Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 14 Dec 2016 15:23:37 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481725578zyh5rump2udfsmb.htm/, Retrieved Fri, 01 Nov 2024 03:46:38 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299492, Retrieved Fri, 01 Nov 2024 03:46:38 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact91
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [Decomposition by ...] [2016-12-14 14:23:37] [08c254f01fc4fb8b56d19f4878327019] [Current]
Feedback Forum

Post a new message
Dataseries X:
5884.5
5879.1
5897.2
5920.7
5944.6
5982.4
6017.4
5980
6087.4
6114.5
6143.2
6173.1
6195.7
6236
6255.2
6282.5
6301.7
6330.9
6350.8
6363
6388.6
6411.5
6436.4
6449.2
6473.3
6479.5
6507.3
6516.1
6534.2
6540.6
6542.9
6562.6
6577
6596.6
6612.1
6626.3
6640.1
6642.4
6648.7
6660.8
6668.2
6657.7
6682.8
6696.8
6714.4
6728.2
6741.8
6758.4
6774
6792.3
6809.1
6832.2
6850.3
6861.1
6882.6
6900.7
6915.1
6947.8
6965.9
6991.7
6993.9
7031.7
7048.7
7067.4
7077.1
7107.4
7127.1
7137.3
7147.9
7170.6
7193
7220.1
7251
7268.1
7282.2
7290.2
7292.5
7299.6
7305.1
7306.9
7313.3
7325.6
7348.1
7354.7
7375.3
7396.3
7401.9
7390.4
7393.6
7398.5
7392.4
7390.8
7380.6
7365.8
7346.9
7334.1
7314.8
7287.8
7274.3
7252.7
7257.5
7256.5
7253.9
7262.6
7263.6
7261.3
7250.4
7249.3
7245.6
7244.4
7253.8
7271.6
7282.7
7283
7293.3
7291.2
7298.5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299492&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299492&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299492&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11710118
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 1171 & 0 & 118 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299492&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]1171[/C][C]0[/C][C]118[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299492&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299492&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11710118
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
15884.55918.840775491371.420883808808115848.7383406998234.3407754913724
25879.15882.79471291632-0.9640679363567185876.369355020043.69471291631635
35897.25892.60866102039-2.209030360653245904.00036934026-4.59133897960874
45920.75912.50076482676-3.093690041873795931.99292521512-8.19923517324332
55944.65932.03287109084-2.818352180808045959.98548108997-12.5671289091642
65982.45978.23090928805-1.610142006463655988.17923271841-4.16909071195096
76017.46017.298944872951.128070780189776016.37298434686-0.101055127046493
859805920.54053727737-5.239489565210396044.69895228784-59.4594627226252
96087.46098.292166908113.482912863073426073.0249202288110.8921669081119
106114.56122.359939969063.837865487547476102.802194543397.85993996906018
116143.26150.546256804333.274274337693456132.579468857977.3462568043351
126173.16180.993487763882.79076943280776162.415742803317.89348776387851
136195.76197.727099442531.420883808808116192.252016748662.02709944253365
1462366252.63941143926-0.9640679363567186220.324656497116.6394114392606
156255.26264.21173411512-2.209030360653246248.397296245539.01173411511991
166282.56294.42570338715-3.093690041873796273.6679866547311.9257033871481
176301.76307.27967511689-2.818352180808046298.938677063925.57967511688912
186330.96341.47116395681-1.610142006463656321.9389780496510.5711639568135
196350.86355.532650184431.128070780189776344.939279035384.73265018442908
2063636365.07903248722-5.239489565210396366.160457077992.07903248721959
216388.66386.335452016333.482912863073426387.3816351206-2.26454798367467
226411.56412.100224112733.837865487547476407.061910399720.600224112730757
236436.46442.783539983463.274274337693456426.742185678846.38353998346338
246449.26450.84791005562.79076943280776444.761320511591.64791005560346
256473.36482.398660846861.420883808808116462.780455344349.09866084685655
266479.56480.81455962188-0.9640679363567186479.149508314481.31455962188011
276507.36521.29046907604-2.209030360653246495.5185612846213.990469076035
286516.16524.69089420107-3.093690041873796510.60279584088.59089420107102
296534.26545.53132178382-2.818352180808046525.6870303969911.3313217838186
306540.66543.0191180546-1.610142006463656539.791023951862.41911805460222
316542.96530.776911713081.128070780189776553.89501750673-12.123088286924
326562.66563.45021590107-5.239489565210396566.989273664150.850215901065894
3365776570.433557315373.482912863073426580.08352982156-6.5664426846306
346596.66597.201928569213.837865487547476592.160205943240.601928569210031
356612.16616.688843597383.274274337693456604.236882064934.58884359737931
366626.36634.300824843362.79076943280776615.508405723848.00082484335599
376640.16651.999186808451.420883808808116626.7799293827411.8991868084477
386642.46648.09874425107-0.9640679363567186637.665323685285.69874425107446
396648.76651.05831237283-2.209030360653246648.550717987822.35831237283401
406660.86665.53041734306-3.093690041873796659.163272698824.73041734305662
416668.26669.44252477099-2.818352180808046669.775827409821.24252477099253
426657.76636.27219967767-1.610142006463656680.7379423288-21.4278003223335
436682.86672.771871972031.128070780189776691.70005724778-10.0281280279669
446696.86694.75819540038-5.239489565210396704.08129416483-2.04180459961663
456714.46708.854556055053.482912863073426716.46253108188-5.54544394495224
466728.26721.575909422343.837865487547476730.98622509011-6.6240905776549
476741.86734.815806563973.274274337693456745.50991909834-6.98419343602927
486758.46752.233979915452.79076943280776761.77525065175-6.16602008455448
4967746768.538533986031.420883808808116778.04058220516-5.46146601396504
506792.36790.33952718504-0.9640679363567186795.22454075132-1.96047281496431
516809.16808.00053106317-2.209030360653246812.40849929748-1.09946893683173
526832.26837.07408231646-3.093690041873796830.419607725424.87408231645531
