Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationWed, 14 Dec 2016 15:28:14 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481725755wj0436v4g67sbp2.htm/, Retrieved Fri, 01 Nov 2024 03:26:55 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299495, Retrieved Fri, 01 Nov 2024 03:26:55 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact86
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [Structural Time S...] [2016-12-14 14:28:14] [08c254f01fc4fb8b56d19f4878327019] [Current]
Feedback Forum

Post a new message
Dataseries X:
5884.5
5879.1
5897.2
5920.7
5944.6
5982.4
6017.4
5980
6087.4
6114.5
6143.2
6173.1
6195.7
6236
6255.2
6282.5
6301.7
6330.9
6350.8
6363
6388.6
6411.5
6436.4
6449.2
6473.3
6479.5
6507.3
6516.1
6534.2
6540.6
6542.9
6562.6
6577
6596.6
6612.1
6626.3
6640.1
6642.4
6648.7
6660.8
6668.2
6657.7
6682.8
6696.8
6714.4
6728.2
6741.8
6758.4
6774
6792.3
6809.1
6832.2
6850.3
6861.1
6882.6
6900.7
6915.1
6947.8
6965.9
6991.7
6993.9
7031.7
7048.7
7067.4
7077.1
7107.4
7127.1
7137.3
7147.9
7170.6
7193
7220.1
7251
7268.1
7282.2
7290.2
7292.5
7299.6
7305.1
7306.9
7313.3
7325.6
7348.1
7354.7
7375.3
7396.3
7401.9
7390.4
7393.6
7398.5
7392.4
7390.8
7380.6
7365.8
7346.9
7334.1
7314.8
7287.8
7274.3
7252.7
7257.5
7256.5
7253.9
7262.6
7263.6
7261.3
7250.4
7249.3
7245.6
7244.4
7253.8
7271.6
7282.7
7283
7293.3
7291.2
7298.5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299495&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299495&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299495&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
15884.55884.5000
25879.15882.67485566278-1.48868770475832-0.16822830322596-0.542736401888107
35897.25890.927670786664.407178354170520.01866385374764131.27295773263424
45920.75912.3854514567513.33535136880990.01362121931134631.83548969057939
55944.65938.5687035134719.8669011496527-0.06034216913502311.35653766726398
65982.45974.815342518328.2408884821008-0.1505322844370161.72502172179498
76017.46012.9420755046533.3258377638292-0.1850254387094351.03806703261334
859806001.2158705243510.0937422562569-0.112248656342543-4.72555433658884
96087.46063.2238217928936.8898984133156-0.1355318947987315.44656269893503
106114.56110.0024388964441.9961167352432-0.1347220656114491.03785744833685
116143.26146.0996667234638.9497430777439-0.136033854649463-0.619191493349202
126173.16177.005824439934.7958840471751-0.137553991256057-0.844282526360053
136195.76203.1989579818730.5975076580072-3.6857834522651-1.03707942308096
1462366235.1830500586531.24915578797930.3736746811512140.115162031721356
156255.26258.5126824542627.27493753013390.301615735921117-0.819560261036232
166282.56283.3416117364526.01073241981330.303152929581713-0.256500877327233
176301.76303.9065902585123.19683951049180.322137089958923-0.567563449360649
186330.96329.4803315486624.42154815383180.3146116365784950.24794995810289
196350.86351.5694170424823.21972341169680.319171951746787-0.244034870571418
2063636366.5349945854618.96228026142280.326448457490095-0.865259510758992
216388.66387.3884207335419.93846889930480.3260163233353570.198413330674991
226411.56409.9466814180921.2912172631590.3261745064563510.274943802791859
236436.46434.5308376274222.99167014741350.3266069576793170.345612947067055
246449.26451.6329116384219.95040320175480.325972204367961-0.61813351733012
256473.36474.5968376555921.4635401237549-2.670378485256540.341496142522388
266479.56483.9451205147315.58671629657010.0154472272834537-1.09551923633897
276507.36504.8185048864518.26571217324180.04722375432367010.549719446758172
286516.16518.2935062083615.79050634464720.0492140852802721-0.502503944740291
296534.26534.1296413606115.81407734892690.04910876060472730.00476660984218758
306540.66543.5277983142412.50593297861670.0625687869504055-0.670641125275136
316542.96547.032051782287.864495862776440.0742264911885154-0.942768032424269
326562.66560.0955993139910.54706738598560.07119204327063790.545204796092373
3365776574.9243231918412.75740590597090.07054452866029870.449255433533026
346596.66593.7069703875315.868513897910.07078541589967040.632328697319947
356612.16611.2463814599416.73131496080990.07093066174234320.175362800702417
366626.36626.7869297985716.11645003189690.070845719021483-0.124970664863618
376640.16641.6861309452315.4995064655608-1.02622713606361-0.134710189995857
386642.46646.6105073406610.2884822606085-0.0563217692500733-0.994852059879581
396648.76651.348245482997.46219194047299-0.0812216435453255-0.578533085614816
406660.86660.221157519378.19094233314393-0.08165909481816230.147990592373888
416668.26668.323041248218.14494210236469-0.0815054522368858-0.00931424551489548
426657.76663.71355455041.56628800326007-0.0614994720638662-1.33452573352918
436682.86677.267973271927.74972795022298-0.07310550414160421.25618206374024
446696.86693.0954130151311.9183256060501-0.07662917244515490.84723461839878
456714.46711.4589088670315.24568936571-0.07735757246616490.676290932710293
466728.26727.7756473453615.7987150150993-0.07732557435340970.112401865712826
476741.86742.4187198007815.2019895266788-0.077400641329477-0.121283601232
486758.46758.2041027542915.5032254116085-0.07736954318818590.0612259263499983
4967746773.3614330782715.3270955787340.798395244653899-0.037803164125359
506792.36791.2845854075816.6184092468803-0.04310781996757280.24988656717999
516809.16808.7481925799417.0499834244564-0.04007871588434430.0882144466491761
526832.26830.1864185352819.3166354708164-0.04116417702061840.46037938771529
536850.36850.07498166319.612023233384-0.04195187431844040.0598565545381441
546861.16863.8572273203916.6044384291799-0.034650019168643-0.610347607927901
556882.66881.9429589555917.3686420091205-0.03579504307029410.155264903488891
566900.76900.2818839138617.869419087219-0.03613294573789740.101779742841654
576915.16916.097720375216.8092152899626-0.0359476767899226-0.215487401537142
586947.86943.0736536440922.0586656009566-0.03570521866543811.06694574863078
596965.96965.6794134400422.3411583277879-0.03567685082026180.057416297013929
606991.76990.5505272135323.6474896444414-0.03556919788680620.265510790632195
616993.97001.1466836201616.9831956969208-1.19958804486856-1.4153892259362
627031.77027.561532619921.70403165269340.1984848054146140.921545400804503
637048.77048.7448906585321.43766621087750.19693953785816-0.0543935083037699
647067.47068.1530070083820.38941601057950.197357086091663-0.212934581865157
657077.17080.6021222738716.28863468935240.206457687213906-0.831392242274033
667107.47103.9176191614519.91429442106890.1991324121499190.735968038819943
