Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_multipleregression.wasp
Title produced by softwareMultiple Regression
Date of computationWed, 14 Dec 2016 15:17:43 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481725514f26mj0msqtkk3v2.htm/, Retrieved Fri, 01 Nov 2024 03:40:47 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299490, Retrieved Fri, 01 Nov 2024 03:40:47 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact124
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Multiple Regression] [] [2016-12-14 14:17:43] [6e17bb30248b72d8119c893128a7a697] [Current]
Feedback Forum

Post a new message
Dataseries X:
17	5	5	1
11	3	3	5
12	5	5	1
12	5	4	2
13	5	4	1
17	5	5	4
17	5	3	1
12	5	5	1
16	5	5	1
15	5	5	2
11	4	5	1
16	2	4	4
15	5	4	1
16	4	5	5
15	5	5	2
11	4	5	1
8	5	4	2
10	5	5	5
14	5	5	2
16	4	5	1
15	4	5	4
15	3	4	1
12	5	5	2
18	4	4	3
10	5	5	1
17	4	4	4
12	5	5	2
13	5	4	3
9	5	5	1
11	5	5	4
10	5	5	1
15	5	5	1
15	5	5	1
13	5	4	1
13	5	4	3
9	4	4	4
14	4	4	2
14	5	5	4
11	5	5	2
15	5	5	2
12	5	5	1
11	5	5	1
12	5	5	1
15	5	5	5
13	5	5	1
11	5	5	1
10	5	4	1
16	4	5	1
13	5	5	1
15	5	5	2
14	4	4	2
12	5	5	2
10	3	4	2
12	4	3	3
9	3	3	1
15	5	4	2
16	5	5	2
12	5	5	1
11	5	4	3
11	5	5	3
9	5	5	1
13	5	5	1
17	5	5	2
18	4	4	1
15	5	5	3
12	4	4	3
18	5	5	4
11	2	2	4
6	4	3	4
10	5	5	2
19	5	5	1
16	4	3	1
12	5	5	1
10	2	3	3
14	5	4	2
12	3	3	1
13	4	5	1
16	4	4	1
18	5	5	1
13	5	5	1
15	4	4	1
16	4	4	3
9	5	5	1
9	4	5	4
8	4	4	2
18	5	5	4
18	5	5	1
14	5	5	1
8	4	4	1
14	4	4	2
13	4	4	5
14	3	3	3
7	4	4	4
18	5	5	1
16	5	5	4
9	4	4	4
11	5	5	2
10	2	2	3
13	5	5	1
10	5	5	1
12	4	4	4
11	3	5	4
12	5	5	1
12	4	4	3
10	5	5	1
20	5	5	5
12	5	5	2
12	5	5	2
16	5	5	1
11	4	5	3
12	5	4	1
12	5	5	1
13	5	3	3
10	4	4	1
14	5	5	4
13	5	5	1
15	2	1	5
13	5	5	1
13	5	5	1
17	5	4	4
12	5	4	2
17	5	5	1
9	5	5	4
12	5	5	1
14	5	5	1
14	4	5	2
14	3	3	2
12	5	4	1
14	5	5	1
13	5	5	1
15	5	5	4
16	4	4	4
13	4	5	3
14	4	4	4
14	5	4	1
17	4	4	5
13	4	4	3
15	4	4	2
8	5	5	3
11	2	2	3
11	5	5	1
9	4	4	4
15	5	5	1
16	5	5	1
16	4	4	3
10	5	4	3
15	4	2	2
10	5	5	4
12	5	5	4
14	5	5	2
18	4	4	4
15	5	5	4
19	5	5	2
13	5	4	1
10	5	5	1
15	5	5	1
7	2	2	3
14	5	5	3
13	3	3	4
14	5	5	1
11	5	4	3
18	5	5	3
8	4	4	3
19	5	5	2
5	5	5	1
17	5	5	2
14	5	4	2
17	5	2	4




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time9 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299490&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]9 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299490&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299490&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time9 seconds
R ServerBig Analytics Cloud Computing Center







Multiple Linear Regression - Estimated Regression Equation
ECSUM[t] = + 9.46512 + 0.599337EP1[t] + 0.115934EP2[t] + 0.208572EP4[t] + e[t]

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Estimated Regression Equation \tabularnewline
ECSUM[t] =  +  9.46512 +  0.599337EP1[t] +  0.115934EP2[t] +  0.208572EP4[t]  + e[t] \tabularnewline
 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299490&T=1

[TABLE]
[ROW][C]Multiple Linear Regression - Estimated Regression Equation[/C][/ROW]
[ROW][C]ECSUM[t] =  +  9.46512 +  0.599337EP1[t] +  0.115934EP2[t] +  0.208572EP4[t]  + e[t][/C][/ROW]
[ROW][C][/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299490&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299490&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Estimated Regression Equation
ECSUM[t] = + 9.46512 + 0.599337EP1[t] + 0.115934EP2[t] + 0.208572EP4[t] + e[t]







Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+9.465 1.653+5.7250e+00 4.808e-08 2.404e-08
EP1+0.5993 0.4085+1.4670e+00 0.1443 0.07213
EP2+0.1159 0.3819+3.0360e-01 0.7618 0.3809
EP4+0.2086 0.1851+1.1270e+00 0.2615 0.1307

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Ordinary Least Squares \tabularnewline
Variable & Parameter & S.D. & T-STATH0: parameter = 0 & 2-tail p-value & 1-tail p-value \tabularnewline
(Intercept) & +9.465 &  1.653 & +5.7250e+00 &  4.808e-08 &  2.404e-08 \tabularnewline
EP1 & +0.5993 &  0.4085 & +1.4670e+00 &  0.1443 &  0.07213 \tabularnewline
EP2 & +0.1159 &  0.3819 & +3.0360e-01 &  0.7618 &  0.3809 \tabularnewline
EP4 & +0.2086 &  0.1851 & +1.1270e+00 &  0.2615 &  0.1307 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299490&T=2

[TABLE]
[ROW][C]Multiple Linear Regression - Ordinary Least Squares[/C][/ROW]
[ROW][C]Variable[/C][C]Parameter[/C][C]S.D.[/C][C]T-STATH0: parameter = 0[/C][C]2-tail p-value[/C][C]1-tail p-value[/C][/ROW]
[ROW][C](Intercept)[/C][C]+9.465[/C][C] 1.653[/C][C]+5.7250e+00[/C][C] 4.808e-08[/C][C] 2.404e-08[/C][/ROW]
[ROW][C]EP1[/C][C]+0.5993[/C][C] 0.4085[/C][C]+1.4670e+00[/C][C] 0.1443[/C][C] 0.07213[/C][/ROW]
[ROW][C]EP2[/C][C]+0.1159[/C][C] 0.3819[/C][C]+3.0360e-01[/C][C] 0.7618[/C][C] 0.3809[/C][/ROW]
[ROW][C]EP4[/C][C]+0.2086[/C][C] 0.1851[/C][C]+1.1270e+00[/C][C] 0.2615[/C][C] 0.1307[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299490&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299490&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Ordinary Least Squares
VariableParameterS.D.T-STATH0: parameter = 02-tail p-value1-tail p-value
(Intercept)+9.465 1.653+5.7250e+00 4.808e-08 2.404e-08
EP1+0.5993 0.4085+1.4670e+00 0.1443 0.07213
EP2+0.1159 0.3819+3.0360e-01 0.7618 0.3809
EP4+0.2086 0.1851+1.1270e+00 0.2615 0.1307







Multiple Linear Regression - Regression Statistics
Multiple R 0.176
R-squared 0.03099
Adjusted R-squared 0.01326
F-TEST (value) 1.748
F-TEST (DF numerator)3
F-TEST (DF denominator)164
p-value 0.1592
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.908
Sum Squared Residuals 1387

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Regression Statistics \tabularnewline
Multiple R &  0.176 \tabularnewline
R-squared &  0.03099 \tabularnewline
Adjusted R-squared &  0.01326 \tabularnewline
F-TEST (value) &  1.748 \tabularnewline
F-TEST (DF numerator) & 3 \tabularnewline
F-TEST (DF denominator) & 164 \tabularnewline
p-value &  0.1592 \tabularnewline
Multiple Linear Regression - Residual Statistics \tabularnewline
Residual Standard Deviation &  2.908 \tabularnewline
Sum Squared Residuals &  1387 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299490&T=3

[TABLE]
[ROW][C]Multiple Linear Regression - Regression Statistics[/C][/ROW]
[ROW][C]Multiple R[/C][C] 0.176[/C][/ROW]
[ROW][C]R-squared[/C][C] 0.03099[/C][/ROW]
[ROW][C]Adjusted R-squared[/C][C] 0.01326[/C][/ROW]
[ROW][C]F-TEST (value)[/C][C] 1.748[/C][/ROW]
[ROW][C]F-TEST (DF numerator)[/C][C]3[/C][/ROW]
[ROW][C]F-TEST (DF denominator)[/C][C]164[/C][/ROW]
[ROW][C]p-value[/C][C] 0.1592[/C][/ROW]
[ROW][C]Multiple Linear Regression - Residual Statistics[/C][/ROW]
[ROW][C]Residual Standard Deviation[/C][C] 2.908[/C][/ROW]
[ROW][C]Sum Squared Residuals[/C][C] 1387[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299490&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299490&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Regression Statistics
Multiple R 0.176
R-squared 0.03099
Adjusted R-squared 0.01326
F-TEST (value) 1.748
F-TEST (DF numerator)3
F-TEST (DF denominator)164
p-value 0.1592
Multiple Linear Regression - Residual Statistics
Residual Standard Deviation 2.908
Sum Squared Residuals 1387







Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 17 13.25 3.75
2 11 12.65-1.654
3 12 13.25-1.25
4 12 13.34-1.343
5 13 13.13-0.1341
6 17 13.88 3.124
7 17 13.02 3.982
8 12 13.25-1.25
9 16 13.25 2.75
10 15 13.46 1.541
11 11 12.65-1.651
12 16 11.96 4.038
13 15 13.13 1.866
14 16 13.48 2.515
15 15 13.46 1.541
16 11 12.65-1.651
17 8 13.34-5.343
18 10 14.08-4.084
19 14 13.46 0.5414
20 16 12.65 3.349
21 15 13.28 1.724
22 15 11.94 3.065
23 12 13.46-1.459
24 18 12.95 5.048
25 10 13.25-3.25
26 17 13.16 3.84
27 12 13.46-1.459
28 13 13.55-0.5513
29 9 13.25-4.25
30 11 13.88-2.876
31 10 13.25-3.25
32 15 13.25 1.75
33 15 13.25 1.75
34 13 13.13-0.1341
35 13 13.55-0.5513
36 9 13.16-4.16
37 14 12.74 1.257
38 14 13.88 0.1242
39 11 13.46-2.459
40 15 13.46 1.541
41 12 13.25-1.25
42 11 13.25-2.25
43 12 13.25-1.25
44 15 14.08 0.9157
45 13 13.25-0.25
46 11 13.25-2.25
47 10 13.13-3.134
48 16 12.65 3.349
49 13 13.25-0.25
50 15 13.46 1.541
51 14 12.74 1.257
52 12 13.46-1.459
53 10 12.14-2.144
54 12 12.84-0.836
55 9 11.82-2.82
56 15 13.34 1.657
57 16 13.46 2.541
58 12 13.25-1.25
59 11 13.55-2.551
60 11 13.67-2.667
61 9 13.25-4.25
62 13 13.25-0.25
63 17 13.46 3.541
64 18 12.53 5.465
65 15 13.67 1.333
66 12 12.95-0.9519
67 18 13.88 4.124
68 11 11.73-0.73
69 6 13.04-7.045
70 10 13.46-3.459
71 19 13.25 5.75
72 16 12.42 3.581
73 12 13.25-1.25
74 10 11.64-1.637
75 14 13.34 0.6573
76 12 11.82 0.1805
77 13 12.65 0.3493
78 16 12.53 3.465
79 18 13.25 4.75
80 13 13.25-0.25
81 15 12.53 2.465
82 16 12.95 3.048
83 9 13.25-4.25
84 9 13.28-4.276
85 8 12.74-4.743
86 18 13.88 4.124
87 18 13.25 4.75
88 14 13.25 0.75
89 8 12.53-4.535
90 14 12.74 1.257
91 13 13.37-0.3691
92 14 12.24 1.763
93 7 13.16-6.16
94 18 13.25 4.75
95 16 13.88 2.124
96 9 13.16-4.16
97 11 13.46-2.459
98 10 11.52-1.521
99 13 13.25-0.25
100 10 13.25-3.25
101 12 13.16-1.16
102 11 12.68-1.677
103 12 13.25-1.25
104 12 12.95-0.9519
105 10 13.25-3.25
106 20 14.08 5.916
107 12 13.46-1.459
108 12 13.46-1.459
109 16 13.25 2.75
110 11 13.07-2.068
111 12 13.13-1.134
112 12 13.25-1.25
113 13 13.44-0.4353
114 10 12.53-2.535
115 14 13.88 0.1242
116 13 13.25-0.25
117 15 11.82 3.177
118 13 13.25-0.25
119 13 13.25-0.25
120 17 13.76 3.24
121 12 13.34-1.343
122 17 13.25 3.75
123 9 13.88-4.876
124 12 13.25-1.25
125 14 13.25 0.75
126 14 12.86 1.141
127 14 12.03 1.972
128 12 13.13-1.134
129 14 13.25 0.75
130 13 13.25-0.25
131 15 13.88 1.124
132 16 13.16 2.84
133 13 13.07-0.06786
134 14 13.16 0.8395
135 14 13.13 0.8659
136 17 13.37 3.631
137 13 12.95 0.04808
138 15 12.74 2.257
139 8 13.67-5.667
140 11 11.52-0.5214
141 11 13.25-2.25
142 9 13.16-4.16
143 15 13.25 1.75
144 16 13.25 2.75
145 16 12.95 3.048
146 10 13.55-3.551
147 15 12.51 2.489
148 10 13.88-3.876
149 12 13.88-1.876
150 14 13.46 0.5414
151 18 13.16 4.84
152 15 13.88 1.124
153 19 13.46 5.541
154 13 13.13-0.1341
155 10 13.25-3.25
156 15 13.25 1.75
157 7 11.52-4.521
158 14 13.67 0.3328
159 13 12.45 0.5548
160 14 13.25 0.75
161 11 13.55-2.551
162 18 13.67 4.333
163 8 12.95-4.952
164 19 13.46 5.541
165 5 13.25-8.25
166 17 13.46 3.541
167 14 13.34 0.6573
168 17 13.53 3.472

\begin{tabular}{lllllllll}
\hline
Multiple Linear Regression - Actuals, Interpolation, and Residuals \tabularnewline
Time or Index & Actuals & InterpolationForecast & ResidualsPrediction Error \tabularnewline
1 &  17 &  13.25 &  3.75 \tabularnewline
2 &  11 &  12.65 & -1.654 \tabularnewline
3 &  12 &  13.25 & -1.25 \tabularnewline
4 &  12 &  13.34 & -1.343 \tabularnewline
5 &  13 &  13.13 & -0.1341 \tabularnewline
6 &  17 &  13.88 &  3.124 \tabularnewline
7 &  17 &  13.02 &  3.982 \tabularnewline
8 &  12 &  13.25 & -1.25 \tabularnewline
9 &  16 &  13.25 &  2.75 \tabularnewline
10 &  15 &  13.46 &  1.541 \tabularnewline
11 &  11 &  12.65 & -1.651 \tabularnewline
12 &  16 &  11.96 &  4.038 \tabularnewline
13 &  15 &  13.13 &  1.866 \tabularnewline
14 &  16 &  13.48 &  2.515 \tabularnewline
15 &  15 &  13.46 &  1.541 \tabularnewline
16 &  11 &  12.65 & -1.651 \tabularnewline
17 &  8 &  13.34 & -5.343 \tabularnewline
18 &  10 &  14.08 & -4.084 \tabularnewline
19 &  14 &  13.46 &  0.5414 \tabularnewline
20 &  16 &  12.65 &  3.349 \tabularnewline
21 &  15 &  13.28 &  1.724 \tabularnewline
22 &  15 &  11.94 &  3.065 \tabularnewline
23 &  12 &  13.46 & -1.459 \tabularnewline
24 &  18 &  12.95 &  5.048 \tabularnewline
25 &  10 &  13.25 & -3.25 \tabularnewline
26 &  17 &  13.16 &  3.84 \tabularnewline
27 &  12 &  13.46 & -1.459 \tabularnewline
28 &  13 &  13.55 & -0.5513 \tabularnewline
29 &  9 &  13.25 & -4.25 \tabularnewline
30 &  11 &  13.88 & -2.876 \tabularnewline
31 &  10 &  13.25 & -3.25 \tabularnewline
32 &  15 &  13.25 &  1.75 \tabularnewline
33 &  15 &  13.25 &  1.75 \tabularnewline
34 &  13 &  13.13 & -0.1341 \tabularnewline
35 &  13 &  13.55 & -0.5513 \tabularnewline
36 &  9 &  13.16 & -4.16 \tabularnewline
37 &  14 &  12.74 &  1.257 \tabularnewline
38 &  14 &  13.88 &  0.1242 \tabularnewline
39 &  11 &  13.46 & -2.459 \tabularnewline
40 &  15 &  13.46 &  1.541 \tabularnewline
41 &  12 &  13.25 & -1.25 \tabularnewline
42 &  11 &  13.25 & -2.25 \tabularnewline
43 &  12 &  13.25 & -1.25 \tabularnewline
44 &  15 &  14.08 &  0.9157 \tabularnewline
45 &  13 &  13.25 & -0.25 \tabularnewline
46 &  11 &  13.25 & -2.25 \tabularnewline
47 &  10 &  13.13 & -3.134 \tabularnewline
48 &  16 &  12.65 &  3.349 \tabularnewline
49 &  13 &  13.25 & -0.25 \tabularnewline
50 &  15 &  13.46 &  1.541 \tabularnewline
51 &  14 &  12.74 &  1.257 \tabularnewline
52 &  12 &  13.46 & -1.459 \tabularnewline
53 &  10 &  12.14 & -2.144 \tabularnewline
54 &  12 &  12.84 & -0.836 \tabularnewline
55 &  9 &  11.82 & -2.82 \tabularnewline
56 &  15 &  13.34 &  1.657 \tabularnewline
57 &  16 &  13.46 &  2.541 \tabularnewline
58 &  12 &  13.25 & -1.25 \tabularnewline
59 &  11 &  13.55 & -2.551 \tabularnewline
60 &  11 &  13.67 & -2.667 \tabularnewline
61 &  9 &  13.25 & -4.25 \tabularnewline
62 &  13 &  13.25 & -0.25 \tabularnewline
63 &  17 &  13.46 &  3.541 \tabularnewline
64 &  18 &  12.53 &  5.465 \tabularnewline
65 &  15 &  13.67 &  1.333 \tabularnewline
66 &  12 &  12.95 & -0.9519 \tabularnewline
67 &  18 &  13.88 &  4.124 \tabularnewline
68 &  11 &  11.73 & -0.73 \tabularnewline
69 &  6 &  13.04 & -7.045 \tabularnewline
70 &  10 &  13.46 & -3.459 \tabularnewline
71 &  19 &  13.25 &  5.75 \tabularnewline
72 &  16 &  12.42 &  3.581 \tabularnewline
73 &  12 &  13.25 & -1.25 \tabularnewline
74 &  10 &  11.64 & -1.637 \tabularnewline
75 &  14 &  13.34 &  0.6573 \tabularnewline
76 &  12 &  11.82 &  0.1805 \tabularnewline
77 &  13 &  12.65 &  0.3493 \tabularnewline
78 &  16 &  12.53 &  3.465 \tabularnewline
79 &  18 &  13.25 &  4.75 \tabularnewline
80 &  13 &  13.25 & -0.25 \tabularnewline
81 &  15 &  12.53 &  2.465 \tabularnewline
82 &  16 &  12.95 &  3.048 \tabularnewline
83 &  9 &  13.25 & -4.25 \tabularnewline
84 &  9 &  13.28 & -4.276 \tabularnewline
85 &  8 &  12.74 & -4.743 \tabularnewline
86 &  18 &  13.88 &  4.124 \tabularnewline
87 &  18 &  13.25 &  4.75 \tabularnewline
88 &  14 &  13.25 &  0.75 \tabularnewline
89 &  8 &  12.53 & -4.535 \tabularnewline
90 &  14 &  12.74 &  1.257 \tabularnewline
91 &  13 &  13.37 & -0.3691 \tabularnewline
92 &  14 &  12.24 &  1.763 \tabularnewline
93 &  7 &  13.16 & -6.16 \tabularnewline
94 &  18 &  13.25 &  4.75 \tabularnewline
95 &  16 &  13.88 &  2.124 \tabularnewline
96 &  9 &  13.16 & -4.16 \tabularnewline
97 &  11 &  13.46 & -2.459 \tabularnewline
98 &  10 &  11.52 & -1.521 \tabularnewline
99 &  13 &  13.25 & -0.25 \tabularnewline
100 &  10 &  13.25 & -3.25 \tabularnewline
101 &  12 &  13.16 & -1.16 \tabularnewline
102 &  11 &  12.68 & -1.677 \tabularnewline
103 &  12 &  13.25 & -1.25 \tabularnewline
104 &  12 &  12.95 & -0.9519 \tabularnewline
105 &  10 &  13.25 & -3.25 \tabularnewline
106 &  20 &  14.08 &  5.916 \tabularnewline
107 &  12 &  13.46 & -1.459 \tabularnewline
108 &  12 &  13.46 & -1.459 \tabularnewline
109 &  16 &  13.25 &  2.75 \tabularnewline
110 &  11 &  13.07 & -2.068 \tabularnewline
111 &  12 &  13.13 & -1.134 \tabularnewline
112 &  12 &  13.25 & -1.25 \tabularnewline
113 &  13 &  13.44 & -0.4353 \tabularnewline
114 &  10 &  12.53 & -2.535 \tabularnewline
115 &  14 &  13.88 &  0.1242 \tabularnewline
116 &  13 &  13.25 & -0.25 \tabularnewline
117 &  15 &  11.82 &  3.177 \tabularnewline
118 &  13 &  13.25 & -0.25 \tabularnewline
119 &  13 &  13.25 & -0.25 \tabularnewline
120 &  17 &  13.76 &  3.24 \tabularnewline
121 &  12 &  13.34 & -1.343 \tabularnewline
122 &  17 &  13.25 &  3.75 \tabularnewline
123 &  9 &  13.88 & -4.876 \tabularnewline
124 &  12 &  13.25 & -1.25 \tabularnewline
125 &  14 &  13.25 &  0.75 \tabularnewline
126 &  14 &  12.86 &  1.141 \tabularnewline
127 &  14 &  12.03 &  1.972 \tabularnewline
128 &  12 &  13.13 & -1.134 \tabularnewline
129 &  14 &  13.25 &  0.75 \tabularnewline
130 &  13 &  13.25 & -0.25 \tabularnewline
131 &  15 &  13.88 &  1.124 \tabularnewline
132 &  16 &  13.16 &  2.84 \tabularnewline
133 &  13 &  13.07 & -0.06786 \tabularnewline
134 &  14 &  13.16 &  0.8395 \tabularnewline
135 &  14 &  13.13 &  0.8659 \tabularnewline
136 &  17 &  13.37 &  3.631 \tabularnewline
137 &  13 &  12.95 &  0.04808 \tabularnewline
138 &  15 &  12.74 &  2.257 \tabularnewline
139 &  8 &  13.67 & -5.667 \tabularnewline
140 &  11 &  11.52 & -0.5214 \tabularnewline
141 &  11 &  13.25 & -2.25 \tabularnewline
142 &  9 &  13.16 & -4.16 \tabularnewline
143 &  15 &  13.25 &  1.75 \tabularnewline
144 &  16 &  13.25 &  2.75 \tabularnewline
145 &  16 &  12.95 &  3.048 \tabularnewline
146 &  10 &  13.55 & -3.551 \tabularnewline
147 &  15 &  12.51 &  2.489 \tabularnewline
148 &  10 &  13.88 & -3.876 \tabularnewline
149 &  12 &  13.88 & -1.876 \tabularnewline
150 &  14 &  13.46 &  0.5414 \tabularnewline
151 &  18 &  13.16 &  4.84 \tabularnewline
152 &  15 &  13.88 &  1.124 \tabularnewline
153 &  19 &  13.46 &  5.541 \tabularnewline
154 &  13 &  13.13 & -0.1341 \tabularnewline
155 &  10 &  13.25 & -3.25 \tabularnewline
156 &  15 &  13.25 &  1.75 \tabularnewline
157 &  7 &  11.52 & -4.521 \tabularnewline
158 &  14 &  13.67 &  0.3328 \tabularnewline
159 &  13 &  12.45 &  0.5548 \tabularnewline
160 &  14 &  13.25 &  0.75 \tabularnewline
161 &  11 &  13.55 & -2.551 \tabularnewline
162 &  18 &  13.67 &  4.333 \tabularnewline
163 &  8 &  12.95 & -4.952 \tabularnewline
164 &  19 &  13.46 &  5.541 \tabularnewline
165 &  5 &  13.25 & -8.25 \tabularnewline
166 &  17 &  13.46 &  3.541 \tabularnewline
167 &  14 &  13.34 &  0.6573 \tabularnewline
168 &  17 &  13.53 &  3.472 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299490&T=4