536850.36854.98763602746-2.818352180808046848.430716153354.68763602745548
546861.16856.62849559852-1.610142006463656867.18164640794-4.47150440147925
556882.66878.139352557281.128070780189776885.93257666253-4.4606474427228
566900.76901.3895914182-5.239489565210396905.249898147010.689591418202326
576915.16902.149867505443.482912863073426924.56721963148-12.9501324945559
586947.86947.453294057223.837865487547476944.30884045523-0.34670594277668
596965.96964.475264383333.274274337693456964.05046127897-1.42473561666884
606991.76996.406717888432.79076943280776984.202512678764.7067178884281
616993.96982.024552112641.420883808808117004.35456407855-11.8754478873616
627031.77040.11402643415-0.9640679363567187024.250041502218.41402643414767
637048.77055.46351143479-2.209030360653247044.145518925866.7635114347886
647067.47074.53406336402-3.093690041873797063.359626677857.13406336402204
657077.17074.44461775097-2.818352180808047082.57373442984-2.65538224903048
667107.47114.66266549031-1.610142006463657101.747476516157.26266549031152
677127.17132.150710617351.128070780189777120.921218602465.05071061734634
687137.37139.42932517952-5.239489565210397140.410164385692.12932517951685
697147.97132.4179769683.482912863073427159.89911016892-15.4820230319974
707170.67158.680677572253.837865487547477178.6814569402-11.919322427746
7171937185.261921950833.274274337693457197.46380371147-7.7380780491676
727220.17222.868420081862.79076943280777214.540810485342.76842008185668
7372517268.961298931991.420883808808117231.617817259217.961298931994
747268.17290.70545212729-0.9640679363567187246.4586158090622.6054521272945
757282.27305.30961600173-2.209030360653247261.2994143589323.1096160017269
767290.27309.59831897229-3.093690041873797273.8953710695819.3983189722894
777292.57301.32702440057-2.818352180808047286.491327780248.82702440056528
787299.67303.72502478381-1.610142006463657297.085117222664.12502478380793
797305.17301.393022554741.128070780189777307.67890666507-3.70697744525751
807306.97301.58488950054-5.239489565210397317.45460006467-5.31511049945766
817313.37295.886793672663.482912863073427327.23029346427-17.41320632734
827325.67310.674484096493.837865487547477336.68765041596-14.9255159035101
837348.17346.780718294653.274274337693457346.14500736766-1.31928170535139
847354.77351.684858106392.79076943280777354.92437246081-3.01514189361387
857375.37385.475378637241.420883808808117363.7037375539510.1753786372374
867396.37422.94821528175-0.9640679363567187370.6158526546126.6482152817453
877401.97428.48106260538-2.209030360653247377.5279677552726.5810626053835
887390.47403.38381032742-3.093690041873797380.5098797144512.9838103274233
897393.67406.52656050718-2.818352180808047383.4917916736312.9265605071769
907398.57417.7089249393-1.610142006463657380.9012170671619.2089249392993
917392.47405.361286759111.128070780189777378.310642460712.9612867591131
927390.87416.51097401213-5.239489565210397370.3285155530825.7109740121332
937380.67395.370698491473.482912863073427362.3463886454614.7706984914685
947365.87376.811003316063.837865487547477350.951131196411.0110033160563
957346.97350.969851914973.274274337693457339.555873747334.06985191497279
967334.17338.19742644232.79076943280777327.211804124894.09742644230391
977314.87313.311381688751.420883808808117314.86773450245-1.48861831125305
987287.87272.84864103623-0.9640679363567187303.71542690012-14.9513589637663
997274.37258.24591106285-2.209030360653247292.5631192978-16.0540889371478
1007252.77224.71832617057-3.093690041873797283.7753638713-27.9816738294267
1017257.57242.83074373601-2.818352180808047274.9876084448-14.669256263991
1027256.57245.76520765396-1.610142006463657268.8449343525-10.7347923460393
1037253.97243.96966895961.128070780189777262.70226026021-9.9303310403975
1047262.67270.88266810194-5.239489565210397259.556821463288.28266810193509
1057263.67267.305704470583.482912863073427256.411382666343.70570447058253
1067261.37262.381525973463.837865487547477256.380608538991.08152597345907
1077250.47241.175891250663.274274337693457256.34983441164-9.22410874933576
1087249.37236.771473693022.79076943280777259.03775687417-12.5285263069754
1097245.67228.05343685451.420883808808117261.7256793367-17.5465631455027
1107244.47224.32228055314-0.9640679363567187265.44178738321-20.0777194468556
1117253.87240.65113493092-2.209030360653247269.15789542973-13.1488650690762
1127271.67273.28237446749-3.093690041873797273.011315574391.68237446748662
1137282.77291.35361646176-2.818352180808047276.864735719048.65361646176279
11472837286.5368282597-1.610142006463657281.073313746763.53682825970191
1157293.37300.190037445331.128070780189777285.281891774486.89003744533147
1167291.27297.81134430544-5.239489565210397289.828145259776.61134430543825
1177298.57299.142688391863.482912863073427294.374398745070.642688391861157

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 5884.5 & 5918.84077549137 & 1.42088380880811 & 5848.73834069982 & 34.3407754913724 \tabularnewline
2 & 5879.1 & 5882.79471291632 & -0.964067936356718 & 5876.36935502004 & 3.69471291631635 \tabularnewline
3 & 5897.2 & 5892.60866102039 & -2.20903036065324 & 5904.00036934026 & -4.59133897960874 \tabularnewline
4 & 5920.7 & 5912.50076482676 & -3.09369004187379 & 5931.99292521512 & -8.19923517324332 \tabularnewline
5 & 5944.6 & 5932.03287109084 & -2.81835218080804 & 5959.98548108997 & -12.5671289091642 \tabularnewline
6 & 5982.4 & 5978.23090928805 & -1.61014200646365 & 5988.17923271841 & -4.16909071195096 \tabularnewline
7 & 6017.4 & 6017.29894487295 & 1.12807078018977 & 6016.37298434686 & -0.101055127046493 \tabularnewline
8 & 5980 & 5920.54053727737 & -5.23948956521039 & 6044.69895228784 & -59.4594627226252 \tabularnewline
9 & 6087.4 & 6098.29216690811 & 3.48291286307342 & 6073.02492022881 & 10.8921669081119 \tabularnewline