677127.17125.9236338046720.9935666470310.1977867654611340.219292100394958
687137.37140.2308281378317.54239862578970.199724531824561-0.701431285961629
697147.97150.9128127669914.0005092330690.200239567684134-0.719891462262892
707170.67168.6496237528115.92969083943230.200313713213290.392104471432454
7171937190.1773163465818.82019951573510.2005552499124660.587492681978006
727220.17216.4216903885822.65361161929880.2008181240679190.779138143858731
7372517248.1018816674827.2713412864656-1.291770570062840.973775470282014
747268.17270.2159296048424.67842827544880.0754471571665244-0.509248420701142
757282.27286.1930337973420.22107319745910.053273994561823-0.909602028626357
767290.27295.3335767661314.49831863780910.0552252955731441-1.16257807197487
777292.57297.973810715838.374409863811270.0668630737581205-1.24200939631319
787299.67301.701088381535.976387726605890.0710118239967455-0.486861328799956
797305.17305.872545734175.045000738078920.0720061715369692-0.189252632188256
807306.97308.131705129973.607020387910420.0726975115543328-0.292262767615983
817313.37312.752543652384.130440091521740.07263234019134470.106385328428981
827325.67322.769884427787.170040790212580.07273237062376090.617796355865477
837348.17342.2573234071813.53004550225380.07318743287972361.29266448545394
847354.77354.9970302328313.12196265220260.0731634713058041-0.0829425503479435
857375.37373.2648380389715.7579126729115-0.3564893443780360.553016366169111
867396.37394.0628867620218.30039483611970.06834881055187770.50159180222468
877401.97405.1875486407814.62087340065170.0523629325600991-0.75049028393372
887390.47399.741684131054.257386486431480.0554518140733809-2.10547295968616
897393.67396.870339108640.5759711064056140.0615690190022927-0.74684136587044
907398.57398.12271829210.9250381192879820.06104098511946040.0708795453446833
917392.47394.47614690668-1.434193152596560.0632431663902274-0.479398954564918
927390.87391.47168693941-2.244754267351680.0635838848261635-0.16474317751371
937380.67383.30817261573-5.300552989522830.0639165468974859-0.621092306075402
947365.87369.65057898432-9.615558314714030.0637923907922004-0.877021490818549
957346.97351.04664781191-14.25662112877480.0635020535820997-0.943291612454033
967334.17334.91486702897-15.22483586827380.0634523473712818-0.196788989064353
977314.87316.9705122904-16.6192880007255-0.905326417121648-0.291420686903966
987287.87291.58308441674-21.05383772602460.0266727195096943-0.877891237361862
997274.37273.08013967172-19.74479644908090.03172070882441920.266892326809111
1007252.77252.88099187834-19.97944017453070.0317828265718726-0.0476731099508374
1017257.57249.65071273792-11.33002763839920.01901460483794651.7550573182671
1027256.57250.70047332937-4.940952545834320.0104286141116721.29746819853981
1037253.97251.29924543395-2.081952429466830.008057868147234110.580968034696474
1047262.67258.327663703962.620891729670440.006301740246912150.955835462917212
1057263.67262.750043795943.550989444975460.006211791857290760.189042640397651
1067261.37262.891042959581.790306398139780.00616678761854296-0.357857525318366
1077250.47254.95153678452-3.233573151321120.00588759066010965-1.02109901839047
1087249.37250.06731033946-4.085864355379390.00584872077248591-0.173227628782237
1097245.67245.77463873017-4.19198806046747-0.0783544503266148-0.0221111940049971
1107244.47243.52935561541-3.205384500456320.01824747816107290.19584897463446
1117253.87249.492543732631.502557476490030.03456632300987390.959571527908619
1127271.67265.00578058398.738027333577810.03284347525260691.47010336827162
1137282.77279.826919636211.87934708071210.02867185212905250.637513918469012
11472837285.752293922848.806426011166340.0323867600408096-0.624090231371903
1157293.37293.679022204318.352401678087620.0327254367351543-0.092262747314652
1167291.27294.631283292184.532305652120470.0340086625942506-0.776421466680311
1177298.57298.68848889974.287012925970810.0340300020466184-0.0498558013417827

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 5884.5 & 5884.5 & 0 & 0 & 0 \tabularnewline
2 & 5879.1 & 5882.67485566278 & -1.48868770475832 & -0.16822830322596 & -0.542736401888107 \tabularnewline
3 & 5897.2 & 5890.92767078666 & 4.40717835417052 & 0.0186638537476413 & 1.27295773263424 \tabularnewline
4 & 5920.7 & 5912.38545145675 & 13.3353513688099 & 0.0136212193113463 & 1.83548969057939 \tabularnewline
5 & 5944.6 & 5938.56870351347 & 19.8669011496527 & -0.0603421691350231 & 1.35653766726398 \tabularnewline
6 & 5982.4 & 5974.8153425183 & 28.2408884821008 & -0.150532284437016 & 1.72502172179498 \tabularnewline
7 & 6017.4 & 6012.94207550465 & 33.3258377638292 & -0.185025438709435 & 1.03806703261334 \tabularnewline
8 & 5980 & 6001.21587052435 & 10.0937422562569 & -0.112248656342543 & -4.72555433658884 \tabularnewline
9 & 6087.4 & 6063.22382179289 & 36.8898984133156 & -0.135531894798731 & 5.44656269893503 \tabularnewline
10 & 6114.5 & 6110.00243889644 & 41.9961167352432 & -0.134722065611449 & 1.03785744833685 \tabularnewline
11 & 6143.2 & 6146.09966672346 & 38.9497430777439 & -0.136033854649463 & -0.619191493349202 \tabularnewline
12 & 6173.1 & 6177.0058244399 & 34.7958840471751 & -0.137553991256057 & -0.844282526360053 \tabularnewline
13 & 6195.7 & 6203.19895798187 & 30.5975076580072 & -3.6857834522651 & -1.03707942308096 \tabularnewline
14 & 6236 & 6235.18305005865 & 31.2491557879793 & 0.373674681151214 & 0.115162031721356 \tabularnewline
15 & 6255.2 & 6258.51268245426 & 27.2749375301339 & 0.301615735921117 & -0.819560261036232 \tabularnewline
16 & 6282.5 & 6283.34161173645 & 26.0107324198133 & 0.303152929581713 & -0.256500877327233 \tabularnewline
17 & 6301.7 & 6303.90659025851 & 23.1968395104918 & 0.322137089958923 & -0.567563449360649 \tabularnewline
18 & 6330.9 & 6329.48033154866 & 24.4215481538318 & 0.314611636578495 & 0.24794995810289 \tabularnewline
19 & 6350.8 & 6351.56941704248 & 23.2197234116968 & 0.319171951746787 & -0.244034870571418 \tabularnewline
20 & 6363 & 6366.53499458546 & 18.9622802614228 & 0.326448457490095 & -0.865259510758992 \tabularnewline
21 & 6388.6 & 6387.38842073354 & 19.9384688993048 & 0.326016323335357 & 0.198413330674991 \tabularnewline
22 & 6411.5 & 6409.94668141809 & 21.291217263159 & 0.326174506456351 & 0.274943802791859 \tabularnewline
23 & 6436.4 & 6434.53083762742 & 22.9916701474135 & 0.326606957679317 & 0.345612947067055 \tabularnewline
24 & 6449.2 & 6451.63291163842 & 19.9504032017548 & 0.325972204367961 & -0.61813351733012 \tabularnewline
25 & 6473.3 & 6474.59683765559 & 21.4635401237549 & -2.67037848525654 & 0.341496142522388 \tabularnewline