[TABLE]
[ROW][C]Multiple Linear Regression - Actuals, Interpolation, and Residuals[/C][/ROW]
[ROW][C]Time or Index[/C][C]Actuals[/C][C]InterpolationForecast[/C][C]ResidualsPrediction Error[/C][/ROW]
[ROW][C]1[/C][C] 17[/C][C] 13.25[/C][C] 3.75[/C][/ROW]
[ROW][C]2[/C][C] 11[/C][C] 12.65[/C][C]-1.654[/C][/ROW]
[ROW][C]3[/C][C] 12[/C][C] 13.25[/C][C]-1.25[/C][/ROW]
[ROW][C]4[/C][C] 12[/C][C] 13.34[/C][C]-1.343[/C][/ROW]
[ROW][C]5[/C][C] 13[/C][C] 13.13[/C][C]-0.1341[/C][/ROW]
[ROW][C]6[/C][C] 17[/C][C] 13.88[/C][C] 3.124[/C][/ROW]
[ROW][C]7[/C][C] 17[/C][C] 13.02[/C][C] 3.982[/C][/ROW]
[ROW][C]8[/C][C] 12[/C][C] 13.25[/C][C]-1.25[/C][/ROW]
[ROW][C]9[/C][C] 16[/C][C] 13.25[/C][C] 2.75[/C][/ROW]
[ROW][C]10[/C][C] 15[/C][C] 13.46[/C][C] 1.541[/C][/ROW]
[ROW][C]11[/C][C] 11[/C][C] 12.65[/C][C]-1.651[/C][/ROW]
[ROW][C]12[/C][C] 16[/C][C] 11.96[/C][C] 4.038[/C][/ROW]
[ROW][C]13[/C][C] 15[/C][C] 13.13[/C][C] 1.866[/C][/ROW]
[ROW][C]14[/C][C] 16[/C][C] 13.48[/C][C] 2.515[/C][/ROW]
[ROW][C]15[/C][C] 15[/C][C] 13.46[/C][C] 1.541[/C][/ROW]
[ROW][C]16[/C][C] 11[/C][C] 12.65[/C][C]-1.651[/C][/ROW]
[ROW][C]17[/C][C] 8[/C][C] 13.34[/C][C]-5.343[/C][/ROW]
[ROW][C]18[/C][C] 10[/C][C] 14.08[/C][C]-4.084[/C][/ROW]
[ROW][C]19[/C][C] 14[/C][C] 13.46[/C][C] 0.5414[/C][/ROW]
[ROW][C]20[/C][C] 16[/C][C] 12.65[/C][C] 3.349[/C][/ROW]
[ROW][C]21[/C][C] 15[/C][C] 13.28[/C][C] 1.724[/C][/ROW]
[ROW][C]22[/C][C] 15[/C][C] 11.94[/C][C] 3.065[/C][/ROW]
[ROW][C]23[/C][C] 12[/C][C] 13.46[/C][C]-1.459[/C][/ROW]
[ROW][C]24[/C][C] 18[/C][C] 12.95[/C][C] 5.048[/C][/ROW]
[ROW][C]25[/C][C] 10[/C][C] 13.25[/C][C]-3.25[/C][/ROW]
[ROW][C]26[/C][C] 17[/C][C] 13.16[/C][C] 3.84[/C][/ROW]
[ROW][C]27[/C][C] 12[/C][C] 13.46[/C][C]-1.459[/C][/ROW]
[ROW][C]28[/C][C] 13[/C][C] 13.55[/C][C]-0.5513[/C][/ROW]
[ROW][C]29[/C][C] 9[/C][C] 13.25[/C][C]-4.25[/C][/ROW]
[ROW][C]30[/C][C] 11[/C][C] 13.88[/C][C]-2.876[/C][/ROW]
[ROW][C]31[/C][C] 10[/C][C] 13.25[/C][C]-3.25[/C][/ROW]
[ROW][C]32[/C][C] 15[/C][C] 13.25[/C][C] 1.75[/C][/ROW]
[ROW][C]33[/C][C] 15[/C][C] 13.25[/C][C] 1.75[/C][/ROW]
[ROW][C]34[/C][C] 13[/C][C] 13.13[/C][C]-0.1341[/C][/ROW]
[ROW][C]35[/C][C] 13[/C][C] 13.55[/C][C]-0.5513[/C][/ROW]
[ROW][C]36[/C][C] 9[/C][C] 13.16[/C][C]-4.16[/C][/ROW]
[ROW][C]37[/C][C] 14[/C][C] 12.74[/C][C] 1.257[/C][/ROW]
[ROW][C]38[/C][C] 14[/C][C] 13.88[/C][C] 0.1242[/C][/ROW]
[ROW][C]39[/C][C] 11[/C][C] 13.46[/C][C]-2.459[/C][/ROW]
[ROW][C]40[/C][C] 15[/C][C] 13.46[/C][C] 1.541[/C][/ROW]
[ROW][C]41[/C][C] 12[/C][C] 13.25[/C][C]-1.25[/C][/ROW]
[ROW][C]42[/C][C] 11[/C][C] 13.25[/C][C]-2.25[/C][/ROW]
[ROW][C]43[/C][C] 12[/C][C] 13.25[/C][C]-1.25[/C][/ROW]
[ROW][C]44[/C][C] 15[/C][C] 14.08[/C][C] 0.9157[/C][/ROW]
[ROW][C]45[/C][C] 13[/C][C] 13.25[/C][C]-0.25[/C][/ROW]
[ROW][C]46[/C][C] 11[/C][C] 13.25[/C][C]-2.25[/C][/ROW]
[ROW][C]47[/C][C] 10[/C][C] 13.13[/C][C]-3.134[/C][/ROW]
[ROW][C]48[/C][C] 16[/C][C] 12.65[/C][C] 3.349[/C][/ROW]
[ROW][C]49[/C][C] 13[/C][C] 13.25[/C][C]-0.25[/C][/ROW]
[ROW][C]50[/C][C] 15[/C][C] 13.46[/C][C] 1.541[/C][/ROW]
[ROW][C]51[/C][C] 14[/C][C] 12.74[/C][C] 1.257[/C][/ROW]
[ROW][C]52[/C][C] 12[/C][C] 13.46[/C][C]-1.459[/C][/ROW]
[ROW][C]53[/C][C] 10[/C][C] 12.14[/C][C]-2.144[/C][/ROW]
[ROW][C]54[/C][C] 12[/C][C] 12.84[/C][C]-0.836[/C][/ROW]
[ROW][C]55[/C][C] 9[/C][C] 11.82[/C][C]-2.82[/C][/ROW]
[ROW][C]56[/C][C] 15[/C][C] 13.34[/C][C] 1.657[/C][/ROW]
[ROW][C]57[/C][C] 16[/C][C] 13.46[/C][C] 2.541[/C][/ROW]
[ROW][C]58[/C][C] 12[/C][C] 13.25[/C][C]-1.25[/C][/ROW]
[ROW][C]59[/C][C] 11[/C][C] 13.55[/C][C]-2.551[/C][/ROW]
[ROW][C]60[/C][C] 11[/C][C] 13.67[/C][C]-2.667[/C][/ROW]
[ROW][C]61[/C][C] 9[/C][C] 13.25[/C][C]-4.25[/C][/ROW]
[ROW][C]62[/C][C] 13[/C][C] 13.25[/C][C]-0.25[/C][/ROW]
[ROW][C]63[/C][C] 17[/C][C] 13.46[/C][C] 3.541[/C][/ROW]
[ROW][C]64[/C][C] 18[/C][C] 12.53[/C][C] 5.465[/C][/ROW]
[ROW][C]65[/C][C] 15[/C][C] 13.67[/C][C] 1.333[/C][/ROW]
[ROW][C]66[/C][C] 12[/C][C] 12.95[/C][C]-0.9519[/C][/ROW]
[ROW][C]67[/C][C] 18[/C][C] 13.88[/C][C] 4.124[/C][/ROW]
[ROW][C]68[/C][C] 11[/C][C] 11.73[/C][C]-0.73[/C][/ROW]
[ROW][C]69[/C][C] 6[/C][C] 13.04[/C][C]-7.045[/C][/ROW]
[ROW][C]70[/C][C] 10[/C][C] 13.46[/C][C]-3.459[/C][/ROW]
[ROW][C]71[/C][C] 19[/C][C] 13.25[/C][C] 5.75[/C][/ROW]
[ROW][C]72[/C][C] 16[/C][C] 12.42[/C][C] 3.581[/C][/ROW]
[ROW][C]73[/C][C] 12[/C][C] 13.25[/C][C]-1.25[/C][/ROW]
[ROW][C]74[/C][C] 10[/C][C] 11.64[/C][C]-1.637[/C][/ROW]
[ROW][C]75[/C][C] 14[/C][C] 13.34[/C][C] 0.6573[/C][/ROW]
[ROW][C]76[/C][C] 12[/C][C] 11.82[/C][C] 0.1805[/C][/ROW]
[ROW][C]77[/C][C] 13[/C][C] 12.65[/C][C] 0.3493[/C][/ROW]
[ROW][C]78[/C][C] 16[/C][C] 12.53[/C][C] 3.465[/C][/ROW]
[ROW][C]79[/C][C] 18[/C][C] 13.25[/C][C] 4.75[/C][/ROW]
[ROW][C]80[/C][C] 13[/C][C] 13.25[/C][C]-0.25[/C][/ROW]
[ROW][C]81[/C][C] 15[/C][C] 12.53[/C][C] 2.465[/C][/ROW]
[ROW][C]82[/C][C] 16[/C][C] 12.95[/C][C] 3.048[/C][/ROW]
[ROW][C]83[/C][C] 9[/C][C] 13.25[/C][C]-4.25[/C][/ROW]
[ROW][C]84[/C][C] 9[/C][C] 13.28[/C][C]-4.276[/C][/ROW]
[ROW][C]85[/C][C] 8[/C][C] 12.74[/C][C]-4.743[/C][/ROW]
[ROW][C]86[/C][C] 18[/C][C] 13.88[/C][C] 4.124[/C][/ROW]
[ROW][C]87[/C][C] 18[/C][C] 13.25[/C][C] 4.75[/C][/ROW]
[ROW][C]88[/C][C] 14[/C][C] 13.25[/C][C] 0.75[/C][/ROW]
[ROW][C]89[/C][C] 8[/C][C] 12.53[/C][C]-4.535[/C][/ROW]
[ROW][C]90[/C][C] 14[/C][C] 12.74[/C][C] 1.257[/C][/ROW]
[ROW][C]91[/C][C] 13[/C][C] 13.37[/C][C]-0.3691[/C][/ROW]
[ROW][C]92[/C][C] 14[/C][C] 12.24[/C][C] 1.763[/C][/ROW]
[ROW][C]93[/C][C] 7[/C][C] 13.16[/C][C]-6.16[/C][/ROW]
[ROW][C]94[/C][C] 18[/C][C] 13.25[/C][C] 4.75[/C][/ROW]
[ROW][C]95[/C][C] 16[/C][C] 13.88[/C][C] 2.124[/C][/ROW]
[ROW][C]96[/C][C] 9[/C][C] 13.16[/C][C]-4.16[/C][/ROW]
[ROW][C]97[/C][C] 11[/C][C] 13.46[/C][C]-2.459[/C][/ROW]
[ROW][C]98[/C][C] 10[/C][C] 11.52[/C][C]-1.521[/C][/ROW]
[ROW][C]99[/C][C] 13[/C][C] 13.25[/C][C]-0.25[/C][/ROW]
[ROW][C]100[/C][C] 10[/C][C] 13.25[/C][C]-3.25[/C][/ROW]
[ROW][C]101[/C][C] 12[/C][C] 13.16[/C][C]-1.16[/C][/ROW]
[ROW][C]102[/C][C] 11[/C][C] 12.68[/C][C]-1.677[/C][/ROW]
[ROW][C]103[/C][C] 12[/C][C] 13.25[/C][C]-1.25[/C][/ROW]
[ROW][C]104[/C][C] 12[/C][C] 12.95[/C][C]-0.9519[/C][/ROW]
[ROW][C]105[/C][C] 10[/C][C] 13.25[/C][C]-3.25[/C][/ROW]
[ROW][C]106[/C][C] 20[/C][C] 14.08[/C][C] 5.916[/C][/ROW]
[ROW][C]107[/C][C] 12[/C][C] 13.46[/C][C]-1.459[/C][/ROW]
[ROW][C]108[/C][C] 12[/C][C] 13.46[/C][C]-1.459[/C][/ROW]
[ROW][C]109[/C][C] 16[/C][C] 13.25[/C][C] 2.75[/C][/ROW]
[ROW][C]110[/C][C] 11[/C][C] 13.07[/C][C]-2.068[/C][/ROW]
[ROW][C]111[/C][C] 12[/C][C] 13.13[/C][C]-1.134[/C][/ROW]
[ROW][C]112[/C][C] 12[/C][C] 13.25[/C][C]-1.25[/C][/ROW]