10 & 6114.5 & 6122.35993996906 & 3.83786548754747 & 6102.80219454339 & 7.85993996906018 \tabularnewline
11 & 6143.2 & 6150.54625680433 & 3.27427433769345 & 6132.57946885797 & 7.3462568043351 \tabularnewline
12 & 6173.1 & 6180.99348776388 & 2.7907694328077 & 6162.41574280331 & 7.89348776387851 \tabularnewline
13 & 6195.7 & 6197.72709944253 & 1.42088380880811 & 6192.25201674866 & 2.02709944253365 \tabularnewline
14 & 6236 & 6252.63941143926 & -0.964067936356718 & 6220.3246564971 & 16.6394114392606 \tabularnewline
15 & 6255.2 & 6264.21173411512 & -2.20903036065324 & 6248.39729624553 & 9.01173411511991 \tabularnewline
16 & 6282.5 & 6294.42570338715 & -3.09369004187379 & 6273.66798665473 & 11.9257033871481 \tabularnewline
17 & 6301.7 & 6307.27967511689 & -2.81835218080804 & 6298.93867706392 & 5.57967511688912 \tabularnewline
18 & 6330.9 & 6341.47116395681 & -1.61014200646365 & 6321.93897804965 & 10.5711639568135 \tabularnewline
19 & 6350.8 & 6355.53265018443 & 1.12807078018977 & 6344.93927903538 & 4.73265018442908 \tabularnewline
20 & 6363 & 6365.07903248722 & -5.23948956521039 & 6366.16045707799 & 2.07903248721959 \tabularnewline
21 & 6388.6 & 6386.33545201633 & 3.48291286307342 & 6387.3816351206 & -2.26454798367467 \tabularnewline
22 & 6411.5 & 6412.10022411273 & 3.83786548754747 & 6407.06191039972 & 0.600224112730757 \tabularnewline
23 & 6436.4 & 6442.78353998346 & 3.27427433769345 & 6426.74218567884 & 6.38353998346338 \tabularnewline
24 & 6449.2 & 6450.8479100556 & 2.7907694328077 & 6444.76132051159 & 1.64791005560346 \tabularnewline
25 & 6473.3 & 6482.39866084686 & 1.42088380880811 & 6462.78045534434 & 9.09866084685655 \tabularnewline
26 & 6479.5 & 6480.81455962188 & -0.964067936356718 & 6479.14950831448 & 1.31455962188011 \tabularnewline
27 & 6507.3 & 6521.29046907604 & -2.20903036065324 & 6495.51856128462 & 13.990469076035 \tabularnewline
28 & 6516.1 & 6524.69089420107 & -3.09369004187379 & 6510.6027958408 & 8.59089420107102 \tabularnewline
29 & 6534.2 & 6545.53132178382 & -2.81835218080804 & 6525.68703039699 & 11.3313217838186 \tabularnewline
30 & 6540.6 & 6543.0191180546 & -1.61014200646365 & 6539.79102395186 & 2.41911805460222 \tabularnewline
31 & 6542.9 & 6530.77691171308 & 1.12807078018977 & 6553.89501750673 & -12.123088286924 \tabularnewline
32 & 6562.6 & 6563.45021590107 & -5.23948956521039 & 6566.98927366415 & 0.850215901065894 \tabularnewline
33 & 6577 & 6570.43355731537 & 3.48291286307342 & 6580.08352982156 & -6.5664426846306 \tabularnewline
34 & 6596.6 & 6597.20192856921 & 3.83786548754747 & 6592.16020594324 & 0.601928569210031 \tabularnewline
35 & 6612.1 & 6616.68884359738 & 3.27427433769345 & 6604.23688206493 & 4.58884359737931 \tabularnewline
36 & 6626.3 & 6634.30082484336 & 2.7907694328077 & 6615.50840572384 & 8.00082484335599 \tabularnewline
37 & 6640.1 & 6651.99918680845 & 1.42088380880811 & 6626.77992938274 & 11.8991868084477 \tabularnewline
38 & 6642.4 & 6648.09874425107 & -0.964067936356718 & 6637.66532368528 & 5.69874425107446 \tabularnewline
39 & 6648.7 & 6651.05831237283 & -2.20903036065324 & 6648.55071798782 & 2.35831237283401 \tabularnewline
40 & 6660.8 & 6665.53041734306 & -3.09369004187379 & 6659.16327269882 & 4.73041734305662 \tabularnewline
41 & 6668.2 & 6669.44252477099 & -2.81835218080804 & 6669.77582740982 & 1.24252477099253 \tabularnewline
42 & 6657.7 & 6636.27219967767 & -1.61014200646365 & 6680.7379423288 & -21.4278003223335 \tabularnewline
43 & 6682.8 & 6672.77187197203 & 1.12807078018977 & 6691.70005724778 & -10.0281280279669 \tabularnewline
44 & 6696.8 & 6694.75819540038 & -5.23948956521039 & 6704.08129416483 & -2.04180459961663 \tabularnewline
45 & 6714.4 & 6708.85455605505 & 3.48291286307342 & 6716.46253108188 & -5.54544394495224 \tabularnewline
46 & 6728.2 & 6721.57590942234 & 3.83786548754747 & 6730.98622509011 & -6.6240905776549 \tabularnewline
47 & 6741.8 & 6734.81580656397 & 3.27427433769345 & 6745.50991909834 & -6.98419343602927 \tabularnewline
48 & 6758.4 & 6752.23397991545 & 2.7907694328077 & 6761.77525065175 & -6.16602008455448 \tabularnewline
49 & 6774 & 6768.53853398603 & 1.42088380880811 & 6778.04058220516 & -5.46146601396504 \tabularnewline
50 & 6792.3 & 6790.33952718504 & -0.964067936356718 & 6795.22454075132 & -1.96047281496431 \tabularnewline
51 & 6809.1 & 6808.00053106317 & -2.20903036065324 & 6812.40849929748 & -1.09946893683173 \tabularnewline
52 & 6832.2 & 6837.07408231646 & -3.09369004187379 & 6830.41960772542 & 4.87408231645531 \tabularnewline
53 & 6850.3 & 6854.98763602746 & -2.81835218080804 & 6848.43071615335 & 4.68763602745548 \tabularnewline
54 & 6861.1 & 6856.62849559852 & -1.61014200646365 & 6867.18164640794 & -4.47150440147925 \tabularnewline
55 & 6882.6 & 6878.13935255728 & 1.12807078018977 & 6885.93257666253 & -4.4606474427228 \tabularnewline
56 & 6900.7 & 6901.3895914182 & -5.23948956521039 & 6905.24989814701 & 0.689591418202326 \tabularnewline
57 & 6915.1 & 6902.14986750544 & 3.48291286307342 & 6924.56721963148 & -12.9501324945559 \tabularnewline
58 & 6947.8 & 6947.45329405722 & 3.83786548754747 & 6944.30884045523 & -0.34670594277668 \tabularnewline
59 & 6965.9 & 6964.47526438333 & 3.27427433769345 & 6964.05046127897 & -1.42473561666884 \tabularnewline
60 & 6991.7 & 6996.40671788843 & 2.7907694328077 & 6984.20251267876 & 4.7067178884281 \tabularnewline
61 & 6993.9 & 6982.02455211264 & 1.42088380880811 & 7004.35456407855 & -11.8754478873616 \tabularnewline
62 & 7031.7 & 7040.11402643415 & -0.964067936356718 & 7024.25004150221 & 8.41402643414767 \tabularnewline
63 & 7048.7 & 7055.46351143479 & -2.20903036065324 & 7044.14551892586 & 6.7635114347886 \tabularnewline
64 & 7067.4 & 7074.53406336402 & -3.09369004187379 & 7063.35962667785 & 7.13406336402204 \tabularnewline
65 & 7077.1 & 7074.44461775097 & -2.81835218080804 & 7082.57373442984 & -2.65538224903048 \tabularnewline