26 & 6479.5 & 6483.94512051473 & 15.5867162965701 & 0.0154472272834537 & -1.09551923633897 \tabularnewline
27 & 6507.3 & 6504.81850488645 & 18.2657121732418 & 0.0472237543236701 & 0.549719446758172 \tabularnewline
28 & 6516.1 & 6518.29350620836 & 15.7905063446472 & 0.0492140852802721 & -0.502503944740291 \tabularnewline
29 & 6534.2 & 6534.12964136061 & 15.8140773489269 & 0.0491087606047273 & 0.00476660984218758 \tabularnewline
30 & 6540.6 & 6543.52779831424 & 12.5059329786167 & 0.0625687869504055 & -0.670641125275136 \tabularnewline
31 & 6542.9 & 6547.03205178228 & 7.86449586277644 & 0.0742264911885154 & -0.942768032424269 \tabularnewline
32 & 6562.6 & 6560.09559931399 & 10.5470673859856 & 0.0711920432706379 & 0.545204796092373 \tabularnewline
33 & 6577 & 6574.92432319184 & 12.7574059059709 & 0.0705445286602987 & 0.449255433533026 \tabularnewline
34 & 6596.6 & 6593.70697038753 & 15.86851389791 & 0.0707854158996704 & 0.632328697319947 \tabularnewline
35 & 6612.1 & 6611.24638145994 & 16.7313149608099 & 0.0709306617423432 & 0.175362800702417 \tabularnewline
36 & 6626.3 & 6626.78692979857 & 16.1164500318969 & 0.070845719021483 & -0.124970664863618 \tabularnewline
37 & 6640.1 & 6641.68613094523 & 15.4995064655608 & -1.02622713606361 & -0.134710189995857 \tabularnewline
38 & 6642.4 & 6646.61050734066 & 10.2884822606085 & -0.0563217692500733 & -0.994852059879581 \tabularnewline
39 & 6648.7 & 6651.34824548299 & 7.46219194047299 & -0.0812216435453255 & -0.578533085614816 \tabularnewline
40 & 6660.8 & 6660.22115751937 & 8.19094233314393 & -0.0816590948181623 & 0.147990592373888 \tabularnewline
41 & 6668.2 & 6668.32304124821 & 8.14494210236469 & -0.0815054522368858 & -0.00931424551489548 \tabularnewline
42 & 6657.7 & 6663.7135545504 & 1.56628800326007 & -0.0614994720638662 & -1.33452573352918 \tabularnewline
43 & 6682.8 & 6677.26797327192 & 7.74972795022298 & -0.0731055041416042 & 1.25618206374024 \tabularnewline
44 & 6696.8 & 6693.09541301513 & 11.9183256060501 & -0.0766291724451549 & 0.84723461839878 \tabularnewline
45 & 6714.4 & 6711.45890886703 & 15.24568936571 & -0.0773575724661649 & 0.676290932710293 \tabularnewline
46 & 6728.2 & 6727.77564734536 & 15.7987150150993 & -0.0773255743534097 & 0.112401865712826 \tabularnewline
47 & 6741.8 & 6742.41871980078 & 15.2019895266788 & -0.077400641329477 & -0.121283601232 \tabularnewline
48 & 6758.4 & 6758.20410275429 & 15.5032254116085 & -0.0773695431881859 & 0.0612259263499983 \tabularnewline
49 & 6774 & 6773.36143307827 & 15.327095578734 & 0.798395244653899 & -0.037803164125359 \tabularnewline
50 & 6792.3 & 6791.28458540758 & 16.6184092468803 & -0.0431078199675728 & 0.24988656717999 \tabularnewline
51 & 6809.1 & 6808.74819257994 & 17.0499834244564 & -0.0400787158843443 & 0.0882144466491761 \tabularnewline
52 & 6832.2 & 6830.18641853528 & 19.3166354708164 & -0.0411641770206184 & 0.46037938771529 \tabularnewline
53 & 6850.3 & 6850.074981663 & 19.612023233384 & -0.0419518743184404 & 0.0598565545381441 \tabularnewline
54 & 6861.1 & 6863.85722732039 & 16.6044384291799 & -0.034650019168643 & -0.610347607927901 \tabularnewline
55 & 6882.6 & 6881.94295895559 & 17.3686420091205 & -0.0357950430702941 & 0.155264903488891 \tabularnewline
56 & 6900.7 & 6900.28188391386 & 17.869419087219 & -0.0361329457378974 & 0.101779742841654 \tabularnewline
57 & 6915.1 & 6916.0977203752 & 16.8092152899626 & -0.0359476767899226 & -0.215487401537142 \tabularnewline
58 & 6947.8 & 6943.07365364409 & 22.0586656009566 & -0.0357052186654381 & 1.06694574863078 \tabularnewline
59 & 6965.9 & 6965.67941344004 & 22.3411583277879 & -0.0356768508202618 & 0.057416297013929 \tabularnewline
60 & 6991.7 & 6990.55052721353 & 23.6474896444414 & -0.0355691978868062 & 0.265510790632195 \tabularnewline
61 & 6993.9 & 7001.14668362016 & 16.9831956969208 & -1.19958804486856 & -1.4153892259362 \tabularnewline
62 & 7031.7 & 7027.5615326199 & 21.7040316526934 & 0.198484805414614 & 0.921545400804503 \tabularnewline
63 & 7048.7 & 7048.74489065853 & 21.4376662108775 & 0.19693953785816 & -0.0543935083037699 \tabularnewline
64 & 7067.4 & 7068.15300700838 & 20.3894160105795 & 0.197357086091663 & -0.212934581865157 \tabularnewline
65 & 7077.1 & 7080.60212227387 & 16.2886346893524 & 0.206457687213906 & -0.831392242274033 \tabularnewline
66 & 7107.4 & 7103.91761916145 & 19.9142944210689 & 0.199132412149919 & 0.735968038819943 \tabularnewline
67 & 7127.1 & 7125.92363380467 & 20.993566647031 & 0.197786765461134 & 0.219292100394958 \tabularnewline
68 & 7137.3 & 7140.23082813783 & 17.5423986257897 & 0.199724531824561 & -0.701431285961629 \tabularnewline
69 & 7147.9 & 7150.91281276699 & 14.000509233069 & 0.200239567684134 & -0.719891462262892 \tabularnewline
70 & 7170.6 & 7168.64962375281 & 15.9296908394323 & 0.20031371321329 & 0.392104471432454 \tabularnewline
71 & 7193 & 7190.17731634658 & 18.8201995157351 & 0.200555249912466 & 0.587492681978006 \tabularnewline
72 & 7220.1 & 7216.42169038858 & 22.6536116192988 & 0.200818124067919 & 0.779138143858731 \tabularnewline
73 & 7251 & 7248.10188166748 & 27.2713412864656 & -1.29177057006284 & 0.973775470282014 \tabularnewline
74 & 7268.1 & 7270.21592960484 & 24.6784282754488 & 0.0754471571665244 & -0.509248420701142 \tabularnewline
75 & 7282.2 & 7286.19303379734 & 20.2210731974591 & 0.053273994561823 & -0.909602028626357 \tabularnewline
76 & 7290.2 & 7295.33357676613 & 14.4983186378091 & 0.0552252955731441 & -1.16257807197487 \tabularnewline
77 & 7292.5 & 7297.97381071583 & 8.37440986381127 & 0.0668630737581205 & -1.24200939631319 \tabularnewline
78 & 7299.6 & 7301.70108838153 & 5.97638772660589 & 0.0710118239967455 & -0.486861328799956 \tabularnewline
79 & 7305.1 & 7305.87254573417 & 5.04500073807892 & 0.0720061715369692 & -0.189252632188256 \tabularnewline
80 & 7306.9 & 7308.13170512997 & 3.60702038791042 & 0.0726975115543328 & -0.292262767615983 \tabularnewline
81 & 7313.3 & 7312.75254365238 & 4.13044009152174 & 0.0726323401913447 & 0.106385328428981 \tabularnewline
82 & 7325.6 & 7322.76988442778 & 7.17004079021258 & 0.0727323706237609 & 0.617796355865477 \tabularnewline
83 & 7348.1 & 7342.25732340718 & 13.5300455022538 & 0.0731874328797236 & 1.29266448545394 \tabularnewline
84 & 7354.7 & 7354.99703023283 & 13.1219626522026 & 0.0731634713058041 & -0.0829425503479435 \tabularnewline
85 & 7375.3 & 7373.26483803897 & 15.7579126729115 & -0.356489344378036 & 0.553016366169111 \tabularnewline
86 & 7396.3 & 7394.06288676202 & 18.3003948361197 & 0.0683488105518777 & 0.50159180222468 \tabularnewline
87 & 7401.9 & 7405.18754864078 & 14.6208734006517 & 0.0523629325600991 & -0.75049028393372 \tabularnewline