[ROW][C]113[/C][C] 13[/C][C] 13.44[/C][C]-0.4353[/C][/ROW]
[ROW][C]114[/C][C] 10[/C][C] 12.53[/C][C]-2.535[/C][/ROW]
[ROW][C]115[/C][C] 14[/C][C] 13.88[/C][C] 0.1242[/C][/ROW]
[ROW][C]116[/C][C] 13[/C][C] 13.25[/C][C]-0.25[/C][/ROW]
[ROW][C]117[/C][C] 15[/C][C] 11.82[/C][C] 3.177[/C][/ROW]
[ROW][C]118[/C][C] 13[/C][C] 13.25[/C][C]-0.25[/C][/ROW]
[ROW][C]119[/C][C] 13[/C][C] 13.25[/C][C]-0.25[/C][/ROW]
[ROW][C]120[/C][C] 17[/C][C] 13.76[/C][C] 3.24[/C][/ROW]
[ROW][C]121[/C][C] 12[/C][C] 13.34[/C][C]-1.343[/C][/ROW]
[ROW][C]122[/C][C] 17[/C][C] 13.25[/C][C] 3.75[/C][/ROW]
[ROW][C]123[/C][C] 9[/C][C] 13.88[/C][C]-4.876[/C][/ROW]
[ROW][C]124[/C][C] 12[/C][C] 13.25[/C][C]-1.25[/C][/ROW]
[ROW][C]125[/C][C] 14[/C][C] 13.25[/C][C] 0.75[/C][/ROW]
[ROW][C]126[/C][C] 14[/C][C] 12.86[/C][C] 1.141[/C][/ROW]
[ROW][C]127[/C][C] 14[/C][C] 12.03[/C][C] 1.972[/C][/ROW]
[ROW][C]128[/C][C] 12[/C][C] 13.13[/C][C]-1.134[/C][/ROW]
[ROW][C]129[/C][C] 14[/C][C] 13.25[/C][C] 0.75[/C][/ROW]
[ROW][C]130[/C][C] 13[/C][C] 13.25[/C][C]-0.25[/C][/ROW]
[ROW][C]131[/C][C] 15[/C][C] 13.88[/C][C] 1.124[/C][/ROW]
[ROW][C]132[/C][C] 16[/C][C] 13.16[/C][C] 2.84[/C][/ROW]
[ROW][C]133[/C][C] 13[/C][C] 13.07[/C][C]-0.06786[/C][/ROW]
[ROW][C]134[/C][C] 14[/C][C] 13.16[/C][C] 0.8395[/C][/ROW]
[ROW][C]135[/C][C] 14[/C][C] 13.13[/C][C] 0.8659[/C][/ROW]
[ROW][C]136[/C][C] 17[/C][C] 13.37[/C][C] 3.631[/C][/ROW]
[ROW][C]137[/C][C] 13[/C][C] 12.95[/C][C] 0.04808[/C][/ROW]
[ROW][C]138[/C][C] 15[/C][C] 12.74[/C][C] 2.257[/C][/ROW]
[ROW][C]139[/C][C] 8[/C][C] 13.67[/C][C]-5.667[/C][/ROW]
[ROW][C]140[/C][C] 11[/C][C] 11.52[/C][C]-0.5214[/C][/ROW]
[ROW][C]141[/C][C] 11[/C][C] 13.25[/C][C]-2.25[/C][/ROW]
[ROW][C]142[/C][C] 9[/C][C] 13.16[/C][C]-4.16[/C][/ROW]
[ROW][C]143[/C][C] 15[/C][C] 13.25[/C][C] 1.75[/C][/ROW]
[ROW][C]144[/C][C] 16[/C][C] 13.25[/C][C] 2.75[/C][/ROW]
[ROW][C]145[/C][C] 16[/C][C] 12.95[/C][C] 3.048[/C][/ROW]
[ROW][C]146[/C][C] 10[/C][C] 13.55[/C][C]-3.551[/C][/ROW]
[ROW][C]147[/C][C] 15[/C][C] 12.51[/C][C] 2.489[/C][/ROW]
[ROW][C]148[/C][C] 10[/C][C] 13.88[/C][C]-3.876[/C][/ROW]
[ROW][C]149[/C][C] 12[/C][C] 13.88[/C][C]-1.876[/C][/ROW]
[ROW][C]150[/C][C] 14[/C][C] 13.46[/C][C] 0.5414[/C][/ROW]
[ROW][C]151[/C][C] 18[/C][C] 13.16[/C][C] 4.84[/C][/ROW]
[ROW][C]152[/C][C] 15[/C][C] 13.88[/C][C] 1.124[/C][/ROW]
[ROW][C]153[/C][C] 19[/C][C] 13.46[/C][C] 5.541[/C][/ROW]
[ROW][C]154[/C][C] 13[/C][C] 13.13[/C][C]-0.1341[/C][/ROW]
[ROW][C]155[/C][C] 10[/C][C] 13.25[/C][C]-3.25[/C][/ROW]
[ROW][C]156[/C][C] 15[/C][C] 13.25[/C][C] 1.75[/C][/ROW]
[ROW][C]157[/C][C] 7[/C][C] 11.52[/C][C]-4.521[/C][/ROW]
[ROW][C]158[/C][C] 14[/C][C] 13.67[/C][C] 0.3328[/C][/ROW]
[ROW][C]159[/C][C] 13[/C][C] 12.45[/C][C] 0.5548[/C][/ROW]
[ROW][C]160[/C][C] 14[/C][C] 13.25[/C][C] 0.75[/C][/ROW]
[ROW][C]161[/C][C] 11[/C][C] 13.55[/C][C]-2.551[/C][/ROW]
[ROW][C]162[/C][C] 18[/C][C] 13.67[/C][C] 4.333[/C][/ROW]
[ROW][C]163[/C][C] 8[/C][C] 12.95[/C][C]-4.952[/C][/ROW]
[ROW][C]164[/C][C] 19[/C][C] 13.46[/C][C] 5.541[/C][/ROW]
[ROW][C]165[/C][C] 5[/C][C] 13.25[/C][C]-8.25[/C][/ROW]
[ROW][C]166[/C][C] 17[/C][C] 13.46[/C][C] 3.541[/C][/ROW]
[ROW][C]167[/C][C] 14[/C][C] 13.34[/C][C] 0.6573[/C][/ROW]
[ROW][C]168[/C][C] 17[/C][C] 13.53[/C][C] 3.472[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299490&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299490&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Multiple Linear Regression - Actuals, Interpolation, and Residuals
Time or IndexActualsInterpolationForecastResidualsPrediction Error
1 17 13.25 3.75
2 11 12.65-1.654
3 12 13.25-1.25
4 12 13.34-1.343
5 13 13.13-0.1341
6 17 13.88 3.124
7 17 13.02 3.982
8 12 13.25-1.25
9 16 13.25 2.75
10 15 13.46 1.541
11 11 12.65-1.651
12 16 11.96 4.038
13 15 13.13 1.866
14 16 13.48 2.515
15 15 13.46 1.541
16 11 12.65-1.651
17 8 13.34-5.343
18 10 14.08-4.084
19 14 13.46 0.5414
20 16 12.65 3.349
21 15 13.28 1.724
22 15 11.94 3.065
23 12 13.46-1.459
24 18 12.95 5.048
25 10 13.25-3.25
26 17 13.16 3.84
27 12 13.46-1.459
28 13 13.55-0.5513
29 9 13.25-4.25
30 11 13.88-2.876
31 10 13.25-3.25
32 15 13.25 1.75
33 15 13.25 1.75
34 13 13.13-0.1341
35 13 13.55-0.5513
36 9 13.16-4.16
37 14 12.74 1.257
38 14 13.88 0.1242
39 11 13.46-2.459
40 15 13.46 1.541
41 12 13.25-1.25
42 11 13.25-2.25
43 12 13.25-1.25
44 15 14.08 0.9157
45 13 13.25-0.25
46 11 13.25-2.25
47 10 13.13-3.134
48 16 12.65 3.349
49 13 13.25-0.25
50 15 13.46 1.541
51 14 12.74 1.257
52 12 13.46-1.459
53 10 12.14-2.144
54 12 12.84-0.836
55 9 11.82-2.82
56 15 13.34 1.657
57 16 13.46 2.541
58 12 13.25-1.25
59 11 13.55-2.551
60 11 13.67-2.667
61 9 13.25-4.25
62 13 13.25-0.25
63 17 13.46 3.541
64 18 12.53 5.465
65 15 13.67 1.333
66 12 12.95-0.9519
67 18 13.88 4.124
68 11 11.73-0.73
69 6 13.04-7.045
70 10 13.46-3.459
71 19 13.25 5.75
72 16 12.42 3.581
73 12 13.25-1.25
74 10 11.64-1.637
75 14 13.34 0.6573
76 12 11.82 0.1805
77 13 12.65 0.3493
78 16 12.53 3.465
79 18 13.25 4.75
80 13 13.25-0.25
81 15 12.53 2.465
82 16 12.95 3.048
83 9 13.25-4.25
84 9 13.28-4.276
85 8 12.74-4.743
86 18 13.88 4.124
87 18 13.25 4.75
88 14 13.25 0.75
89 8 12.53-4.535
90 14 12.74 1.257
91 13 13.37-0.3691
92 14 12.24 1.763
93 7 13.16-6.16
94 18 13.25 4.75
95 16 13.88 2.124
96 9 13.16-4.16
97 11 13.46-2.459
98 10 11.52-1.521
99 13 13.25-0.25
100 10 13.25-3.25
101 12 13.16-1.16
102 11 12.68-1.677
103 12 13.25-1.25
104 12 12.95-0.9519
105 10 13.25-3.25
106 20 14.08 5.916
107 12 13.46-1.459
108 12 13.46-1.459
109 16 13.25 2.75
110 11 13.07-2.068
111 12 13.13-1.134
112 12 13.25-1.25
113 13 13.44-0.4353
114 10 12.53-2.535
115 14 13.88 0.1242
116 13 13.25-0.25
117 15 11.82 3.177
118 13 13.25-0.25
119 13 13.25-0.25
120 17 13.76 3.24
121 12 13.34-1.343
122 17 13.25 3.75
123 9 13.88-4.876
124 12 13.25-1.25
125 14 13.25 0.75
126 14 12.86 1.141
127 14 12.03 1.972
128 12 13.13-1.134
129 14 13.25 0.75
130 13 13.25-0.25
131 15 13.88 1.124
132 16 13.16 2.84
133 13 13.07-0.06786
134 14 13.16 0.8395
135 14 13.13 0.8659
136 17 13.37 3.631
137 13 12.95 0.04808
138 15 12.74 2.257
139 8 13.67-5.667
140 11 11.52-0.5214
141 11 13.25-2.25
142 9 13.16-4.16
143 15 13.25 1.75
144 16 13.25 2.75
145 16 12.95 3.048
146 10 13.55-3.551
147 15 12.51 2.489
148 10 13.88-3.876
149 12 13.88-1.876
150 14 13.46 0.5414
151 18 13.16 4.84
152 15 13.88 1.124
153 19 13.46 5.541
154 13 13.13-0.1341
155 10 13.25-3.25
156 15 13.25 1.75
157 7 11.52-4.521
158 14 13.67 0.3328
159 13 12.45 0.5548
160 14 13.25 0.75
161 11 13.55-2.551
162 18 13.67 4.333
163 8 12.95-4.952
164 19 13.46 5.541
165 5 13.25-8.25
166 17 13.46 3.541
167 14 13.34 0.6573
168 17 13.53 3.472







Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.6803 0.6394 0.3197
8 0.5645 0.871 0.4355
9 0.5105 0.979 0.4895
10 0.3821 0.7642 0.6179
11 0.2714 0.5428 0.7286
12 0.5061 0.9879 0.4939
13 0.4149 0.8298 0.5851
14 0.3324 0.6647 0.6676
15 0.2516 0.5031 0.7484
16 0.2249 0.4499 0.7751
17 0.52 0.9599 0.48
18 0.6238 0.7525 0.3762
19 0.548 0.9039 0.452
20 0.5146 0.9708 0.4854
21 0.4529 0.9057 0.5471
22 0.3971 0.7943 0.6029
23 0.3539 0.7077 0.6461
24 0.4408 0.8815 0.5592
25 0.4788 0.9577 0.5212
26 0.4854 0.9707 0.5147
27 0.4376 0.8752 0.5624
28 0.378 0.756 0.622
29 0.4491 0.8982 0.5509
30 0.4302 0.8603 0.5698
31 0.4341 0.8681 0.5659
32 0.4053 0.8107 0.5947
33 0.3746 0.7492 0.6254
34 0.3209 0.6417 0.6791
35 0.2717 0.5435 0.7283
36 0.3627 0.7254 0.6373
37 0.3134 0.6268 0.6866
38 0.2706 0.5412 0.7294
39 0.2513 0.5025 0.7487
40 0.2271 0.4543 0.7729
41 0.1941 0.3881 0.8059
42 0.1777 0.3554 0.8223
43 0.149 0.298 0.851
44 0.1305 0.261 0.8695
45 0.1044 0.2088 0.8956
46 0.09328 0.1866 0.9067
47 0.09722 0.1944 0.9028
48 0.09694 0.1939 0.9031
49 0.07668 0.1534 0.9233
50 0.06731 0.1346 0.9327
51 0.05316 0.1063 0.9468
52 0.04279 0.08558 0.9572
53 0.05373 0.1075 0.9463
54 0.04347 0.08694 0.9565
55 0.05236 0.1047 0.9476
56 0.04684 0.09368 0.9532
57 0.04601 0.09202 0.954
58 0.03689 0.07378 0.9631
59 0.03376 0.06753 0.9662
60 0.03211 0.06422 0.9679
61 0.04294 0.08589 0.9571
62 0.03317 0.06635 0.9668
63 0.04084 0.08168 0.9592
64 0.07425 0.1485 0.9257
65 0.06314 0.1263 0.9369
66 0.05206 0.1041 0.9479
67 0.06908 0.1382 0.9309
68 0.05911 0.1182 0.9409
69 0.1539 0.3077 0.8461
70 0.1661 0.3322 0.8339
71 0.2653 0.5307 0.7347
72 0.2933 0.5866 0.7067
73 0.2626 0.5252 0.7374
74 0.2459 0.4919 0.7541
75 0.2158 0.4317 0.7842
76 0.1848 0.3697 0.8152
77 0.1585 0.3171 0.8415
78 0.1714 0.3429 0.8286
79 0.2236 0.4473 0.7764
80 0.1919 0.3839 0.8081
81 0.1855 0.371 0.8145
82 0.1906 0.3811 0.8094
83 0.2275 0.4551 0.7725
84 0.2679 0.5359 0.7321
85 0.3284 0.6569 0.6716
86 0.3709 0.7418 0.6291
87 0.4443 0.8886 0.5557
88 0.4042 0.8083 0.5958
89 0.4597 0.9193 0.5403
90 0.4253 0.8506 0.5747
91 0.3826 0.7652 0.6174
92 0.3594 0.7188 0.6406
93 0.5078 0.9845 0.4922
94 0.5886 0.8228 0.4114
95 0.5659 0.8681 0.4341
96 0.6127 0.7747 0.3873
97 0.599 0.802 0.401
98 0.5618 0.8764 0.4382
99 0.5173 0.9654 0.4827
100 0.5239 0.9522 0.4761
101 0.4872 0.9744 0.5128
102 0.4559 0.9118 0.5441
103 0.4175 0.8349 0.5825
104 0.3779 0.7557 0.6221
105 0.3844 0.7687 0.6156
106 0.5125 0.9749 0.4875
107 0.477 0.954 0.523
108 0.4418 0.8835 0.5582
109 0.4378 0.8757 0.5622
110 0.413 0.8259 0.587
111 0.3746 0.7491 0.6254
112 0.3376 0.6751 0.6624
113 0.3021 0.6042 0.6979
114 0.2906 0.5813 0.7094
115 0.2509 0.5017 0.7491
116 0.2142 0.4284 0.7858
117 0.2145 0.4291 0.7855
118 0.181 0.362 0.819
119 0.1508 0.3016 0.8492
120 0.1515 0.3029 0.8485
121 0.1315 0.2631 0.8685
122 0.1444 0.2889 0.8556
123 0.2021 0.4042 0.7979
124 0.174 0.348 0.826
125 0.1447 0.2893 0.8553
126 0.1224 0.2448 0.8776
127 0.1112 0.2223 0.8888
128 0.0925 0.185 0.9075
129 0.07374 0.1475 0.9263
130 0.05702 0.114 0.943
131 0.04422 0.08844 0.9558
132 0.04178 0.08356 0.9582
133 0.03127 0.06253 0.9687
134 0.0234 0.0468 0.9766
135 0.01699 0.03397 0.983
136 0.02007 0.04015 0.9799
137 0.01424 0.02848 0.9858
138 0.01248 0.02496 0.9875
139 0.02705 0.0541 0.9729
140 0.02025 0.0405 0.9798
141 0.01737 0.03473 0.9826
142 0.02088 0.04176 0.9791
143 0.01566 0.03133 0.9843
144 0.01408 0.02817 0.9859
145 0.01446 0.02892 0.9855
146 0.02013 0.04027 0.9799
147 0.01683 0.03367 0.9832
148 0.03458 0.06916 0.9654
149 0.05321 0.1064 0.9468
150 0.0363 0.07261 0.9637
151 0.04144 0.08288 0.9586
152 0.03459 0.06918 0.9654
153 0.05861 0.1172 0.9414
154 0.04145 0.0829 0.9585
155 0.03147 0.06295 0.9685
156 0.02814 0.05629 0.9719
157 0.01964 0.03928 0.9804
158 0.01611 0.03222 0.9839
159 0.02898 0.05796 0.971
160 0.0276 0.05521 0.9724
161 0.09702 0.194 0.903