66 & 7107.4 & 7114.66266549031 & -1.61014200646365 & 7101.74747651615 & 7.26266549031152 \tabularnewline
67 & 7127.1 & 7132.15071061735 & 1.12807078018977 & 7120.92121860246 & 5.05071061734634 \tabularnewline
68 & 7137.3 & 7139.42932517952 & -5.23948956521039 & 7140.41016438569 & 2.12932517951685 \tabularnewline
69 & 7147.9 & 7132.417976968 & 3.48291286307342 & 7159.89911016892 & -15.4820230319974 \tabularnewline
70 & 7170.6 & 7158.68067757225 & 3.83786548754747 & 7178.6814569402 & -11.919322427746 \tabularnewline
71 & 7193 & 7185.26192195083 & 3.27427433769345 & 7197.46380371147 & -7.7380780491676 \tabularnewline
72 & 7220.1 & 7222.86842008186 & 2.7907694328077 & 7214.54081048534 & 2.76842008185668 \tabularnewline
73 & 7251 & 7268.96129893199 & 1.42088380880811 & 7231.6178172592 & 17.961298931994 \tabularnewline
74 & 7268.1 & 7290.70545212729 & -0.964067936356718 & 7246.45861580906 & 22.6054521272945 \tabularnewline
75 & 7282.2 & 7305.30961600173 & -2.20903036065324 & 7261.29941435893 & 23.1096160017269 \tabularnewline
76 & 7290.2 & 7309.59831897229 & -3.09369004187379 & 7273.89537106958 & 19.3983189722894 \tabularnewline
77 & 7292.5 & 7301.32702440057 & -2.81835218080804 & 7286.49132778024 & 8.82702440056528 \tabularnewline
78 & 7299.6 & 7303.72502478381 & -1.61014200646365 & 7297.08511722266 & 4.12502478380793 \tabularnewline
79 & 7305.1 & 7301.39302255474 & 1.12807078018977 & 7307.67890666507 & -3.70697744525751 \tabularnewline
80 & 7306.9 & 7301.58488950054 & -5.23948956521039 & 7317.45460006467 & -5.31511049945766 \tabularnewline
81 & 7313.3 & 7295.88679367266 & 3.48291286307342 & 7327.23029346427 & -17.41320632734 \tabularnewline
82 & 7325.6 & 7310.67448409649 & 3.83786548754747 & 7336.68765041596 & -14.9255159035101 \tabularnewline
83 & 7348.1 & 7346.78071829465 & 3.27427433769345 & 7346.14500736766 & -1.31928170535139 \tabularnewline
84 & 7354.7 & 7351.68485810639 & 2.7907694328077 & 7354.92437246081 & -3.01514189361387 \tabularnewline
85 & 7375.3 & 7385.47537863724 & 1.42088380880811 & 7363.70373755395 & 10.1753786372374 \tabularnewline
86 & 7396.3 & 7422.94821528175 & -0.964067936356718 & 7370.61585265461 & 26.6482152817453 \tabularnewline
87 & 7401.9 & 7428.48106260538 & -2.20903036065324 & 7377.52796775527 & 26.5810626053835 \tabularnewline
88 & 7390.4 & 7403.38381032742 & -3.09369004187379 & 7380.50987971445 & 12.9838103274233 \tabularnewline
89 & 7393.6 & 7406.52656050718 & -2.81835218080804 & 7383.49179167363 & 12.9265605071769 \tabularnewline
90 & 7398.5 & 7417.7089249393 & -1.61014200646365 & 7380.90121706716 & 19.2089249392993 \tabularnewline
91 & 7392.4 & 7405.36128675911 & 1.12807078018977 & 7378.3106424607 & 12.9612867591131 \tabularnewline
92 & 7390.8 & 7416.51097401213 & -5.23948956521039 & 7370.32851555308 & 25.7109740121332 \tabularnewline
93 & 7380.6 & 7395.37069849147 & 3.48291286307342 & 7362.34638864546 & 14.7706984914685 \tabularnewline
94 & 7365.8 & 7376.81100331606 & 3.83786548754747 & 7350.9511311964 & 11.0110033160563 \tabularnewline
95 & 7346.9 & 7350.96985191497 & 3.27427433769345 & 7339.55587374733 & 4.06985191497279 \tabularnewline
96 & 7334.1 & 7338.1974264423 & 2.7907694328077 & 7327.21180412489 & 4.09742644230391 \tabularnewline
97 & 7314.8 & 7313.31138168875 & 1.42088380880811 & 7314.86773450245 & -1.48861831125305 \tabularnewline
98 & 7287.8 & 7272.84864103623 & -0.964067936356718 & 7303.71542690012 & -14.9513589637663 \tabularnewline
99 & 7274.3 & 7258.24591106285 & -2.20903036065324 & 7292.5631192978 & -16.0540889371478 \tabularnewline
100 & 7252.7 & 7224.71832617057 & -3.09369004187379 & 7283.7753638713 & -27.9816738294267 \tabularnewline
101 & 7257.5 & 7242.83074373601 & -2.81835218080804 & 7274.9876084448 & -14.669256263991 \tabularnewline
102 & 7256.5 & 7245.76520765396 & -1.61014200646365 & 7268.8449343525 & -10.7347923460393 \tabularnewline
103 & 7253.9 & 7243.9696689596 & 1.12807078018977 & 7262.70226026021 & -9.9303310403975 \tabularnewline
104 & 7262.6 & 7270.88266810194 & -5.23948956521039 & 7259.55682146328 & 8.28266810193509 \tabularnewline
105 & 7263.6 & 7267.30570447058 & 3.48291286307342 & 7256.41138266634 & 3.70570447058253 \tabularnewline
106 & 7261.3 & 7262.38152597346 & 3.83786548754747 & 7256.38060853899 & 1.08152597345907 \tabularnewline
107 & 7250.4 & 7241.17589125066 & 3.27427433769345 & 7256.34983441164 & -9.22410874933576 \tabularnewline
108 & 7249.3 & 7236.77147369302 & 2.7907694328077 & 7259.03775687417 & -12.5285263069754 \tabularnewline
109 & 7245.6 & 7228.0534368545 & 1.42088380880811 & 7261.7256793367 & -17.5465631455027 \tabularnewline
110 & 7244.4 & 7224.32228055314 & -0.964067936356718 & 7265.44178738321 & -20.0777194468556 \tabularnewline
111 & 7253.8 & 7240.65113493092 & -2.20903036065324 & 7269.15789542973 & -13.1488650690762 \tabularnewline
112 & 7271.6 & 7273.28237446749 & -3.09369004187379 & 7273.01131557439 & 1.68237446748662 \tabularnewline
113 & 7282.7 & 7291.35361646176 & -2.81835218080804 & 7276.86473571904 & 8.65361646176279 \tabularnewline
114 & 7283 & 7286.5368282597 & -1.61014200646365 & 7281.07331374676 & 3.53682825970191 \tabularnewline
115 & 7293.3 & 7300.19003744533 & 1.12807078018977 & 7285.28189177448 & 6.89003744533147 \tabularnewline
116 & 7291.2 & 7297.81134430544 & -5.23948956521039 & 7289.82814525977 & 6.61134430543825 \tabularnewline
117 & 7298.5 & 7299.14268839186 & 3.48291286307342 & 7294.37439874507 & 0.642688391861157 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299492&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]5884.5[/C][C]5918.84077549137[/C][C]1.42088380880811[/C][C]5848.73834069982[/C][C]34.3407754913724[/C][/ROW]
[ROW][C]2[/C][C]5879.1[/C][C]5882.79471291632[/C][C]-0.964067936356718[/C][C]5876.36935502004[/C][C]3.69471291631635[/C][/ROW]
[ROW][C]3[/C][C]5897.2[/C][C]5892.60866102039[/C][C]-2.20903036065324[/C][C]5904.00036934026[/C][C]-4.59133897960874[/C][/ROW]