88 & 7390.4 & 7399.74168413105 & 4.25738648643148 & 0.0554518140733809 & -2.10547295968616 \tabularnewline
89 & 7393.6 & 7396.87033910864 & 0.575971106405614 & 0.0615690190022927 & -0.74684136587044 \tabularnewline
90 & 7398.5 & 7398.1227182921 & 0.925038119287982 & 0.0610409851194604 & 0.0708795453446833 \tabularnewline
91 & 7392.4 & 7394.47614690668 & -1.43419315259656 & 0.0632431663902274 & -0.479398954564918 \tabularnewline
92 & 7390.8 & 7391.47168693941 & -2.24475426735168 & 0.0635838848261635 & -0.16474317751371 \tabularnewline
93 & 7380.6 & 7383.30817261573 & -5.30055298952283 & 0.0639165468974859 & -0.621092306075402 \tabularnewline
94 & 7365.8 & 7369.65057898432 & -9.61555831471403 & 0.0637923907922004 & -0.877021490818549 \tabularnewline
95 & 7346.9 & 7351.04664781191 & -14.2566211287748 & 0.0635020535820997 & -0.943291612454033 \tabularnewline
96 & 7334.1 & 7334.91486702897 & -15.2248358682738 & 0.0634523473712818 & -0.196788989064353 \tabularnewline
97 & 7314.8 & 7316.9705122904 & -16.6192880007255 & -0.905326417121648 & -0.291420686903966 \tabularnewline
98 & 7287.8 & 7291.58308441674 & -21.0538377260246 & 0.0266727195096943 & -0.877891237361862 \tabularnewline
99 & 7274.3 & 7273.08013967172 & -19.7447964490809 & 0.0317207088244192 & 0.266892326809111 \tabularnewline
100 & 7252.7 & 7252.88099187834 & -19.9794401745307 & 0.0317828265718726 & -0.0476731099508374 \tabularnewline
101 & 7257.5 & 7249.65071273792 & -11.3300276383992 & 0.0190146048379465 & 1.7550573182671 \tabularnewline
102 & 7256.5 & 7250.70047332937 & -4.94095254583432 & 0.010428614111672 & 1.29746819853981 \tabularnewline
103 & 7253.9 & 7251.29924543395 & -2.08195242946683 & 0.00805786814723411 & 0.580968034696474 \tabularnewline
104 & 7262.6 & 7258.32766370396 & 2.62089172967044 & 0.00630174024691215 & 0.955835462917212 \tabularnewline
105 & 7263.6 & 7262.75004379594 & 3.55098944497546 & 0.00621179185729076 & 0.189042640397651 \tabularnewline
106 & 7261.3 & 7262.89104295958 & 1.79030639813978 & 0.00616678761854296 & -0.357857525318366 \tabularnewline
107 & 7250.4 & 7254.95153678452 & -3.23357315132112 & 0.00588759066010965 & -1.02109901839047 \tabularnewline
108 & 7249.3 & 7250.06731033946 & -4.08586435537939 & 0.00584872077248591 & -0.173227628782237 \tabularnewline
109 & 7245.6 & 7245.77463873017 & -4.19198806046747 & -0.0783544503266148 & -0.0221111940049971 \tabularnewline
110 & 7244.4 & 7243.52935561541 & -3.20538450045632 & 0.0182474781610729 & 0.19584897463446 \tabularnewline
111 & 7253.8 & 7249.49254373263 & 1.50255747649003 & 0.0345663230098739 & 0.959571527908619 \tabularnewline
112 & 7271.6 & 7265.0057805839 & 8.73802733357781 & 0.0328434752526069 & 1.47010336827162 \tabularnewline
113 & 7282.7 & 7279.8269196362 & 11.8793470807121 & 0.0286718521290525 & 0.637513918469012 \tabularnewline
114 & 7283 & 7285.75229392284 & 8.80642601116634 & 0.0323867600408096 & -0.624090231371903 \tabularnewline
115 & 7293.3 & 7293.67902220431 & 8.35240167808762 & 0.0327254367351543 & -0.092262747314652 \tabularnewline
116 & 7291.2 & 7294.63128329218 & 4.53230565212047 & 0.0340086625942506 & -0.776421466680311 \tabularnewline
117 & 7298.5 & 7298.6884888997 & 4.28701292597081 & 0.0340300020466184 & -0.0498558013417827 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299495&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]5884.5[/C][C]5884.5[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]5879.1[/C][C]5882.67485566278[/C][C]-1.48868770475832[/C][C]-0.16822830322596[/C][C]-0.542736401888107[/C][/ROW]
[ROW][C]3[/C][C]5897.2[/C][C]5890.92767078666[/C][C]4.40717835417052[/C][C]0.0186638537476413[/C][C]1.27295773263424[/C][/ROW]
[ROW][C]4[/C][C]5920.7[/C][C]5912.38545145675[/C][C]13.3353513688099[/C][C]0.0136212193113463[/C][C]1.83548969057939[/C][/ROW]
[ROW][C]5[/C][C]5944.6[/C][C]5938.56870351347[/C][C]19.8669011496527[/C][C]-0.0603421691350231[/C][C]1.35653766726398[/C][/ROW]
[ROW][C]6[/C][C]5982.4[/C][C]5974.8153425183[/C][C]28.2408884821008[/C][C]-0.150532284437016[/C][C]1.72502172179498[/C][/ROW]
[ROW][C]7[/C][C]6017.4[/C][C]6012.94207550465[/C][C]33.3258377638292[/C][C]-0.185025438709435[/C][C]1.03806703261334[/C][/ROW]
[ROW][C]8[/C][C]5980[/C][C]6001.21587052435[/C][C]10.0937422562569[/C][C]-0.112248656342543[/C][C]-4.72555433658884[/C][/ROW]
[ROW][C]9[/C][C]6087.4[/C][C]6063.22382179289[/C][C]36.8898984133156[/C][C]-0.135531894798731[/C][C]5.44656269893503[/C][/ROW]
[ROW][C]10[/C][C]6114.5[/C][C]6110.00243889644[/C][C]41.9961167352432[/C][C]-0.134722065611449[/C][C]1.03785744833685[/C][/ROW]
[ROW][C]11[/C][C]6143.2[/C][C]6146.09966672346[/C][C]38.9497430777439[/C][C]-0.136033854649463[/C][C]-0.619191493349202[/C][/ROW]
[ROW][C]12[/C][C]6173.1[/C][C]6177.0058244399[/C][C]34.7958840471751[/C][C]-0.137553991256057[/C][C]-0.844282526360053[/C][/ROW]
[ROW][C]13[/C][C]6195.7[/C][C]6203.19895798187[/C][C]30.5975076580072[/C][C]-3.6857834522651[/C][C]-1.03707942308096[/C][/ROW]
[ROW][C]14[/C][C]6236[/C][C]6235.18305005865[/C][C]31.2491557879793[/C][C]0.373674681151214[/C][C]0.115162031721356[/C][/ROW]
[ROW][C]15[/C][C]6255.2[/C][C]6258.51268245426[/C][C]27.2749375301339[/C][C]0.301615735921117[/C][C]-0.819560261036232[/C][/ROW]
[ROW][C]16[/C][C]6282.5[/C][C]6283.34161173645[/C][C]26.0107324198133[/C][C]0.303152929581713[/C][C]-0.256500877327233[/C][/ROW]
[ROW][C]17[/C][C]6301.7[/C][C]6303.90659025851[/C][C]23.1968395104918[/C][C]0.322137089958923[/C][C]-0.567563449360649[/C][/ROW]
[ROW][C]18[/C][C]6330.9[/C][C]6329.48033154866[/C][C]24.4215481538318[/C][C]0.314611636578495[/C][C]0.24794995810289[/C][/ROW]
[ROW][C]19[/C][C]6350.8[/C][C]6351.56941704248[/C][C]23.2197234116968[/C][C]0.319171951746787[/C][C]-0.244034870571418[/C][/ROW]
[ROW][C]20[/C][C]6363[/C][C]6366.53499458546[/C][C]18.9622802614228[/C][C]0.326448457490095[/C][C]-0.865259510758992[/C][/ROW]
[ROW][C]21[/C][C]6388.6[/C][C]6387.38842073354[/C][C]19.9384688993048[/C][C]0.326016323335357[/C][C]0.198413330674991[/C][/ROW]
[ROW][C]22[/C][C]6411.5[/C][C]6409.94668141809[/C][C]21.291217263159[/C][C]0.326174506456351[/C][C]0.274943802791859[/C][/ROW]
[ROW][C]23[/C][C]6436.4[/C][C]6434.53083762742[/C][C]22.9916701474135[/C][C]0.326606957679317[/C][C]0.345612947067055[/C][/ROW]
[ROW][C]24[/C][C]6449.2[/C][C]6451.63291163842[/C][C]19.9504032017548[/C][C]0.325972204367961[/C][C]-0.61813351733012[/C][/ROW]
[ROW][C]25[/C][C]6473.3[/C][C]6474.59683765559[/C][C]21.4635401237549[/C][C]-2.67037848525654[/C][C]0.341496142522388[/C][/ROW]
