/C][C]0.130379[/C][C]0.7713[/C][C]0.222843[/C][/ROW]
[ROW][C]13[/C][C]-0.078078[/C][C]-0.4619[/C][C]0.3235[/C][/ROW]
[ROW][C]14[/C][C]-0.070005[/C][C]-0.4142[/C][C]0.340644[/C][/ROW]
[ROW][C]15[/C][C]-0.212332[/C][C]-1.2562[/C][C]0.108687[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299565&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299565&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
1-0.24365-1.44150.079172
2-0.306496-1.81330.039188
3-0.401923-2.37780.011505
40.2183521.29180.102448
5-0.106495-0.630.266382
6-0.075586-0.44720.328754
70.1025380.60660.274007
80.1345180.79580.215752
9-0.161503-0.95550.172948
100.1390660.82270.208117
11-0.115696-0.68450.249094
120.1303790.77130.222843
13-0.078078-0.46190.3235
14-0.070005-0.41420.340644
15-0.212332-1.25620.108687



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 4 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 1 ; par4 = 0 ; par5 = 4 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')