[ROW][C]4[/C][C]5920.7[/C][C]5912.50076482676[/C][C]-3.09369004187379[/C][C]5931.99292521512[/C][C]-8.19923517324332[/C][/ROW]
[ROW][C]5[/C][C]5944.6[/C][C]5932.03287109084[/C][C]-2.81835218080804[/C][C]5959.98548108997[/C][C]-12.5671289091642[/C][/ROW]
[ROW][C]6[/C][C]5982.4[/C][C]5978.23090928805[/C][C]-1.61014200646365[/C][C]5988.17923271841[/C][C]-4.16909071195096[/C][/ROW]
[ROW][C]7[/C][C]6017.4[/C][C]6017.29894487295[/C][C]1.12807078018977[/C][C]6016.37298434686[/C][C]-0.101055127046493[/C][/ROW]
[ROW][C]8[/C][C]5980[/C][C]5920.54053727737[/C][C]-5.23948956521039[/C][C]6044.69895228784[/C][C]-59.4594627226252[/C][/ROW]
[ROW][C]9[/C][C]6087.4[/C][C]6098.29216690811[/C][C]3.48291286307342[/C][C]6073.02492022881[/C][C]10.8921669081119[/C][/ROW]
[ROW][C]10[/C][C]6114.5[/C][C]6122.35993996906[/C][C]3.83786548754747[/C][C]6102.80219454339[/C][C]7.85993996906018[/C][/ROW]
[ROW][C]11[/C][C]6143.2[/C][C]6150.54625680433[/C][C]3.27427433769345[/C][C]6132.57946885797[/C][C]7.3462568043351[/C][/ROW]
[ROW][C]12[/C][C]6173.1[/C][C]6180.99348776388[/C][C]2.7907694328077[/C][C]6162.41574280331[/C][C]7.89348776387851[/C][/ROW]
[ROW][C]13[/C][C]6195.7[/C][C]6197.72709944253[/C][C]1.42088380880811[/C][C]6192.25201674866[/C][C]2.02709944253365[/C][/ROW]
[ROW][C]14[/C][C]6236[/C][C]6252.63941143926[/C][C]-0.964067936356718[/C][C]6220.3246564971[/C][C]16.6394114392606[/C][/ROW]
[ROW][C]15[/C][C]6255.2[/C][C]6264.21173411512[/C][C]-2.20903036065324[/C][C]6248.39729624553[/C][C]9.01173411511991[/C][/ROW]
[ROW][C]16[/C][C]6282.5[/C][C]6294.42570338715[/C][C]-3.09369004187379[/C][C]6273.66798665473[/C][C]11.9257033871481[/C][/ROW]
[ROW][C]17[/C][C]6301.7[/C][C]6307.27967511689[/C][C]-2.81835218080804[/C][C]6298.93867706392[/C][C]5.57967511688912[/C][/ROW]
[ROW][C]18[/C][C]6330.9[/C][C]6341.47116395681[/C][C]-1.61014200646365[/C][C]6321.93897804965[/C][C]10.5711639568135[/C][/ROW]
[ROW][C]19[/C][C]6350.8[/C][C]6355.53265018443[/C][C]1.12807078018977[/C][C]6344.93927903538[/C][C]4.73265018442908[/C][/ROW]
[ROW][C]20[/C][C]6363[/C][C]6365.07903248722[/C][C]-5.23948956521039[/C][C]6366.16045707799[/C][C]2.07903248721959[/C][/ROW]
[ROW][C]21[/C][C]6388.6[/C][C]6386.33545201633[/C][C]3.48291286307342[/C][C]6387.3816351206[/C][C]-2.26454798367467[/C][/ROW]
[ROW][C]22[/C][C]6411.5[/C][C]6412.10022411273[/C][C]3.83786548754747[/C][C]6407.06191039972[/C][C]0.600224112730757[/C][/ROW]
[ROW][C]23[/C][C]6436.4[/C][C]6442.78353998346[/C][C]3.27427433769345[/C][C]6426.74218567884[/C][C]6.38353998346338[/C][/ROW]
[ROW][C]24[/C][C]6449.2[/C][C]6450.8479100556[/C][C]2.7907694328077[/C][C]6444.76132051159[/C][C]1.64791005560346[/C][/ROW]
[ROW][C]25[/C][C]6473.3[/C][C]6482.39866084686[/C][C]1.42088380880811[/C][C]6462.78045534434[/C][C]9.09866084685655[/C][/ROW]
[ROW][C]26[/C][C]6479.5[/C][C]6480.81455962188[/C][C]-0.964067936356718[/C][C]6479.14950831448[/C][C]1.31455962188011[/C][/ROW]
[ROW][C]27[/C][C]6507.3[/C][C]6521.29046907604[/C][C]-2.20903036065324[/C][C]6495.51856128462[/C][C]13.990469076035[/C][/ROW]
[ROW][C]28[/C][C]6516.1[/C][C]6524.69089420107[/C][C]-3.09369004187379[/C][C]6510.6027958408[/C][C]8.59089420107102[/C][/ROW]
[ROW][C]29[/C][C]6534.2[/C][C]6545.53132178382[/C][C]-2.81835218080804[/C][C]6525.68703039699[/C][C]11.3313217838186[/C][/ROW]
[ROW][C]30[/C][C]6540.6[/C][C]6543.0191180546[/C][C]-1.61014200646365[/C][C]6539.79102395186[/C][C]2.41911805460222[/C][/ROW]
[ROW][C]31[/C][C]6542.9[/C][C]6530.77691171308[/C][C]1.12807078018977[/C][C]6553.89501750673[/C][C]-12.123088286924[/C][/ROW]
[ROW][C]32[/C][C]6562.6[/C][C]6563.45021590107[/C][C]-5.23948956521039[/C][C]6566.98927366415[/C][C]0.850215901065894[/C][/ROW]
[ROW][C]33[/C][C]6577[/C][C]6570.43355731537[/C][C]3.48291286307342[/C][C]6580.08352982156[/C][C]-6.5664426846306[/C][/ROW]
[ROW][C]34[/C][C]6596.6[/C][C]6597.20192856921[/C][C]3.83786548754747[/C][C]6592.16020594324[/C][C]0.601928569210031[/C][/ROW]
[ROW][C]35[/C][C]6612.1[/C][C]6616.68884359738[/C][C]3.27427433769345[/C][C]6604.23688206493[/C][C]4.58884359737931[/C][/ROW]
[ROW][C]36[/C][C]6626.3[/C][C]6634.30082484336[/C][C]2.7907694328077[/C][C]6615.50840572384[/C][C]8.00082484335599[/C][/ROW]
[ROW][C]37[/C][C]6640.1[/C][C]6651.99918680845[/C][C]1.42088380880811[/C][C]6626.77992938274[/C][C]11.8991868084477[/C][/ROW]
[ROW][C]38[/C][C]6642.4[/C][C]6648.09874425107[/C][C]-0.964067936356718[/C][C]6637.66532368528[/C][C]5.69874425107446[/C][/ROW]
[ROW][C]39[/C][C]6648.7[/C][C]6651.05831237283[/C][C]-2.20903036065324[/C][C]6648.55071798782[/C][C]2.35831237283401[/C][/ROW]
[ROW][C]40[/C][C]6660.8[/C][C]6665.53041734306[/C][C]-3.09369004187379[/C][C]6659.16327269882[/C][C]4.73041734305662[/C][/ROW]
[ROW][C]41[/C][C]6668.2[/C][C]6669.44252477099[/C][C]-2.81835218080804[/C][C]6669.77582740982[/C][C]1.24252477099253[/C][/ROW]
[ROW][C]42[/C][C]6657.7[/C][C]6636.27219967767[/C][C]-1.61014200646365[/C][C]6680.7379423288[/C][C]-21.4278003223335[/C][/ROW]
[ROW][C]43[/C][C]6682.8[/C][C]6672.77187197203[/C][C]1.12807078018977[/C][C]6691.70005724778[/C][C]-10.0281280279669[/C][/ROW]
[ROW][C]44[/C][C]6696.8[/C][C]6694.75819540038[/C][C]-5.23948956521039[/C][C]6704.08129416483[/C][C]-2.04180459961663[/C][/ROW]
[ROW][C]45[/C][C]6714.4[/C][C]6708.85455605505[/C][C]3.48291286307342[/C][C]6716.46253108188[/C][C]-5.54544394495224[/C][/ROW]
[ROW][C]46[/C][C]6728.2[/C][C]6721.57590942234[/C][C]3.83786548754747[/C][C]6730.98622509011[/C][C]-6.6240905776549[/C][/ROW]
[ROW][C]47[/C][C]6741.8[/C][C]6734.81580656397[/C][C]3.27427433769345[/C][C]6745.50991909834[/C][C]-6.98419343602927[/C][/ROW]
[ROW][C]48[/C][C]6758.4[/C][C]6752.23397991545[/C][C]2.7907694328077[/C][C]6761.77525065175[/C][C]-6.16602008455448[/C][/ROW]
[ROW][C]49[/C][C]6774[/C][C]6768.53853398603[/C][C]1.42088380880811[/C][C]6778.04058220516[/C][C]-5.46146601396504[/C][/ROW]