[ROW][C]26[/C][C]6479.5[/C][C]6483.94512051473[/C][C]15.5867162965701[/C][C]0.0154472272834537[/C][C]-1.09551923633897[/C][/ROW]
[ROW][C]27[/C][C]6507.3[/C][C]6504.81850488645[/C][C]18.2657121732418[/C][C]0.0472237543236701[/C][C]0.549719446758172[/C][/ROW]
[ROW][C]28[/C][C]6516.1[/C][C]6518.29350620836[/C][C]15.7905063446472[/C][C]0.0492140852802721[/C][C]-0.502503944740291[/C][/ROW]
[ROW][C]29[/C][C]6534.2[/C][C]6534.12964136061[/C][C]15.8140773489269[/C][C]0.0491087606047273[/C][C]0.00476660984218758[/C][/ROW]
[ROW][C]30[/C][C]6540.6[/C][C]6543.52779831424[/C][C]12.5059329786167[/C][C]0.0625687869504055[/C][C]-0.670641125275136[/C][/ROW]
[ROW][C]31[/C][C]6542.9[/C][C]6547.03205178228[/C][C]7.86449586277644[/C][C]0.0742264911885154[/C][C]-0.942768032424269[/C][/ROW]
[ROW][C]32[/C][C]6562.6[/C][C]6560.09559931399[/C][C]10.5470673859856[/C][C]0.0711920432706379[/C][C]0.545204796092373[/C][/ROW]
[ROW][C]33[/C][C]6577[/C][C]6574.92432319184[/C][C]12.7574059059709[/C][C]0.0705445286602987[/C][C]0.449255433533026[/C][/ROW]
[ROW][C]34[/C][C]6596.6[/C][C]6593.70697038753[/C][C]15.86851389791[/C][C]0.0707854158996704[/C][C]0.632328697319947[/C][/ROW]
[ROW][C]35[/C][C]6612.1[/C][C]6611.24638145994[/C][C]16.7313149608099[/C][C]0.0709306617423432[/C][C]0.175362800702417[/C][/ROW]
[ROW][C]36[/C][C]6626.3[/C][C]6626.78692979857[/C][C]16.1164500318969[/C][C]0.070845719021483[/C][C]-0.124970664863618[/C][/ROW]
[ROW][C]37[/C][C]6640.1[/C][C]6641.68613094523[/C][C]15.4995064655608[/C][C]-1.02622713606361[/C][C]-0.134710189995857[/C][/ROW]
[ROW][C]38[/C][C]6642.4[/C][C]6646.61050734066[/C][C]10.2884822606085[/C][C]-0.0563217692500733[/C][C]-0.994852059879581[/C][/ROW]
[ROW][C]39[/C][C]6648.7[/C][C]6651.34824548299[/C][C]7.46219194047299[/C][C]-0.0812216435453255[/C][C]-0.578533085614816[/C][/ROW]
[ROW][C]40[/C][C]6660.8[/C][C]6660.22115751937[/C][C]8.19094233314393[/C][C]-0.0816590948181623[/C][C]0.147990592373888[/C][/ROW]
[ROW][C]41[/C][C]6668.2[/C][C]6668.32304124821[/C][C]8.14494210236469[/C][C]-0.0815054522368858[/C][C]-0.00931424551489548[/C][/ROW]
[ROW][C]42[/C][C]6657.7[/C][C]6663.7135545504[/C][C]1.56628800326007[/C][C]-0.0614994720638662[/C][C]-1.33452573352918[/C][/ROW]
[ROW][C]43[/C][C]6682.8[/C][C]6677.26797327192[/C][C]7.74972795022298[/C][C]-0.0731055041416042[/C][C]1.25618206374024[/C][/ROW]
[ROW][C]44[/C][C]6696.8[/C][C]6693.09541301513[/C][C]11.9183256060501[/C][C]-0.0766291724451549[/C][C]0.84723461839878[/C][/ROW]
[ROW][C]45[/C][C]6714.4[/C][C]6711.45890886703[/C][C]15.24568936571[/C][C]-0.0773575724661649[/C][C]0.676290932710293[/C][/ROW]
[ROW][C]46[/C][C]6728.2[/C][C]6727.77564734536[/C][C]15.7987150150993[/C][C]-0.0773255743534097[/C][C]0.112401865712826[/C][/ROW]
[ROW][C]47[/C][C]6741.8[/C][C]6742.41871980078[/C][C]15.2019895266788[/C][C]-0.077400641329477[/C][C]-0.121283601232[/C][/ROW]
[ROW][C]48[/C][C]6758.4[/C][C]6758.20410275429[/C][C]15.5032254116085[/C][C]-0.0773695431881859[/C][C]0.0612259263499983[/C][/ROW]
[ROW][C]49[/C][C]6774[/C][C]6773.36143307827[/C][C]15.327095578734[/C][C]0.798395244653899[/C][C]-0.037803164125359[/C][/ROW]
[ROW][C]50[/C][C]6792.3[/C][C]6791.28458540758[/C][C]16.6184092468803[/C][C]-0.0431078199675728[/C][C]0.24988656717999[/C][/ROW]
[ROW][C]51[/C][C]6809.1[/C][C]6808.74819257994[/C][C]17.0499834244564[/C][C]-0.0400787158843443[/C][C]0.0882144466491761[/C][/ROW]
[ROW][C]52[/C][C]6832.2[/C][C]6830.18641853528[/C][C]19.3166354708164[/C][C]-0.0411641770206184[/C][C]0.46037938771529[/C][/ROW]
[ROW][C]53[/C][C]6850.3[/C][C]6850.074981663[/C][C]19.612023233384[/C][C]-0.0419518743184404[/C][C]0.0598565545381441[/C][/ROW]
[ROW][C]54[/C][C]6861.1[/C][C]6863.85722732039[/C][C]16.6044384291799[/C][C]-0.034650019168643[/C][C]-0.610347607927901[/C][/ROW]
[ROW][C]55[/C][C]6882.6[/C][C]6881.94295895559[/C][C]17.3686420091205[/C][C]-0.0357950430702941[/C][C]0.155264903488891[/C][/ROW]
[ROW][C]56[/C][C]6900.7[/C][C]6900.28188391386[/C][C]17.869419087219[/C][C]-0.0361329457378974[/C][C]0.101779742841654[/C][/ROW]
[ROW][C]57[/C][C]6915.1[/C][C]6916.0977203752[/C][C]16.8092152899626[/C][C]-0.0359476767899226[/C][C]-0.215487401537142[/C][/ROW]
[ROW][C]58[/C][C]6947.8[/C][C]6943.07365364409[/C][C]22.0586656009566[/C][C]-0.0357052186654381[/C][C]1.06694574863078[/C][/ROW]
[ROW][C]59[/C][C]6965.9[/C][C]6965.67941344004[/C][C]22.3411583277879[/C][C]-0.0356768508202618[/C][C]0.057416297013929[/C][/ROW]
[ROW][C]60[/C][C]6991.7[/C][C]6990.55052721353[/C][C]23.6474896444414[/C][C]-0.0355691978868062[/C][C]0.265510790632195[/C][/ROW]
[ROW][C]61[/C][C]6993.9[/C][C]7001.14668362016[/C][C]16.9831956969208[/C][C]-1.19958804486856[/C][C]-1.4153892259362[/C][/ROW]
[ROW][C]62[/C][C]7031.7[/C][C]7027.5615326199[/C][C]21.7040316526934[/C][C]0.198484805414614[/C][C]0.921545400804503[/C][/ROW]
[ROW][C]63[/C][C]7048.7[/C][C]7048.74489065853[/C][C]21.4376662108775[/C][C]0.19693953785816[/C][C]-0.0543935083037699[/C][/ROW]
[ROW][C]64[/C][C]7067.4[/C][C]7068.15300700838[/C][C]20.3894160105795[/C][C]0.197357086091663[/C][C]-0.212934581865157[/C][/ROW]
[ROW][C]65[/C][C]7077.1[/C][C]7080.60212227387[/C][C]16.2886346893524[/C][C]0.206457687213906[/C][C]-0.831392242274033[/C][/ROW]
[ROW][C]66[/C][C]7107.4[/C][C]7103.91761916145[/C][C]19.9142944210689[/C][C]0.199132412149919[/C][C]0.735968038819943[/C][/ROW]
[ROW][C]67[/C][C]7127.1[/C][C]7125.92363380467[/C][C]20.993566647031[/C][C]0.197786765461134[/C][C]0.219292100394958[/C][/ROW]
[ROW][C]68[/C][C]7137.3[/C][C]7140.23082813783[/C][C]17.5423986257897[/C][C]0.199724531824561[/C][C]-0.701431285961629[/C][/ROW]
[ROW][C]69[/C][C]7147.9[/C][C]7150.91281276699[/C][C]14.000509233069[/C][C]0.200239567684134[/C][C]-0.719891462262892[/C][/ROW]
[ROW][C]70[/C][C]7170.6[/C][C]7168.64962375281[/C][C]15.9296908394323[/C][C]0.20031371321329[/C][C]0.392104471432454[/C][/ROW]
[ROW][C]71[/C][C]7193[/C][C]7190.17731634658[/C][C]18.8201995157351[/C][C]0.200555249912466[/C][C]0.587492681978006[/C][/ROW]
[ROW][C]72[/C][C]7220.1[/C][C]7216.42169038858[/C][C]22.6536116192988[/C][C]0.200818124067919[/C][C]0.779138143858731[/C][/ROW]
[ROW][C]73[/C][C]7251[/C][C]7248.10188166748[/C][C]27.2713412864656[/C][C]-1.29177057006284[/C][C]0.973775470282014[/C][/ROW]
[ROW][C]74[/C][C]7268.1[/C][C]7270.21592960484[/C][C]24.6784282754488[/C][C]0.0754471571665244[/C][C]-0.509248420701142[/C][/ROW]
[ROW][C]75[/C][C]7282.2[/C][C]7286.19303379734[/C][C]20.2210731974591[/C][C]0.053273994561823[/C][C]-0.909602028626357[/C][/ROW]
[ROW][C]76[/C][C]7290.2[/C][C]7295.33357676613[/C][C]14.4983186378091[/C][C]0.0552252955731441[/C][C]-1.16257807197487[/C][/ROW]