\begin{tabular}{lllllllll}
\hline
Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
p-values & Alternative Hypothesis \tabularnewline
breakpoint index & greater & 2-sided & less \tabularnewline
7 &  0.6803 &  0.6394 &  0.3197 \tabularnewline
8 &  0.5645 &  0.871 &  0.4355 \tabularnewline
9 &  0.5105 &  0.979 &  0.4895 \tabularnewline
10 &  0.3821 &  0.7642 &  0.6179 \tabularnewline
11 &  0.2714 &  0.5428 &  0.7286 \tabularnewline
12 &  0.5061 &  0.9879 &  0.4939 \tabularnewline
13 &  0.4149 &  0.8298 &  0.5851 \tabularnewline
14 &  0.3324 &  0.6647 &  0.6676 \tabularnewline
15 &  0.2516 &  0.5031 &  0.7484 \tabularnewline
16 &  0.2249 &  0.4499 &  0.7751 \tabularnewline
17 &  0.52 &  0.9599 &  0.48 \tabularnewline
18 &  0.6238 &  0.7525 &  0.3762 \tabularnewline
19 &  0.548 &  0.9039 &  0.452 \tabularnewline
20 &  0.5146 &  0.9708 &  0.4854 \tabularnewline
21 &  0.4529 &  0.9057 &  0.5471 \tabularnewline
22 &  0.3971 &  0.7943 &  0.6029 \tabularnewline
23 &  0.3539 &  0.7077 &  0.6461 \tabularnewline
24 &  0.4408 &  0.8815 &  0.5592 \tabularnewline
25 &  0.4788 &  0.9577 &  0.5212 \tabularnewline
26 &  0.4854 &  0.9707 &  0.5147 \tabularnewline
27 &  0.4376 &  0.8752 &  0.5624 \tabularnewline
28 &  0.378 &  0.756 &  0.622 \tabularnewline
29 &  0.4491 &  0.8982 &  0.5509 \tabularnewline
30 &  0.4302 &  0.8603 &  0.5698 \tabularnewline
31 &  0.4341 &  0.8681 &  0.5659 \tabularnewline
32 &  0.4053 &  0.8107 &  0.5947 \tabularnewline
33 &  0.3746 &  0.7492 &  0.6254 \tabularnewline
34 &  0.3209 &  0.6417 &  0.6791 \tabularnewline
35 &  0.2717 &  0.5435 &  0.7283 \tabularnewline
36 &  0.3627 &  0.7254 &  0.6373 \tabularnewline
37 &  0.3134 &  0.6268 &  0.6866 \tabularnewline
38 &  0.2706 &  0.5412 &  0.7294 \tabularnewline
39 &  0.2513 &  0.5025 &  0.7487 \tabularnewline
40 &  0.2271 &  0.4543 &  0.7729 \tabularnewline
41 &  0.1941 &  0.3881 &  0.8059 \tabularnewline
42 &  0.1777 &  0.3554 &  0.8223 \tabularnewline
43 &  0.149 &  0.298 &  0.851 \tabularnewline
44 &  0.1305 &  0.261 &  0.8695 \tabularnewline
45 &  0.1044 &  0.2088 &  0.8956 \tabularnewline
46 &  0.09328 &  0.1866 &  0.9067 \tabularnewline
47 &  0.09722 &  0.1944 &  0.9028 \tabularnewline
48 &  0.09694 &  0.1939 &  0.9031 \tabularnewline
49 &  0.07668 &  0.1534 &  0.9233 \tabularnewline
50 &  0.06731 &  0.1346 &  0.9327 \tabularnewline
51 &  0.05316 &  0.1063 &  0.9468 \tabularnewline
52 &  0.04279 &  0.08558 &  0.9572 \tabularnewline
53 &  0.05373 &  0.1075 &  0.9463 \tabularnewline
54 &  0.04347 &  0.08694 &  0.9565 \tabularnewline
55 &  0.05236 &  0.1047 &  0.9476 \tabularnewline
56 &  0.04684 &  0.09368 &  0.9532 \tabularnewline
57 &  0.04601 &  0.09202 &  0.954 \tabularnewline
58 &  0.03689 &  0.07378 &  0.9631 \tabularnewline
59 &  0.03376 &  0.06753 &  0.9662 \tabularnewline
60 &  0.03211 &  0.06422 &  0.9679 \tabularnewline
61 &  0.04294 &  0.08589 &  0.9571 \tabularnewline
62 &  0.03317 &  0.06635 &  0.9668 \tabularnewline
63 &  0.04084 &  0.08168 &  0.9592 \tabularnewline
64 &  0.07425 &  0.1485 &  0.9257 \tabularnewline
65 &  0.06314 &  0.1263 &  0.9369 \tabularnewline
66 &  0.05206 &  0.1041 &  0.9479 \tabularnewline
67 &  0.06908 &  0.1382 &  0.9309 \tabularnewline
68 &  0.05911 &  0.1182 &  0.9409 \tabularnewline
69 &  0.1539 &  0.3077 &  0.8461 \tabularnewline
70 &  0.1661 &  0.3322 &  0.8339 \tabularnewline
71 &  0.2653 &  0.5307 &  0.7347 \tabularnewline
72 &  0.2933 &  0.5866 &  0.7067 \tabularnewline
73 &  0.2626 &  0.5252 &  0.7374 \tabularnewline
74 &  0.2459 &  0.4919 &  0.7541 \tabularnewline
75 &  0.2158 &  0.4317 &  0.7842 \tabularnewline
76 &  0.1848 &  0.3697 &  0.8152 \tabularnewline
77 &  0.1585 &  0.3171 &  0.8415 \tabularnewline
78 &  0.1714 &  0.3429 &  0.8286 \tabularnewline
79 &  0.2236 &  0.4473 &  0.7764 \tabularnewline
80 &  0.1919 &  0.3839 &  0.8081 \tabularnewline
81 &  0.1855 &  0.371 &  0.8145 \tabularnewline
82 &  0.1906 &  0.3811 &  0.8094 \tabularnewline
83 &  0.2275 &  0.4551 &  0.7725 \tabularnewline
84 &  0.2679 &  0.5359 &  0.7321 \tabularnewline
85 &  0.3284 &  0.6569 &  0.6716 \tabularnewline
86 &  0.3709 &  0.7418 &  0.6291 \tabularnewline
87 &  0.4443 &  0.8886 &  0.5557 \tabularnewline
88 &  0.4042 &  0.8083 &  0.5958 \tabularnewline
89 &  0.4597 &  0.9193 &  0.5403 \tabularnewline
90 &  0.4253 &  0.8506 &  0.5747 \tabularnewline
91 &  0.3826 &  0.7652 &  0.6174 \tabularnewline
92 &  0.3594 &  0.7188 &  0.6406 \tabularnewline
93 &  0.5078 &  0.9845 &  0.4922 \tabularnewline
94 &  0.5886 &  0.8228 &  0.4114 \tabularnewline
95 &  0.5659 &  0.8681 &  0.4341 \tabularnewline
96 &  0.6127 &  0.7747 &  0.3873 \tabularnewline
97 &  0.599 &  0.802 &  0.401 \tabularnewline
98 &  0.5618 &  0.8764 &  0.4382 \tabularnewline
99 &  0.5173 &  0.9654 &  0.4827 \tabularnewline
100 &  0.5239 &  0.9522 &  0.4761 \tabularnewline
101 &  0.4872 &  0.9744 &  0.5128 \tabularnewline
102 &  0.4559 &  0.9118 &  0.5441 \tabularnewline
103 &  0.4175 &  0.8349 &  0.5825 \tabularnewline
104 &  0.3779 &  0.7557 &  0.6221 \tabularnewline
105 &  0.3844 &  0.7687 &  0.6156 \tabularnewline
106 &  0.5125 &  0.9749 &  0.4875 \tabularnewline
107 &  0.477 &  0.954 &  0.523 \tabularnewline
108 &  0.4418 &  0.8835 &  0.5582 \tabularnewline
109 &  0.4378 &  0.8757 &  0.5622 \tabularnewline
110 &  0.413 &  0.8259 &  0.587 \tabularnewline
111 &  0.3746 &  0.7491 &  0.6254 \tabularnewline
112 &  0.3376 &  0.6751 &  0.6624 \tabularnewline
113 &  0.3021 &  0.6042 &  0.6979 \tabularnewline
114 &  0.2906 &  0.5813 &  0.7094 \tabularnewline
115 &  0.2509 &  0.5017 &  0.7491 \tabularnewline
116 &  0.2142 &  0.4284 &  0.7858 \tabularnewline
117 &  0.2145 &  0.4291 &  0.7855 \tabularnewline
118 &  0.181 &  0.362 &  0.819 \tabularnewline
119 &  0.1508 &  0.3016 &  0.8492 \tabularnewline
120 &  0.1515 &  0.3029 &  0.8485 \tabularnewline
121 &  0.1315 &  0.2631 &  0.8685 \tabularnewline
122 &  0.1444 &  0.2889 &  0.8556 \tabularnewline
123 &  0.2021 &  0.4042 &  0.7979 \tabularnewline
124 &  0.174 &  0.348 &  0.826 \tabularnewline
125 &  0.1447 &  0.2893 &  0.8553 \tabularnewline
126 &  0.1224 &  0.2448 &  0.8776 \tabularnewline
127 &  0.1112 &  0.2223 &  0.8888 \tabularnewline
128 &  0.0925 &  0.185 &  0.9075 \tabularnewline
129 &  0.07374 &  0.1475 &  0.9263 \tabularnewline
130 &  0.05702 &  0.114 &  0.943 \tabularnewline
131 &  0.04422 &  0.08844 &  0.9558 \tabularnewline
132 &  0.04178 &  0.08356 &  0.9582 \tabularnewline
133 &  0.03127 &  0.06253 &  0.9687 \tabularnewline
134 &  0.0234 &  0.0468 &  0.9766 \tabularnewline
135 &  0.01699 &  0.03397 &  0.983 \tabularnewline
136 &  0.02007 &  0.04015 &  0.9799 \tabularnewline
137 &  0.01424 &  0.02848 &  0.9858 \tabularnewline
138 &  0.01248 &  0.02496 &  0.9875 \tabularnewline
139 &  0.02705 &  0.0541 &  0.9729 \tabularnewline
140 &  0.02025 &  0.0405 &  0.9798 \tabularnewline
141 &  0.01737 &  0.03473 &  0.9826 \tabularnewline
142 &  0.02088 &  0.04176 &  0.9791 \tabularnewline
143 &  0.01566 &  0.03133 &  0.9843 \tabularnewline
144 &  0.01408 &  0.02817 &  0.9859 \tabularnewline
145 &  0.01446 &  0.02892 &  0.9855 \tabularnewline
146 &  0.02013 &  0.04027 &  0.9799 \tabularnewline
147 &  0.01683 &  0.03367 &  0.9832 \tabularnewline
148 &  0.03458 &  0.06916 &  0.9654 \tabularnewline
149 &  0.05321 &  0.1064 &  0.9468 \tabularnewline
150 &  0.0363 &  0.07261 &  0.9637 \tabularnewline
151 &  0.04144 &  0.08288 &  0.9586 \tabularnewline
152 &  0.03459 &  0.06918 &  0.9654 \tabularnewline
153 &  0.05861 &  0.1172 &  0.9414 \tabularnewline
154 &  0.04145 &  0.0829 &  0.9585 \tabularnewline
155 &  0.03147 &  0.06295 &  0.9685 \tabularnewline
156 &  0.02814 &  0.05629 &  0.9719 \tabularnewline
157 &  0.01964 &  0.03928 &  0.9804 \tabularnewline
158 &  0.01611 &  0.03222 &  0.9839 \tabularnewline
159 &  0.02898 &  0.05796 &  0.971 \tabularnewline
160 &  0.0276 &  0.05521 &  0.9724 \tabularnewline
161 &  0.09702 &  0.194 &  0.903 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299490&T=5