[ROW][C]50[/C][C]6792.3[/C][C]6790.33952718504[/C][C]-0.964067936356718[/C][C]6795.22454075132[/C][C]-1.96047281496431[/C][/ROW]
[ROW][C]51[/C][C]6809.1[/C][C]6808.00053106317[/C][C]-2.20903036065324[/C][C]6812.40849929748[/C][C]-1.09946893683173[/C][/ROW]
[ROW][C]52[/C][C]6832.2[/C][C]6837.07408231646[/C][C]-3.09369004187379[/C][C]6830.41960772542[/C][C]4.87408231645531[/C][/ROW]
[ROW][C]53[/C][C]6850.3[/C][C]6854.98763602746[/C][C]-2.81835218080804[/C][C]6848.43071615335[/C][C]4.68763602745548[/C][/ROW]
[ROW][C]54[/C][C]6861.1[/C][C]6856.62849559852[/C][C]-1.61014200646365[/C][C]6867.18164640794[/C][C]-4.47150440147925[/C][/ROW]
[ROW][C]55[/C][C]6882.6[/C][C]6878.13935255728[/C][C]1.12807078018977[/C][C]6885.93257666253[/C][C]-4.4606474427228[/C][/ROW]
[ROW][C]56[/C][C]6900.7[/C][C]6901.3895914182[/C][C]-5.23948956521039[/C][C]6905.24989814701[/C][C]0.689591418202326[/C][/ROW]
[ROW][C]57[/C][C]6915.1[/C][C]6902.14986750544[/C][C]3.48291286307342[/C][C]6924.56721963148[/C][C]-12.9501324945559[/C][/ROW]
[ROW][C]58[/C][C]6947.8[/C][C]6947.45329405722[/C][C]3.83786548754747[/C][C]6944.30884045523[/C][C]-0.34670594277668[/C][/ROW]
[ROW][C]59[/C][C]6965.9[/C][C]6964.47526438333[/C][C]3.27427433769345[/C][C]6964.05046127897[/C][C]-1.42473561666884[/C][/ROW]
[ROW][C]60[/C][C]6991.7[/C][C]6996.40671788843[/C][C]2.7907694328077[/C][C]6984.20251267876[/C][C]4.7067178884281[/C][/ROW]
[ROW][C]61[/C][C]6993.9[/C][C]6982.02455211264[/C][C]1.42088380880811[/C][C]7004.35456407855[/C][C]-11.8754478873616[/C][/ROW]
[ROW][C]62[/C][C]7031.7[/C][C]7040.11402643415[/C][C]-0.964067936356718[/C][C]7024.25004150221[/C][C]8.41402643414767[/C][/ROW]
[ROW][C]63[/C][C]7048.7[/C][C]7055.46351143479[/C][C]-2.20903036065324[/C][C]7044.14551892586[/C][C]6.7635114347886[/C][/ROW]
[ROW][C]64[/C][C]7067.4[/C][C]7074.53406336402[/C][C]-3.09369004187379[/C][C]7063.35962667785[/C][C]7.13406336402204[/C][/ROW]
[ROW][C]65[/C][C]7077.1[/C][C]7074.44461775097[/C][C]-2.81835218080804[/C][C]7082.57373442984[/C][C]-2.65538224903048[/C][/ROW]
[ROW][C]66[/C][C]7107.4[/C][C]7114.66266549031[/C][C]-1.61014200646365[/C][C]7101.74747651615[/C][C]7.26266549031152[/C][/ROW]
[ROW][C]67[/C][C]7127.1[/C][C]7132.15071061735[/C][C]1.12807078018977[/C][C]7120.92121860246[/C][C]5.05071061734634[/C][/ROW]
[ROW][C]68[/C][C]7137.3[/C][C]7139.42932517952[/C][C]-5.23948956521039[/C][C]7140.41016438569[/C][C]2.12932517951685[/C][/ROW]
[ROW][C]69[/C][C]7147.9[/C][C]7132.417976968[/C][C]3.48291286307342[/C][C]7159.89911016892[/C][C]-15.4820230319974[/C][/ROW]
[ROW][C]70[/C][C]7170.6[/C][C]7158.68067757225[/C][C]3.83786548754747[/C][C]7178.6814569402[/C][C]-11.919322427746[/C][/ROW]
[ROW][C]71[/C][C]7193[/C][C]7185.26192195083[/C][C]3.27427433769345[/C][C]7197.46380371147[/C][C]-7.7380780491676[/C][/ROW]
[ROW][C]72[/C][C]7220.1[/C][C]7222.86842008186[/C][C]2.7907694328077[/C][C]7214.54081048534[/C][C]2.76842008185668[/C][/ROW]
[ROW][C]73[/C][C]7251[/C][C]7268.96129893199[/C][C]1.42088380880811[/C][C]7231.6178172592[/C][C]17.961298931994[/C][/ROW]
[ROW][C]74[/C][C]7268.1[/C][C]7290.70545212729[/C][C]-0.964067936356718[/C][C]7246.45861580906[/C][C]22.6054521272945[/C][/ROW]
[ROW][C]75[/C][C]7282.2[/C][C]7305.30961600173[/C][C]-2.20903036065324[/C][C]7261.29941435893[/C][C]23.1096160017269[/C][/ROW]
[ROW][C]76[/C][C]7290.2[/C][C]7309.59831897229[/C][C]-3.09369004187379[/C][C]7273.89537106958[/C][C]19.3983189722894[/C][/ROW]
[ROW][C]77[/C][C]7292.5[/C][C]7301.32702440057[/C][C]-2.81835218080804[/C][C]7286.49132778024[/C][C]8.82702440056528[/C][/ROW]
[ROW][C]78[/C][C]7299.6[/C][C]7303.72502478381[/C][C]-1.61014200646365[/C][C]7297.08511722266[/C][C]4.12502478380793[/C][/ROW]
[ROW][C]79[/C][C]7305.1[/C][C]7301.39302255474[/C][C]1.12807078018977[/C][C]7307.67890666507[/C][C]-3.70697744525751[/C][/ROW]
[ROW][C]80[/C][C]7306.9[/C][C]7301.58488950054[/C][C]-5.23948956521039[/C][C]7317.45460006467[/C][C]-5.31511049945766[/C][/ROW]
[ROW][C]81[/C][C]7313.3[/C][C]7295.88679367266[/C][C]3.48291286307342[/C][C]7327.23029346427[/C][C]-17.41320632734[/C][/ROW]
[ROW][C]82[/C][C]7325.6[/C][C]7310.67448409649[/C][C]3.83786548754747[/C][C]7336.68765041596[/C][C]-14.9255159035101[/C][/ROW]
[ROW][C]83[/C][C]7348.1[/C][C]7346.78071829465[/C][C]3.27427433769345[/C][C]7346.14500736766[/C][C]-1.31928170535139[/C][/ROW]
[ROW][C]84[/C][C]7354.7[/C][C]7351.68485810639[/C][C]2.7907694328077[/C][C]7354.92437246081[/C][C]-3.01514189361387[/C][/ROW]
[ROW][C]85[/C][C]7375.3[/C][C]7385.47537863724[/C][C]1.42088380880811[/C][C]7363.70373755395[/C][C]10.1753786372374[/C][/ROW]
[ROW][C]86[/C][C]7396.3[/C][C]7422.94821528175[/C][C]-0.964067936356718[/C][C]7370.61585265461[/C][C]26.6482152817453[/C][/ROW]
[ROW][C]87[/C][C]7401.9[/C][C]7428.48106260538[/C][C]-2.20903036065324[/C][C]7377.52796775527[/C][C]26.5810626053835[/C][/ROW]
[ROW][C]88[/C][C]7390.4[/C][C]7403.38381032742[/C][C]-3.09369004187379[/C][C]7380.50987971445[/C][C]12.9838103274233[/C][/ROW]
[ROW][C]89[/C][C]7393.6[/C][C]7406.52656050718[/C][C]-2.81835218080804[/C][C]7383.49179167363[/C][C]12.9265605071769[/C][/ROW]
[ROW][C]90[/C][C]7398.5[/C][C]7417.7089249393[/C][C]-1.61014200646365[/C][C]7380.90121706716[/C][C]19.2089249392993[/C][/ROW]
[ROW][C]91[/C][C]7392.4[/C][C]7405.36128675911[/C][C]1.12807078018977[/C][C]7378.3106424607[/C][C]12.9612867591131[/C][/ROW]
[ROW][C]92[/C][C]7390.8[/C][C]7416.51097401213[/C][C]-5.23948956521039[/C][C]7370.32851555308[/C][C]25.7109740121332[/C][/ROW]
[ROW][C]93[/C][C]7380.6[/C][C]7395.37069849147[/C][C]3.48291286307342[/C][C]7362.34638864546[/C][C]14.7706984914685[/C][/ROW]
[ROW][C]94[/C][C]7365.8[/C][C]7376.81100331606[/C][C]3.83786548754747[/C][C]7350.9511311964[/C][C]11.0110033160563[/C][/ROW]
[ROW][C]95[/C][C]7346.9[/C][C]7350.96985191497[/C][C]3.27427433769345[/C][C]7339.55587374733[/C][C]4.06985191497279[/C][/ROW]