[ROW][C]77[/C][C]7292.5[/C][C]7297.97381071583[/C][C]8.37440986381127[/C][C]0.0668630737581205[/C][C]-1.24200939631319[/C][/ROW]
[ROW][C]78[/C][C]7299.6[/C][C]7301.70108838153[/C][C]5.97638772660589[/C][C]0.0710118239967455[/C][C]-0.486861328799956[/C][/ROW]
[ROW][C]79[/C][C]7305.1[/C][C]7305.87254573417[/C][C]5.04500073807892[/C][C]0.0720061715369692[/C][C]-0.189252632188256[/C][/ROW]
[ROW][C]80[/C][C]7306.9[/C][C]7308.13170512997[/C][C]3.60702038791042[/C][C]0.0726975115543328[/C][C]-0.292262767615983[/C][/ROW]
[ROW][C]81[/C][C]7313.3[/C][C]7312.75254365238[/C][C]4.13044009152174[/C][C]0.0726323401913447[/C][C]0.106385328428981[/C][/ROW]
[ROW][C]82[/C][C]7325.6[/C][C]7322.76988442778[/C][C]7.17004079021258[/C][C]0.0727323706237609[/C][C]0.617796355865477[/C][/ROW]
[ROW][C]83[/C][C]7348.1[/C][C]7342.25732340718[/C][C]13.5300455022538[/C][C]0.0731874328797236[/C][C]1.29266448545394[/C][/ROW]
[ROW][C]84[/C][C]7354.7[/C][C]7354.99703023283[/C][C]13.1219626522026[/C][C]0.0731634713058041[/C][C]-0.0829425503479435[/C][/ROW]
[ROW][C]85[/C][C]7375.3[/C][C]7373.26483803897[/C][C]15.7579126729115[/C][C]-0.356489344378036[/C][C]0.553016366169111[/C][/ROW]
[ROW][C]86[/C][C]7396.3[/C][C]7394.06288676202[/C][C]18.3003948361197[/C][C]0.0683488105518777[/C][C]0.50159180222468[/C][/ROW]
[ROW][C]87[/C][C]7401.9[/C][C]7405.18754864078[/C][C]14.6208734006517[/C][C]0.0523629325600991[/C][C]-0.75049028393372[/C][/ROW]
[ROW][C]88[/C][C]7390.4[/C][C]7399.74168413105[/C][C]4.25738648643148[/C][C]0.0554518140733809[/C][C]-2.10547295968616[/C][/ROW]
[ROW][C]89[/C][C]7393.6[/C][C]7396.87033910864[/C][C]0.575971106405614[/C][C]0.0615690190022927[/C][C]-0.74684136587044[/C][/ROW]
[ROW][C]90[/C][C]7398.5[/C][C]7398.1227182921[/C][C]0.925038119287982[/C][C]0.0610409851194604[/C][C]0.0708795453446833[/C][/ROW]
[ROW][C]91[/C][C]7392.4[/C][C]7394.47614690668[/C][C]-1.43419315259656[/C][C]0.0632431663902274[/C][C]-0.479398954564918[/C][/ROW]
[ROW][C]92[/C][C]7390.8[/C][C]7391.47168693941[/C][C]-2.24475426735168[/C][C]0.0635838848261635[/C][C]-0.16474317751371[/C][/ROW]
[ROW][C]93[/C][C]7380.6[/C][C]7383.30817261573[/C][C]-5.30055298952283[/C][C]0.0639165468974859[/C][C]-0.621092306075402[/C][/ROW]
[ROW][C]94[/C][C]7365.8[/C][C]7369.65057898432[/C][C]-9.61555831471403[/C][C]0.0637923907922004[/C][C]-0.877021490818549[/C][/ROW]
[ROW][C]95[/C][C]7346.9[/C][C]7351.04664781191[/C][C]-14.2566211287748[/C][C]0.0635020535820997[/C][C]-0.943291612454033[/C][/ROW]
[ROW][C]96[/C][C]7334.1[/C][C]7334.91486702897[/C][C]-15.2248358682738[/C][C]0.0634523473712818[/C][C]-0.196788989064353[/C][/ROW]
[ROW][C]97[/C][C]7314.8[/C][C]7316.9705122904[/C][C]-16.6192880007255[/C][C]-0.905326417121648[/C][C]-0.291420686903966[/C][/ROW]
[ROW][C]98[/C][C]7287.8[/C][C]7291.58308441674[/C][C]-21.0538377260246[/C][C]0.0266727195096943[/C][C]-0.877891237361862[/C][/ROW]
[ROW][C]99[/C][C]7274.3[/C][C]7273.08013967172[/C][C]-19.7447964490809[/C][C]0.0317207088244192[/C][C]0.266892326809111[/C][/ROW]
[ROW][C]100[/C][C]7252.7[/C][C]7252.88099187834[/C][C]-19.9794401745307[/C][C]0.0317828265718726[/C][C]-0.0476731099508374[/C][/ROW]
[ROW][C]101[/C][C]7257.5[/C][C]7249.65071273792[/C][C]-11.3300276383992[/C][C]0.0190146048379465[/C][C]1.7550573182671[/C][/ROW]
[ROW][C]102[/C][C]7256.5[/C][C]7250.70047332937[/C][C]-4.94095254583432[/C][C]0.010428614111672[/C][C]1.29746819853981[/C][/ROW]
[ROW][C]103[/C][C]7253.9[/C][C]7251.29924543395[/C][C]-2.08195242946683[/C][C]0.00805786814723411[/C][C]0.580968034696474[/C][/ROW]
[ROW][C]104[/C][C]7262.6[/C][C]7258.32766370396[/C][C]2.62089172967044[/C][C]0.00630174024691215[/C][C]0.955835462917212[/C][/ROW]
[ROW][C]105[/C][C]7263.6[/C][C]7262.75004379594[/C][C]3.55098944497546[/C][C]0.00621179185729076[/C][C]0.189042640397651[/C][/ROW]
[ROW][C]106[/C][C]7261.3[/C][C]7262.89104295958[/C][C]1.79030639813978[/C][C]0.00616678761854296[/C][C]-0.357857525318366[/C][/ROW]
[ROW][C]107[/C][C]7250.4[/C][C]7254.95153678452[/C][C]-3.23357315132112[/C][C]0.00588759066010965[/C][C]-1.02109901839047[/C][/ROW]
[ROW][C]108[/C][C]7249.3[/C][C]7250.06731033946[/C][C]-4.08586435537939[/C][C]0.00584872077248591[/C][C]-0.173227628782237[/C][/ROW]
[ROW][C]109[/C][C]7245.6[/C][C]7245.77463873017[/C][C]-4.19198806046747[/C][C]-0.0783544503266148[/C][C]-0.0221111940049971[/C][/ROW]
[ROW][C]110[/C][C]7244.4[/C][C]7243.52935561541[/C][C]-3.20538450045632[/C][C]0.0182474781610729[/C][C]0.19584897463446[/C][/ROW]
[ROW][C]111[/C][C]7253.8[/C][C]7249.49254373263[/C][C]1.50255747649003[/C][C]0.0345663230098739[/C][C]0.959571527908619[/C][/ROW]
[ROW][C]112[/C][C]7271.6[/C][C]7265.0057805839[/C][C]8.73802733357781[/C][C]0.0328434752526069[/C][C]1.47010336827162[/C][/ROW]
[ROW][C]113[/C][C]7282.7[/C][C]7279.8269196362[/C][C]11.8793470807121[/C][C]0.0286718521290525[/C][C]0.637513918469012[/C][/ROW]
[ROW][C]114[/C][C]7283[/C][C]7285.75229392284[/C][C]8.80642601116634[/C][C]0.0323867600408096[/C][C]-0.624090231371903[/C][/ROW]
[ROW][C]115[/C][C]7293.3[/C][C]7293.67902220431[/C][C]8.35240167808762[/C][C]0.0327254367351543[/C][C]-0.092262747314652[/C][/ROW]
[ROW][C]116[/C][C]7291.2[/C][C]7294.63128329218[/C][C]4.53230565212047[/C][C]0.0340086625942506[/C][C]-0.776421466680311[/C][/ROW]
[ROW][C]117[/C][C]7298.5[/C][C]7298.6884888997[/C][C]4.28701292597081[/C][C]0.0340300020466184[/C][C]-0.0498558013417827[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299495&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299495&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
15884.55884.5000
25879.15882.67485566278-1.48868770475832-0.16822830322596-0.542736401888107
35897.25890.927670786664.407178354170520.01866385374764131.27295773263424
45920.75912.3854514567513.33535136880990.01362121931134631.83548969057939
55944.65938.5687035134719.8669011496527-0.06034216913502311.35653766726398
65982.45974.815342518328.2408884821008-0.1505322844370161.72502172179498
76017.46012.9420755046533.3258377638292-0.1850254387094351.03806703261334
859806001.2158705243510.0937422562569-0.112248656342543-4.72555433658884
96087.46063.2238217928936.8898984133156-0.1355318947987315.44656269893503
106114.56110.0024388964441.9961167352432-0.1347220656114491.03785744833685
116143.26146.0996667234638.9497430777439-0.136033854649463-0.619191493349202
126173.16177.005824439934.7958840471751-0.137553991256057-0.844282526360053
136195.76203.1989579818730.5975076580072-3.6857834522651-1.03707942308096
1462366235.1830500586531.24915578797930.3736746811512140.115162031721356
156255.26258.5126824542627.27493753013390.301615735921117-0.819560261036232