[TABLE]
[ROW][C]Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]p-values[/C][C]Alternative Hypothesis[/C][/ROW]
[ROW][C]breakpoint index[/C][C]greater[/C][C]2-sided[/C][C]less[/C][/ROW]
[ROW][C]7[/C][C] 0.6803[/C][C] 0.6394[/C][C] 0.3197[/C][/ROW]
[ROW][C]8[/C][C] 0.5645[/C][C] 0.871[/C][C] 0.4355[/C][/ROW]
[ROW][C]9[/C][C] 0.5105[/C][C] 0.979[/C][C] 0.4895[/C][/ROW]
[ROW][C]10[/C][C] 0.3821[/C][C] 0.7642[/C][C] 0.6179[/C][/ROW]
[ROW][C]11[/C][C] 0.2714[/C][C] 0.5428[/C][C] 0.7286[/C][/ROW]
[ROW][C]12[/C][C] 0.5061[/C][C] 0.9879[/C][C] 0.4939[/C][/ROW]
[ROW][C]13[/C][C] 0.4149[/C][C] 0.8298[/C][C] 0.5851[/C][/ROW]
[ROW][C]14[/C][C] 0.3324[/C][C] 0.6647[/C][C] 0.6676[/C][/ROW]
[ROW][C]15[/C][C] 0.2516[/C][C] 0.5031[/C][C] 0.7484[/C][/ROW]
[ROW][C]16[/C][C] 0.2249[/C][C] 0.4499[/C][C] 0.7751[/C][/ROW]
[ROW][C]17[/C][C] 0.52[/C][C] 0.9599[/C][C] 0.48[/C][/ROW]
[ROW][C]18[/C][C] 0.6238[/C][C] 0.7525[/C][C] 0.3762[/C][/ROW]
[ROW][C]19[/C][C] 0.548[/C][C] 0.9039[/C][C] 0.452[/C][/ROW]
[ROW][C]20[/C][C] 0.5146[/C][C] 0.9708[/C][C] 0.4854[/C][/ROW]
[ROW][C]21[/C][C] 0.4529[/C][C] 0.9057[/C][C] 0.5471[/C][/ROW]
[ROW][C]22[/C][C] 0.3971[/C][C] 0.7943[/C][C] 0.6029[/C][/ROW]
[ROW][C]23[/C][C] 0.3539[/C][C] 0.7077[/C][C] 0.6461[/C][/ROW]
[ROW][C]24[/C][C] 0.4408[/C][C] 0.8815[/C][C] 0.5592[/C][/ROW]
[ROW][C]25[/C][C] 0.4788[/C][C] 0.9577[/C][C] 0.5212[/C][/ROW]
[ROW][C]26[/C][C] 0.4854[/C][C] 0.9707[/C][C] 0.5147[/C][/ROW]
[ROW][C]27[/C][C] 0.4376[/C][C] 0.8752[/C][C] 0.5624[/C][/ROW]
[ROW][C]28[/C][C] 0.378[/C][C] 0.756[/C][C] 0.622[/C][/ROW]
[ROW][C]29[/C][C] 0.4491[/C][C] 0.8982[/C][C] 0.5509[/C][/ROW]
[ROW][C]30[/C][C] 0.4302[/C][C] 0.8603[/C][C] 0.5698[/C][/ROW]
[ROW][C]31[/C][C] 0.4341[/C][C] 0.8681[/C][C] 0.5659[/C][/ROW]
[ROW][C]32[/C][C] 0.4053[/C][C] 0.8107[/C][C] 0.5947[/C][/ROW]
[ROW][C]33[/C][C] 0.3746[/C][C] 0.7492[/C][C] 0.6254[/C][/ROW]
[ROW][C]34[/C][C] 0.3209[/C][C] 0.6417[/C][C] 0.6791[/C][/ROW]
[ROW][C]35[/C][C] 0.2717[/C][C] 0.5435[/C][C] 0.7283[/C][/ROW]
[ROW][C]36[/C][C] 0.3627[/C][C] 0.7254[/C][C] 0.6373[/C][/ROW]
[ROW][C]37[/C][C] 0.3134[/C][C] 0.6268[/C][C] 0.6866[/C][/ROW]
[ROW][C]38[/C][C] 0.2706[/C][C] 0.5412[/C][C] 0.7294[/C][/ROW]
[ROW][C]39[/C][C] 0.2513[/C][C] 0.5025[/C][C] 0.7487[/C][/ROW]
[ROW][C]40[/C][C] 0.2271[/C][C] 0.4543[/C][C] 0.7729[/C][/ROW]
[ROW][C]41[/C][C] 0.1941[/C][C] 0.3881[/C][C] 0.8059[/C][/ROW]
[ROW][C]42[/C][C] 0.1777[/C][C] 0.3554[/C][C] 0.8223[/C][/ROW]
[ROW][C]43[/C][C] 0.149[/C][C] 0.298[/C][C] 0.851[/C][/ROW]
[ROW][C]44[/C][C] 0.1305[/C][C] 0.261[/C][C] 0.8695[/C][/ROW]
[ROW][C]45[/C][C] 0.1044[/C][C] 0.2088[/C][C] 0.8956[/C][/ROW]
[ROW][C]46[/C][C] 0.09328[/C][C] 0.1866[/C][C] 0.9067[/C][/ROW]
[ROW][C]47[/C][C] 0.09722[/C][C] 0.1944[/C][C] 0.9028[/C][/ROW]
[ROW][C]48[/C][C] 0.09694[/C][C] 0.1939[/C][C] 0.9031[/C][/ROW]
[ROW][C]49[/C][C] 0.07668[/C][C] 0.1534[/C][C] 0.9233[/C][/ROW]
[ROW][C]50[/C][C] 0.06731[/C][C] 0.1346[/C][C] 0.9327[/C][/ROW]
[ROW][C]51[/C][C] 0.05316[/C][C] 0.1063[/C][C] 0.9468[/C][/ROW]
[ROW][C]52[/C][C] 0.04279[/C][C] 0.08558[/C][C] 0.9572[/C][/ROW]
[ROW][C]53[/C][C] 0.05373[/C][C] 0.1075[/C][C] 0.9463[/C][/ROW]
[ROW][C]54[/C][C] 0.04347[/C][C] 0.08694[/C][C] 0.9565[/C][/ROW]
[ROW][C]55[/C][C] 0.05236[/C][C] 0.1047[/C][C] 0.9476[/C][/ROW]
[ROW][C]56[/C][C] 0.04684[/C][C] 0.09368[/C][C] 0.9532[/C][/ROW]
[ROW][C]57[/C][C] 0.04601[/C][C] 0.09202[/C][C] 0.954[/C][/ROW]
[ROW][C]58[/C][C] 0.03689[/C][C] 0.07378[/C][C] 0.9631[/C][/ROW]
[ROW][C]59[/C][C] 0.03376[/C][C] 0.06753[/C][C] 0.9662[/C][/ROW]
[ROW][C]60[/C][C] 0.03211[/C][C] 0.06422[/C][C] 0.9679[/C][/ROW]
[ROW][C]61[/C][C] 0.04294[/C][C] 0.08589[/C][C] 0.9571[/C][/ROW]
[ROW][C]62[/C][C] 0.03317[/C][C] 0.06635[/C][C] 0.9668[/C][/ROW]
[ROW][C]63[/C][C] 0.04084[/C][C] 0.08168[/C][C] 0.9592[/C][/ROW]
[ROW][C]64[/C][C] 0.07425[/C][C] 0.1485[/C][C] 0.9257[/C][/ROW]
[ROW][C]65[/C][C] 0.06314[/C][C] 0.1263[/C][C] 0.9369[/C][/ROW]
[ROW][C]66[/C][C] 0.05206[/C][C] 0.1041[/C][C] 0.9479[/C][/ROW]
[ROW][C]67[/C][C] 0.06908[/C][C] 0.1382[/C][C] 0.9309[/C][/ROW]
[ROW][C]68[/C][C] 0.05911[/C][C] 0.1182[/C][C] 0.9409[/C][/ROW]
[ROW][C]69[/C][C] 0.1539[/C][C] 0.3077[/C][C] 0.8461[/C][/ROW]
[ROW][C]70[/C][C] 0.1661[/C][C] 0.3322[/C][C] 0.8339[/C][/ROW]
[ROW][C]71[/C][C] 0.2653[/C][C] 0.5307[/C][C] 0.7347[/C][/ROW]
[ROW][C]72[/C][C] 0.2933[/C][C] 0.5866[/C][C] 0.7067[/C][/ROW]
[ROW][C]73[/C][C] 0.2626[/C][C] 0.5252[/C][C] 0.7374[/C][/ROW]
[ROW][C]74[/C][C] 0.2459[/C][C] 0.4919[/C][C] 0.7541[/C][/ROW]
[ROW][C]75[/C][C] 0.2158[/C][C] 0.4317[/C][C] 0.7842[/C][/ROW]
[ROW][C]76[/C][C] 0.1848[/C][C] 0.3697[/C][C] 0.8152[/C][/ROW]
[ROW][C]77[/C][C] 0.1585[/C][C] 0.3171[/C][C] 0.8415[/C][/ROW]
[ROW][C]78[/C][C] 0.1714[/C][C] 0.3429[/C][C] 0.8286[/C][/ROW]
[ROW][C]79[/C][C] 0.2236[/C][C] 0.4473[/C][C] 0.7764[/C][/ROW]
[ROW][C]80[/C][C] 0.1919[/C][C] 0.3839[/C][C] 0.8081[/C][/ROW]
[ROW][C]81[/C][C] 0.1855[/C][C] 0.371[/C][C] 0.8145[/C][/ROW]
[ROW][C]82[/C][C] 0.1906[/C][C] 0.3811[/C][C] 0.8094[/C][/ROW]
[ROW][C]83[/C][C] 0.2275[/C][C] 0.4551[/C][C] 0.7725[/C][/ROW]
[ROW][C]84[/C][C] 0.2679[/C][C] 0.5359[/C][C] 0.7321[/C][/ROW]
[ROW][C]85[/C][C] 0.3284[/C][C] 0.6569[/C][C] 0.6716[/C][/ROW]
[ROW][C]86[/C][C] 0.3709[/C][C] 0.7418[/C][C] 0.6291[/C][/ROW]
[ROW][C]87[/C][C] 0.4443[/C][C] 0.8886[/C][C] 0.5557[/C][/ROW]
[ROW][C]88[/C][C] 0.4042[/C][C] 0.8083[/C][C] 0.5958[/C][/ROW]
[ROW][C]89[/C][C] 0.4597[/C][C] 0.9193[/C][C] 0.5403[/C][/ROW]
[ROW][C]90[/C][C] 0.4253[/C][C] 0.8506[/C][C] 0.5747[/C][/ROW]
[ROW][C]91[/C][C] 0.3826[/C][C] 0.7652[/C][C] 0.6174[/C][/ROW]
[ROW][C]92[/C][C] 0.3594[/C][C] 0.7188[/C][C] 0.6406[/C][/ROW]
[ROW][C]93[/C][C] 0.5078[/C][C] 0.9845[/C][C] 0.4922[/C][/ROW]
[ROW][C]94[/C][C] 0.5886[/C][C] 0.8228[/C][C] 0.4114[/C][/ROW]
[ROW][C]95[/C][C] 0.5659[/C][C] 0.8681[/C][C] 0.4341[/C][/ROW]
[ROW][C]96[/C][C] 0.6127[/C][C] 0.7747[/C][C] 0.3873[/C][/ROW]
[ROW][C]97[/C][C] 0.599[/C][C] 0.802[/C][C] 0.401[/C][/ROW]
[ROW][C]98[/C][C] 0.5618[/C][C] 0.8764[/C][C] 0.4382[/C][/ROW]
[ROW][C]99[/C][C] 0.5173[/C][C] 0.9654[/C][C] 0.4827[/C][/ROW]
[ROW][C]100[/C][C] 0.5239[/C][C] 0.9522[/C][C] 0.4761[/C][/ROW]
[ROW][C]101[/C][C] 0.4872[/C][C] 0.9744[/C][C] 0.5128[/C][/ROW]
[ROW][C]102[/C][C] 0.4559[/C][C] 0.9118[/C][C] 0.5441[/C][/ROW]
[ROW][C]103[/C][C] 0.4175[/C][C] 0.8349[/C][C] 0.5825[/C][/ROW]
[ROW][C]104[/C][C] 0.3779[/C][C] 0.7557[/C][C] 0.6221[/C][/ROW]
[ROW][C]105[/C][C] 0.3844[/C][C] 0.7687[/C][C] 0.6156[/C][/ROW]
[ROW][C]106[/C][C] 0.5125[/C][C] 0.9749[/C][C] 0.4875[/C][/ROW]
[ROW][C]107[/C][C] 0.477[/C][C] 0.954[/C][C] 0.523[/C][/ROW]
[ROW][C]108[/C][C] 0.4418[/C][C] 0.8835[/C][C] 0.5582[/C][/ROW]
[ROW][C]109[/C][C] 0.4378[/C][C] 0.8757[/C][C] 0.5622[/C][/ROW]
[ROW][C]110[/C][C] 0.413[/C][C] 0.8259[/C][C] 0.587[/C][/ROW]
[ROW][C]111[/C][C] 0.3746[/C][C] 0.7491[/C][C] 0.6254[/C][/ROW]
[ROW][C]112[/C][C] 0.3376[/C][C] 0.6751[/C][C] 0.6624[/C][/ROW]
[ROW][C]113[/C][C] 0.3021[/C][C] 0.6042[/C][C] 0.6979[/C][/ROW]
[ROW][C]114[/C][C] 0.2906[/C][C] 0.5813[/C][C] 0.7094[/C][/ROW]
[ROW][C]115[/C][C] 0.2509[/C][C] 0.5017[/C][C] 0.7491[/C][/ROW]
[ROW][C]116[/C][C] 0.2142[/C][C] 0.4284[/C][C] 0.7858[/C][/ROW]
[ROW][C]117[/C][C] 0.2145[/C][C] 0.4291[/C][C] 0.7855[/C][/ROW]
[ROW][C]118[/C][C] 0.181[/C][C] 0.362[/C][C] 0.819[/C][/ROW]
[ROW][C]119[/C][C] 0.1508[/C][C] 0.3016[/C][C] 0.8492[/C][/ROW]
[ROW][C]120[/C][C] 0.1515[/C][C] 0.3029[/C][C] 0.8485[/C][/ROW]
[ROW][C]121[/C][C] 0.1315[/C][C] 0.2631[/C][C] 0.8685[/C][/ROW]
[ROW][C]122[/C][C] 0.1444[/C][C] 0.2889[/C][C] 0.8556[/C][/ROW]
[ROW][C]123[/C][C] 0.2021[/C][C] 0.4042[/C][C] 0.7979[/C][/ROW]
[ROW][C]124[/C][C] 0.174[/C][C] 0.348[/C][C] 0.826[/C][/ROW]
[ROW][C]125[/C][C] 0.1447[/C][C] 0.2893[/C][C] 0.8553[/C][/ROW]
[ROW][C]126[/C][C] 0.1224[/C][C] 0.2448[/C][C] 0.8776[/C][/ROW]
[ROW][C]127[/C][C] 0.1112[/C][C] 0.2223[/C][C] 0.8888[/C][/ROW]
[ROW][C]128[/C][C] 0.0925[/C][C] 0.185[/C][C] 0.9075[/C][/ROW]
[ROW][C]129[/C][C] 0.07374[/C][C] 0.1475[/C][C] 0.9263[/C][/ROW]
[ROW][C]130[/C][C] 0.05702[/C][C] 0.114[/C][C] 0.943[/C][/ROW]
[ROW][C]131[/C][C] 0.04422[/C][C] 0.08844[/C][C] 0.9558[/C][/ROW]
[ROW][C]132[/C][C] 0.04178[/C][C] 0.08356[/C][C] 0.9582[/C][/ROW]
[ROW][C]133[/C][C] 0.03127[/C][C] 0.06253[/C][C] 0.9687[/C][/ROW]
[ROW][C]134[/C][C] 0.0234[/C][C] 0.0468[/C][C] 0.9766[/C][/ROW]
[ROW][C]135[/C][C] 0.01699[/C][C] 0.03397[/C][C] 0.983[/C][/ROW]
[ROW][C]136[/C][C] 0.02007[/C][C] 0.04015[/C][C] 0.9799[/C][/ROW]
[ROW][C]137[/C][C] 0.01424[/C][C] 0.02848[/C][C] 0.9858[/C][/ROW]
[ROW][C]138[/C][C] 0.01248[/C][C] 0.02496[/C][C] 0.9875[/C][/ROW]
[ROW][C]139[/C][C] 0.02705[/C][C] 0.0541[/C][C] 0.9729[/C][/ROW]
[ROW][C]140[/C][C] 0.02025[/C][C] 0.0405[/C][C] 0.9798[/C][/ROW]
[ROW][C]141[/C][C] 0.01737[/C][C] 0.03473[/C][C] 0.9826[/C][/ROW]
[ROW][C]142[/C][C] 0.02088[/C][C] 0.04176[/C][C] 0.9791[/C][/ROW]
[ROW][C]143[/C][C] 0.01566[/C][C] 0.03133[/C][C] 0.9843[/C][/ROW]
[ROW][C]144[/C][C] 0.01408[/C][C] 0.02817[/C][C] 0.9859[/C][/ROW]
[ROW][C]145[/C][C] 0.01446[/C][C] 0.02892[/C][C] 0.9855[/C][/ROW]
[ROW][C]146[/C][C] 0.02013[/C][C] 0.04027[/C][C] 0.9799[/C][/ROW]
[ROW][C]147[/C][C] 0.01683[/C][C] 0.03367[/C][C] 0.9832[/C][/ROW]
[ROW][C]148[/C][C] 0.03458[/C][C] 0.06916[/C][C] 0.9654[/C][/ROW]
[ROW][C]149[/C][C] 0.05321[/C][C] 0.1064[/C][C] 0.9468[/C][/ROW]
[ROW][C]150[/C][C] 0.0363[/C][C] 0.07261[/C][C] 0.9637[/C][/ROW]
[ROW][C]151[/C][C] 0.04144[/C][C] 0.08288[/C][C] 0.9586[/C][/ROW]
[ROW][C]152[/C][C] 0.03459[/C][C] 0.06918[/C][C] 0.9654[/C][/ROW]
[ROW][C]153[/C][C] 0.05861[/C][C] 0.1172[/C][C] 0.9414[/C][/ROW]
[ROW][C]154[/C][C] 0.04145[/C][C] 0.0829[/C][C] 0.9585[/C][/ROW]
[ROW][C]155[/C][C] 0.03147[/C][C] 0.06295[/C][C] 0.9685[/C][/ROW]
[ROW][C]156[/C][C] 0.02814[/C][C] 0.05629[/C][C] 0.9719[/C][/ROW]
[ROW][C]157[/C][C] 0.01964[/C][C] 0.03928[/C][C] 0.9804[/C][/ROW]
[ROW][C]158[/C][C] 0.01611[/C][C] 0.03222[/C][C] 0.9839[/C][/ROW]
[ROW][C]159[/C][C] 0.02898[/C][C] 0.05796[/C][C] 0.971[/C][/ROW]
[ROW][C]160[/C][C] 0.0276[/C][C] 0.05521[/C][C] 0.9724[/C][/ROW]
[ROW][C]161[/C][C] 0.09702[/C][C] 0.194[/C][C] 0.903[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299490&T=5