[ROW][C]96[/C][C]7334.1[/C][C]7338.1974264423[/C][C]2.7907694328077[/C][C]7327.21180412489[/C][C]4.09742644230391[/C][/ROW]
[ROW][C]97[/C][C]7314.8[/C][C]7313.31138168875[/C][C]1.42088380880811[/C][C]7314.86773450245[/C][C]-1.48861831125305[/C][/ROW]
[ROW][C]98[/C][C]7287.8[/C][C]7272.84864103623[/C][C]-0.964067936356718[/C][C]7303.71542690012[/C][C]-14.9513589637663[/C][/ROW]
[ROW][C]99[/C][C]7274.3[/C][C]7258.24591106285[/C][C]-2.20903036065324[/C][C]7292.5631192978[/C][C]-16.0540889371478[/C][/ROW]
[ROW][C]100[/C][C]7252.7[/C][C]7224.71832617057[/C][C]-3.09369004187379[/C][C]7283.7753638713[/C][C]-27.9816738294267[/C][/ROW]
[ROW][C]101[/C][C]7257.5[/C][C]7242.83074373601[/C][C]-2.81835218080804[/C][C]7274.9876084448[/C][C]-14.669256263991[/C][/ROW]
[ROW][C]102[/C][C]7256.5[/C][C]7245.76520765396[/C][C]-1.61014200646365[/C][C]7268.8449343525[/C][C]-10.7347923460393[/C][/ROW]
[ROW][C]103[/C][C]7253.9[/C][C]7243.9696689596[/C][C]1.12807078018977[/C][C]7262.70226026021[/C][C]-9.9303310403975[/C][/ROW]
[ROW][C]104[/C][C]7262.6[/C][C]7270.88266810194[/C][C]-5.23948956521039[/C][C]7259.55682146328[/C][C]8.28266810193509[/C][/ROW]
[ROW][C]105[/C][C]7263.6[/C][C]7267.30570447058[/C][C]3.48291286307342[/C][C]7256.41138266634[/C][C]3.70570447058253[/C][/ROW]
[ROW][C]106[/C][C]7261.3[/C][C]7262.38152597346[/C][C]3.83786548754747[/C][C]7256.38060853899[/C][C]1.08152597345907[/C][/ROW]
[ROW][C]107[/C][C]7250.4[/C][C]7241.17589125066[/C][C]3.27427433769345[/C][C]7256.34983441164[/C][C]-9.22410874933576[/C][/ROW]
[ROW][C]108[/C][C]7249.3[/C][C]7236.77147369302[/C][C]2.7907694328077[/C][C]7259.03775687417[/C][C]-12.5285263069754[/C][/ROW]
[ROW][C]109[/C][C]7245.6[/C][C]7228.0534368545[/C][C]1.42088380880811[/C][C]7261.7256793367[/C][C]-17.5465631455027[/C][/ROW]
[ROW][C]110[/C][C]7244.4[/C][C]7224.32228055314[/C][C]-0.964067936356718[/C][C]7265.44178738321[/C][C]-20.0777194468556[/C][/ROW]
[ROW][C]111[/C][C]7253.8[/C][C]7240.65113493092[/C][C]-2.20903036065324[/C][C]7269.15789542973[/C][C]-13.1488650690762[/C][/ROW]
[ROW][C]112[/C][C]7271.6[/C][C]7273.28237446749[/C][C]-3.09369004187379[/C][C]7273.01131557439[/C][C]1.68237446748662[/C][/ROW]
[ROW][C]113[/C][C]7282.7[/C][C]7291.35361646176[/C][C]-2.81835218080804[/C][C]7276.86473571904[/C][C]8.65361646176279[/C][/ROW]
[ROW][C]114[/C][C]7283[/C][C]7286.5368282597[/C][C]-1.61014200646365[/C][C]7281.07331374676[/C][C]3.53682825970191[/C][/ROW]
[ROW][C]115[/C][C]7293.3[/C][C]7300.19003744533[/C][C]1.12807078018977[/C][C]7285.28189177448[/C][C]6.89003744533147[/C][/ROW]
[ROW][C]116[/C][C]7291.2[/C][C]7297.81134430544[/C][C]-5.23948956521039[/C][C]7289.82814525977[/C][C]6.61134430543825[/C][/ROW]
[ROW][C]117[/C][C]7298.5[/C][C]7299.14268839186[/C][C]3.48291286307342[/C][C]7294.37439874507[/C][C]0.642688391861157[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299492&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299492&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
15884.55918.840775491371.420883808808115848.7383406998234.3407754913724
25879.15882.79471291632-0.9640679363567185876.369355020043.69471291631635
35897.25892.60866102039-2.209030360653245904.00036934026-4.59133897960874
45920.75912.50076482676-3.093690041873795931.99292521512-8.19923517324332
55944.65932.03287109084-2.818352180808045959.98548108997-12.5671289091642
65982.45978.23090928805-1.610142006463655988.17923271841-4.16909071195096
76017.46017.298944872951.128070780189776016.37298434686-0.101055127046493
859805920.54053727737-5.239489565210396044.69895228784-59.4594627226252
96087.46098.292166908113.482912863073426073.0249202288110.8921669081119
106114.56122.359939969063.837865487547476102.802194543397.85993996906018
116143.26150.546256804333.274274337693456132.579468857977.3462568043351
126173.16180.993487763882.79076943280776162.415742803317.89348776387851
136195.76197.727099442531.420883808808116192.252016748662.02709944253365
1462366252.63941143926-0.9640679363567186220.324656497116.6394114392606
156255.26264.21173411512-2.209030360653246248.397296245539.01173411511991
166282.56294.42570338715-3.093690041873796273.6679866547311.9257033871481
176301.76307.27967511689-2.818352180808046298.938677063925.57967511688912
186330.96341.47116395681-1.610142006463656321.9389780496510.5711639568135
196350.86355.532650184431.128070780189776344.939279035384.73265018442908
2063636365.07903248722-5.239489565210396366.160457077992.07903248721959
216388.66386.335452016333.482912863073426387.3816351206-2.26454798367467
226411.56412.100224112733.837865487547476407.061910399720.600224112730757
236436.46442.783539983463.274274337693456426.742185678846.38353998346338
246449.26450.84791005562.79076943280776444.761320511591.64791005560346
256473.36482.398660846861.420883808808116462.780455344349.09866084685655
266479.56480.81455962188-0.9640679363567186479.149508314481.31455962188011
276507.36521.29046907604-2.209030360653246495.5185612846213.990469076035
286516.16524.69089420107-3.093690041873796510.60279584088.59089420107102
296534.26545.53132178382-2.818352180808046525.6870303969911.3313217838186
306540.66543.0191180546-1.610142006463656539.791023951862.41911805460222
316542.96530.776911713081.128070780189776553.89501750673-12.123088286924
326562.66563.45021590107-5.239489565210396566.989273664150.850215901065894
3365776570.433557315373.482912863073426580.08352982156-6.5664426846306
346596.66597.201928569213.837865487547476592.160205943240.601928569210031
356612.16616.688843597383.274274337693456604.236882064934.58884359737931
366626.36634.300824843362.79076943280776615.508405723848.00082484335599
376640.16651.999186808451.420883808808116626.7799293827411.8991868084477
386642.46648.09874425107-0.9640679363567186637.665323685285.69874425107446
396648.76651.05831237283-2.209030360653246648.550717987822.35831237283401