166282.56283.3416117364526.01073241981330.303152929581713-0.256500877327233
176301.76303.9065902585123.19683951049180.322137089958923-0.567563449360649
186330.96329.4803315486624.42154815383180.3146116365784950.24794995810289
196350.86351.5694170424823.21972341169680.319171951746787-0.244034870571418
2063636366.5349945854618.96228026142280.326448457490095-0.865259510758992
216388.66387.3884207335419.93846889930480.3260163233353570.198413330674991
226411.56409.9466814180921.2912172631590.3261745064563510.274943802791859
236436.46434.5308376274222.99167014741350.3266069576793170.345612947067055
246449.26451.6329116384219.95040320175480.325972204367961-0.61813351733012
256473.36474.5968376555921.4635401237549-2.670378485256540.341496142522388
266479.56483.9451205147315.58671629657010.0154472272834537-1.09551923633897
276507.36504.8185048864518.26571217324180.04722375432367010.549719446758172
286516.16518.2935062083615.79050634464720.0492140852802721-0.502503944740291
296534.26534.1296413606115.81407734892690.04910876060472730.00476660984218758
306540.66543.5277983142412.50593297861670.0625687869504055-0.670641125275136
316542.96547.032051782287.864495862776440.0742264911885154-0.942768032424269
326562.66560.0955993139910.54706738598560.07119204327063790.545204796092373
3365776574.9243231918412.75740590597090.07054452866029870.449255433533026
346596.66593.7069703875315.868513897910.07078541589967040.632328697319947
356612.16611.2463814599416.73131496080990.07093066174234320.175362800702417
366626.36626.7869297985716.11645003189690.070845719021483-0.124970664863618
376640.16641.6861309452315.4995064655608-1.02622713606361-0.134710189995857
386642.46646.6105073406610.2884822606085-0.0563217692500733-0.994852059879581
396648.76651.348245482997.46219194047299-0.0812216435453255-0.578533085614816
406660.86660.221157519378.19094233314393-0.08165909481816230.147990592373888
416668.26668.323041248218.14494210236469-0.0815054522368858-0.00931424551489548
426657.76663.71355455041.56628800326007-0.0614994720638662-1.33452573352918
436682.86677.267973271927.74972795022298-0.07310550414160421.25618206374024
446696.86693.0954130151311.9183256060501-0.07662917244515490.84723461839878
456714.46711.4589088670315.24568936571-0.07735757246616490.676290932710293
466728.26727.7756473453615.7987150150993-0.07732557435340970.112401865712826
476741.86742.4187198007815.2019895266788-0.077400641329477-0.121283601232
486758.46758.2041027542915.5032254116085-0.07736954318818590.0612259263499983
4967746773.3614330782715.3270955787340.798395244653899-0.037803164125359
506792.36791.2845854075816.6184092468803-0.04310781996757280.24988656717999
516809.16808.7481925799417.0499834244564-0.04007871588434430.0882144466491761
526832.26830.1864185352819.3166354708164-0.04116417702061840.46037938771529
536850.36850.07498166319.612023233384-0.04195187431844040.0598565545381441
546861.16863.8572273203916.6044384291799-0.034650019168643-0.610347607927901
556882.66881.9429589555917.3686420091205-0.03579504307029410.155264903488891
566900.76900.2818839138617.869419087219-0.03613294573789740.101779742841654
576915.16916.097720375216.8092152899626-0.0359476767899226-0.215487401537142
586947.86943.0736536440922.0586656009566-0.03570521866543811.06694574863078
596965.96965.6794134400422.3411583277879-0.03567685082026180.057416297013929
606991.76990.5505272135323.6474896444414-0.03556919788680620.265510790632195
616993.97001.1466836201616.9831956969208-1.19958804486856-1.4153892259362
627031.77027.561532619921.70403165269340.1984848054146140.921545400804503
637048.77048.7448906585321.43766621087750.19693953785816-0.0543935083037699
647067.47068.1530070083820.38941601057950.197357086091663-0.212934581865157
657077.17080.6021222738716.28863468935240.206457687213906-0.831392242274033
667107.47103.9176191614519.91429442106890.1991324121499190.735968038819943
677127.17125.9236338046720.9935666470310.1977867654611340.219292100394958
687137.37140.2308281378317.54239862578970.199724531824561-0.701431285961629
697147.97150.9128127669914.0005092330690.200239567684134-0.719891462262892
707170.67168.6496237528115.92969083943230.200313713213290.392104471432454
7171937190.1773163465818.82019951573510.2005552499124660.587492681978006
727220.17216.4216903885822.65361161929880.2008181240679190.779138143858731
7372517248.1018816674827.2713412864656-1.291770570062840.973775470282014
747268.17270.2159296048424.67842827544880.0754471571665244-0.509248420701142
757282.27286.1930337973420.22107319745910.053273994561823-0.909602028626357
767290.27295.3335767661314.49831863780910.0552252955731441-1.16257807197487
777292.57297.973810715838.374409863811270.0668630737581205-1.24200939631319
787299.67301.701088381535.976387726605890.0710118239967455-0.486861328799956
797305.17305.872545734175.045000738078920.0720061715369692-0.189252632188256
807306.97308.131705129973.607020387910420.0726975115543328-0.292262767615983
817313.37312.752543652384.130440091521740.07263234019134470.106385328428981
827325.67322.769884427787.170040790212580.07273237062376090.617796355865477
837348.17342.2573234071813.53004550225380.07318743287972361.29266448545394
847354.77354.9970302328313.12196265220260.0731634713058041-0.0829425503479435
857375.37373.2648380389715.7579126729115-0.3564893443780360.553016366169111
867396.37394.0628867620218.30039483611970.06834881055187770.50159180222468
877401.97405.1875486407814.62087340065170.0523629325600991-0.75049028393372
887390.47399.741684131054.257386486431480.0554518140733809-2.10547295968616
897393.67396.870339108640.5759711064056140.0615690190022927-0.74684136587044
907398.57398.12271829210.9250381192879820.06104098511946040.0708795453446833
917392.47394.47614690668-1.434193152596560.0632431663902274-0.479398954564918
927390.87391.47168693941-2.244754267351680.0635838848261635-0.16474317751371
937380.67383.30817261573-5.300552989522830.0639165468974859-0.621092306075402
947365.87369.65057898432-9.615558314714030.0637923907922004-0.877021490818549
957346.97351.04664781191-14.25662112877480.0635020535820997-0.943291612454033
967334.17334.91486702897-15.22483586827380.0634523473712818-0.196788989064353
977314.87316.9705122904-16.6192880007255-0.905326417121648-0.291420686903966
987287.87291.58308441674-21.05383772602460.0266727195096943-0.877891237361862
997274.37273.08013967172-19.74479644908090.03172070882441920.266892326809111
1007252.77252.88099187834-19.97944017453070.0317828265718726-0.0476731099508374
1017257.57249.65071273792-11.33002763839920.01901460483794651.7550573182671
1027256.57250.70047332937-4.940952545834320.0104286141116721.29746819853981
1037253.97251.29924543395-2.081952429466830.008057868147234110.580968034696474
1047262.67258.327663703962.620891729670440.006301740246912150.955835462917212
1057263.67262.750043795943.550989444975460.006211791857290760.189042640397651
1067261.37262.891042959581.790306398139780.00616678761854296-0.357857525318366
1077250.47254.95153678452-3.233573151321120.00588759066010965-1.02109901839047
1087249.37250.06731033946-4.085864355379390.00584872077248591-0.173227628782237
1097245.67245.77463873017-4.19198806046747-0.0783544503266148-0.0221111940049971
1107244.47243.52935561541-3.205384500456320.01824747816107290.19584897463446
1117253.87249.492543732631.502557476490030.03456632300987390.959571527908619
1127271.67265.00578058398.738027333577810.03284347525260691.47010336827162
1137282.77279.826919636211.87934708071210.02867185212905250.637513918469012
11472837285.752293922848.806426011166340.0323867600408096-0.624090231371903
1157293.37293.679022204318.352401678087620.0327254367351543-0.092262747314652
1167291.27294.631283292184.532305652120470.0340086625942506-0.776421466680311
1177298.57298.68848889974.287012925970810.0340300020466184-0.0498558013417827







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
17306.371074696147304.550433705571.82064099056835
27310.815604564577308.708840369062.10676419550738
37315.697012531797312.867247032562.82976549923144
47319.867658225197317.025653696062.84200452913467
57322.559034174237321.184060359551.37497381467398
67326.463599821117325.342467023051.12113279805517
77328.981354850817329.50087368655-0.51951883574232
87332.732298751717333.65928035005-0.926981598331807
97336.306431366227337.81768701354-1.51125564732604
107341.48375246327341.97609367704-0.492341213835873
117338.034262606977346.13450034054-8.10023773356236
127349.747960205667350.29290700403-0.544946798372596
137356.27195465817354.451313667531.82064099056835
147360.716484526537358.609720331032.10676419550738
157365.597892493757362.768126994522.82976549923144
167369.768538187167366.926533658022.84200452913467
177372.459914136197371.084940321521.37497381467398
187376.364479783077375.243346985011.12113279805517

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 7306.37107469614 & 7304.55043370557 & 1.82064099056835 \tabularnewline
2 & 7310.81560456457 & 7308.70884036906 & 2.10676419550738 \tabularnewline
3 & 7315.69701253179 & 7312.86724703256 & 2.82976549923144 \tabularnewline
4 & 7319.86765822519 & 7317.02565369606 & 2.84200452913467 \tabularnewline
5 & 7322.55903417423 & 7321.18406035955 & 1.37497381467398 \tabularnewline
6 & 7326.46359982111 & 7325.34246702305 & 1.12113279805517 \tabularnewline
7 & 7328.98135485081 & 7329.50087368655 & -0.51951883574232 \tabularnewline
8 & 7332.73229875171 & 7333.65928035005 & -0.926981598331807 \tabularnewline
9 & 7336.30643136622 & 7337.81768701354 & -1.51125564732604 \tabularnewline
10 & 7341.4837524632 & 7341.97609367704 & -0.492341213835873 \tabularnewline
11 & 7338.03426260697 & 7346.13450034054 & -8.10023773356236 \tabularnewline
12 & 7349.74796020566 & 7350.29290700403 & -0.544946798372596 \tabularnewline
13 & 7356.2719546581 & 7354.45131366753 & 1.82064099056835 \tabularnewline
14 & 7360.71648452653 & 7358.60972033103 & 2.10676419550738 \tabularnewline
15 & 7365.59789249375 & 7362.76812699452 & 2.82976549923144 \tabularnewline
16 & 7369.76853818716 & 7366.92653365802 & 2.84200452913467 \tabularnewline
17 & 7372.45991413619 & 7371.08494032152 & 1.37497381467398 \tabularnewline
18 & 7376.36447978307 & 7375.24334698501 & 1.12113279805517 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299495&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]7306.37107469614[/C][C]7304.55043370557[/C][C]1.82064099056835[/C][/ROW]
[ROW][C]2[/C][C]7310.81560456457[/C][C]7308.70884036906[/C][C]2.10676419550738[/C][/ROW]
[ROW][C]3[/C][C]7315.69701253179[/C][C]7312.86724703256[/C][C]2.82976549923144[/C][/ROW]
[ROW][C]4[/C][C]7319.86765822519[/C][C]7317.02565369606[/C][C]2.84200452913467[/C][/ROW]
[ROW][C]5[/C][C]7322.55903417423[/C][C]7321.18406035955[/C][C]1.37497381467398[/C][/ROW]
[ROW][C]6[/C][C]7326.46359982111[/C][C]7325.34246702305[/C][C]1.12113279805517[/C][/ROW]
[ROW][C]7[/C][C]7328.98135485081[/C][C]7329.50087368655[/C][C]-0.51951883574232[/C][/ROW]
[ROW][C]8[/C][C]7332.73229875171[/C][C]7333.65928035005[/C][C]-0.926981598331807[/C][/ROW]
[ROW][C]9[/C][C]7336.30643136622[/C][C]7337.81768701354[/C][C]-1.51125564732604[/C][/ROW]
[ROW][C]10[/C][C]7341.4837524632[/C][C]7341.97609367704[/C][C]-0.492341213835873[/C][/ROW]
[ROW][C]11[/C][C]7338.03426260697[/C][C]7346.13450034054[/C][C]-8.10023773356236[/C][/ROW]
[ROW][C]12[/C][C]7349.74796020566[/C][C]7350.29290700403[/C][C]-0.544946798372596[/C][/ROW]
[ROW][C]13[/C][C]7356.2719546581[/C][C]7354.45131366753[/C][C]1.82064099056835[/C][/ROW]
[ROW][C]14[/C][C]7360.71648452653[/C][C]7358.60972033103[/C][C]2.10676419550738[/C][/ROW]
[ROW][C]15[/C][C]7365.59789249375[/C][C]7362.76812699452[/C][C]2.82976549923144[/C][/ROW]
[ROW][C]16[/C][C]7369.76853818716[/C][C]7366.92653365802[/C][C]2.84200452913467[/C][/ROW]
[ROW][C]17[/C][C]7372.45991413619[/C][C]7371.08494032152[/C][C]1.37497381467398[/C][/ROW]
[ROW][C]18[/C][C]7376.36447978307[/C][C]7375.24334698501[/C][C]1.12113279805517[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299495&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299495&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
17306.371074696147304.550433705571.82064099056835
27310.815604564577308.708840369062.10676419550738
37315.697012531797312.867247032562.82976549923144
47319.867658225197317.025653696062.84200452913467
57322.559034174237321.184060359551.37497381467398
67326.463599821117325.342467023051.12113279805517
77328.981354850817329.50087368655-0.51951883574232
87332.732298751717333.65928035005-0.926981598331807
97336.306431366227337.81768701354-1.51125564732604
107341.48375246327341.97609367704-0.492341213835873
117338.034262606977346.13450034054-8.10023773356236
127349.747960205667350.29290700403-0.544946798372596
137356.27195465817354.451313667531.82064099056835
147360.716484526537358.609720331032.10676419550738
157365.597892493757362.768126994522.82976549923144
167369.768538187167366.926533658022.84200452913467
177372.459914136197371.084940321521.37497381467398
187376.364479783077375.243346985011.12113279805517



Parameters (Session):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 18 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')