406660.86665.53041734306-3.093690041873796659.163272698824.73041734305662
416668.26669.44252477099-2.818352180808046669.775827409821.24252477099253
426657.76636.27219967767-1.610142006463656680.7379423288-21.4278003223335
436682.86672.771871972031.128070780189776691.70005724778-10.0281280279669
446696.86694.75819540038-5.239489565210396704.08129416483-2.04180459961663
456714.46708.854556055053.482912863073426716.46253108188-5.54544394495224
466728.26721.575909422343.837865487547476730.98622509011-6.6240905776549
476741.86734.815806563973.274274337693456745.50991909834-6.98419343602927
486758.46752.233979915452.79076943280776761.77525065175-6.16602008455448
4967746768.538533986031.420883808808116778.04058220516-5.46146601396504
506792.36790.33952718504-0.9640679363567186795.22454075132-1.96047281496431
516809.16808.00053106317-2.209030360653246812.40849929748-1.09946893683173
526832.26837.07408231646-3.093690041873796830.419607725424.87408231645531
536850.36854.98763602746-2.818352180808046848.430716153354.68763602745548
546861.16856.62849559852-1.610142006463656867.18164640794-4.47150440147925
556882.66878.139352557281.128070780189776885.93257666253-4.4606474427228
566900.76901.3895914182-5.239489565210396905.249898147010.689591418202326
576915.16902.149867505443.482912863073426924.56721963148-12.9501324945559
586947.86947.453294057223.837865487547476944.30884045523-0.34670594277668
596965.96964.475264383333.274274337693456964.05046127897-1.42473561666884
606991.76996.406717888432.79076943280776984.202512678764.7067178884281
616993.96982.024552112641.420883808808117004.35456407855-11.8754478873616
627031.77040.11402643415-0.9640679363567187024.250041502218.41402643414767
637048.77055.46351143479-2.209030360653247044.145518925866.7635114347886
647067.47074.53406336402-3.093690041873797063.359626677857.13406336402204
657077.17074.44461775097-2.818352180808047082.57373442984-2.65538224903048
667107.47114.66266549031-1.610142006463657101.747476516157.26266549031152
677127.17132.150710617351.128070780189777120.921218602465.05071061734634
687137.37139.42932517952-5.239489565210397140.410164385692.12932517951685
697147.97132.4179769683.482912863073427159.89911016892-15.4820230319974
707170.67158.680677572253.837865487547477178.6814569402-11.919322427746
7171937185.261921950833.274274337693457197.46380371147-7.7380780491676
727220.17222.868420081862.79076943280777214.540810485342.76842008185668
7372517268.961298931991.420883808808117231.617817259217.961298931994
747268.17290.70545212729-0.9640679363567187246.4586158090622.6054521272945
757282.27305.30961600173-2.209030360653247261.2994143589323.1096160017269
767290.27309.59831897229-3.093690041873797273.8953710695819.3983189722894
777292.57301.32702440057-2.818352180808047286.491327780248.82702440056528
787299.67303.72502478381-1.610142006463657297.085117222664.12502478380793
797305.17301.393022554741.128070780189777307.67890666507-3.70697744525751
807306.97301.58488950054-5.239489565210397317.45460006467-5.31511049945766
817313.37295.886793672663.482912863073427327.23029346427-17.41320632734
827325.67310.674484096493.837865487547477336.68765041596-14.9255159035101
837348.17346.780718294653.274274337693457346.14500736766-1.31928170535139
847354.77351.684858106392.79076943280777354.92437246081-3.01514189361387
857375.37385.475378637241.420883808808117363.7037375539510.1753786372374
867396.37422.94821528175-0.9640679363567187370.6158526546126.6482152817453
877401.97428.48106260538-2.209030360653247377.5279677552726.5810626053835
887390.47403.38381032742-3.093690041873797380.5098797144512.9838103274233
897393.67406.52656050718-2.818352180808047383.4917916736312.9265605071769
907398.57417.7089249393-1.610142006463657380.9012170671619.2089249392993
917392.47405.361286759111.128070780189777378.310642460712.9612867591131
927390.87416.51097401213-5.239489565210397370.3285155530825.7109740121332
937380.67395.370698491473.482912863073427362.3463886454614.7706984914685
947365.87376.811003316063.837865487547477350.951131196411.0110033160563
957346.97350.969851914973.274274337693457339.555873747334.06985191497279
967334.17338.19742644232.79076943280777327.211804124894.09742644230391
977314.87313.311381688751.420883808808117314.86773450245-1.48861831125305
987287.87272.84864103623-0.9640679363567187303.71542690012-14.9513589637663
997274.37258.24591106285-2.209030360653247292.5631192978-16.0540889371478
1007252.77224.71832617057-3.093690041873797283.7753638713-27.9816738294267
1017257.57242.83074373601-2.818352180808047274.9876084448-14.669256263991
1027256.57245.76520765396-1.610142006463657268.8449343525-10.7347923460393
1037253.97243.96966895961.128070780189777262.70226026021-9.9303310403975
1047262.67270.88266810194-5.239489565210397259.556821463288.28266810193509
1057263.67267.305704470583.482912863073427256.411382666343.70570447058253
1067261.37262.381525973463.837865487547477256.380608538991.08152597345907
1077250.47241.175891250663.274274337693457256.34983441164-9.22410874933576
1087249.37236.771473693022.79076943280777259.03775687417-12.5285263069754
1097245.67228.05343685451.420883808808117261.7256793367-17.5465631455027
1107244.47224.32228055314-0.9640679363567187265.44178738321-20.0777194468556
1117253.87240.65113493092-2.209030360653247269.15789542973-13.1488650690762
1127271.67273.28237446749-3.093690041873797273.011315574391.68237446748662
1137282.77291.35361646176-2.818352180808047276.864735719048.65361646176279
11472837286.5368282597-1.610142006463657281.073313746763.53682825970191
1157293.37300.190037445331.128070780189777285.281891774486.89003744533147
1167291.27297.81134430544-5.239489565210397289.828145259776.61134430543825
1177298.57299.142688391863.482912863073427294.374398745070.642688391861157



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')