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299490&T=5

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Goldfeld-Quandt test for Heteroskedasticity
p-valuesAlternative Hypothesis
breakpoint indexgreater2-sidedless
7 0.6803 0.6394 0.3197
8 0.5645 0.871 0.4355
9 0.5105 0.979 0.4895
10 0.3821 0.7642 0.6179
11 0.2714 0.5428 0.7286
12 0.5061 0.9879 0.4939
13 0.4149 0.8298 0.5851
14 0.3324 0.6647 0.6676
15 0.2516 0.5031 0.7484
16 0.2249 0.4499 0.7751
17 0.52 0.9599 0.48
18 0.6238 0.7525 0.3762
19 0.548 0.9039 0.452
20 0.5146 0.9708 0.4854
21 0.4529 0.9057 0.5471
22 0.3971 0.7943 0.6029
23 0.3539 0.7077 0.6461
24 0.4408 0.8815 0.5592
25 0.4788 0.9577 0.5212
26 0.4854 0.9707 0.5147
27 0.4376 0.8752 0.5624
28 0.378 0.756 0.622
29 0.4491 0.8982 0.5509
30 0.4302 0.8603 0.5698
31 0.4341 0.8681 0.5659
32 0.4053 0.8107 0.5947
33 0.3746 0.7492 0.6254
34 0.3209 0.6417 0.6791
35 0.2717 0.5435 0.7283
36 0.3627 0.7254 0.6373
37 0.3134 0.6268 0.6866
38 0.2706 0.5412 0.7294
39 0.2513 0.5025 0.7487
40 0.2271 0.4543 0.7729
41 0.1941 0.3881 0.8059
42 0.1777 0.3554 0.8223
43 0.149 0.298 0.851
44 0.1305 0.261 0.8695
45 0.1044 0.2088 0.8956
46 0.09328 0.1866 0.9067
47 0.09722 0.1944 0.9028
48 0.09694 0.1939 0.9031
49 0.07668 0.1534 0.9233
50 0.06731 0.1346 0.9327
51 0.05316 0.1063 0.9468
52 0.04279 0.08558 0.9572
53 0.05373 0.1075 0.9463
54 0.04347 0.08694 0.9565
55 0.05236 0.1047 0.9476
56 0.04684 0.09368 0.9532
57 0.04601 0.09202 0.954
58 0.03689 0.07378 0.9631
59 0.03376 0.06753 0.9662
60 0.03211 0.06422 0.9679
61 0.04294 0.08589 0.9571
62 0.03317 0.06635 0.9668
63 0.04084 0.08168 0.9592
64 0.07425 0.1485 0.9257
65 0.06314 0.1263 0.9369
66 0.05206 0.1041 0.9479
67 0.06908 0.1382 0.9309
68 0.05911 0.1182 0.9409
69 0.1539 0.3077 0.8461
70 0.1661 0.3322 0.8339
71 0.2653 0.5307 0.7347
72 0.2933 0.5866 0.7067
73 0.2626 0.5252 0.7374
74 0.2459 0.4919 0.7541
75 0.2158 0.4317 0.7842
76 0.1848 0.3697 0.8152
77 0.1585 0.3171 0.8415
78 0.1714 0.3429 0.8286
79 0.2236 0.4473 0.7764
80 0.1919 0.3839 0.8081
81 0.1855 0.371 0.8145
82 0.1906 0.3811 0.8094
83 0.2275 0.4551 0.7725
84 0.2679 0.5359 0.7321
85 0.3284 0.6569 0.6716
86 0.3709 0.7418 0.6291
87 0.4443 0.8886 0.5557
88 0.4042 0.8083 0.5958
89 0.4597 0.9193 0.5403
90 0.4253 0.8506 0.5747
91 0.3826 0.7652 0.6174
92 0.3594 0.7188 0.6406
93 0.5078 0.9845 0.4922
94 0.5886 0.8228 0.4114
95 0.5659 0.8681 0.4341
96 0.6127 0.7747 0.3873
97 0.599 0.802 0.401
98 0.5618 0.8764 0.4382
99 0.5173 0.9654 0.4827
100 0.5239 0.9522 0.4761
101 0.4872 0.9744 0.5128
102 0.4559 0.9118 0.5441
103 0.4175 0.8349 0.5825
104 0.3779 0.7557 0.6221
105 0.3844 0.7687 0.6156
106 0.5125 0.9749 0.4875
107 0.477 0.954 0.523
108 0.4418 0.8835 0.5582
109 0.4378 0.8757 0.5622
110 0.413 0.8259 0.587
111 0.3746 0.7491 0.6254
112 0.3376 0.6751 0.6624
113 0.3021 0.6042 0.6979
114 0.2906 0.5813 0.7094
115 0.2509 0.5017 0.7491
116 0.2142 0.4284 0.7858
117 0.2145 0.4291 0.7855
118 0.181 0.362 0.819
119 0.1508 0.3016 0.8492
120 0.1515 0.3029 0.8485
121 0.1315 0.2631 0.8685
122 0.1444 0.2889 0.8556
123 0.2021 0.4042 0.7979
124 0.174 0.348 0.826
125 0.1447 0.2893 0.8553
126 0.1224 0.2448 0.8776
127 0.1112 0.2223 0.8888
128 0.0925 0.185 0.9075
129 0.07374 0.1475 0.9263
130 0.05702 0.114 0.943
131 0.04422 0.08844 0.9558
132 0.04178 0.08356 0.9582
133 0.03127 0.06253 0.9687
134 0.0234 0.0468 0.9766
135 0.01699 0.03397 0.983
136 0.02007 0.04015 0.9799
137 0.01424 0.02848 0.9858
138 0.01248 0.02496 0.9875
139 0.02705 0.0541 0.9729
140 0.02025 0.0405 0.9798
141 0.01737 0.03473 0.9826
142 0.02088 0.04176 0.9791
143 0.01566 0.03133 0.9843
144 0.01408 0.02817 0.9859
145 0.01446 0.02892 0.9855
146 0.02013 0.04027 0.9799
147 0.01683 0.03367 0.9832
148 0.03458 0.06916 0.9654
149 0.05321 0.1064 0.9468
150 0.0363 0.07261 0.9637
151 0.04144 0.08288 0.9586
152 0.03459 0.06918 0.9654
153 0.05861 0.1172 0.9414
154 0.04145 0.0829 0.9585
155 0.03147 0.06295 0.9685
156 0.02814 0.05629 0.9719
157 0.01964 0.03928 0.9804
158 0.01611 0.03222 0.9839
159 0.02898 0.05796 0.971
160 0.0276 0.05521 0.9724
161 0.09702 0.194 0.903







Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level150.0967742NOK
10% type I error level380.245161NOK

\begin{tabular}{lllllllll}
\hline
Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity \tabularnewline
Description & # significant tests & % significant tests & OK/NOK \tabularnewline
1% type I error level & 0 &  0 & OK \tabularnewline
5% type I error level & 15 & 0.0967742 & NOK \tabularnewline
10% type I error level & 38 & 0.245161 & NOK \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299490&T=6

[TABLE]
[ROW][C]Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity[/C][/ROW]
[ROW][C]Description[/C][C]# significant tests[/C][C]% significant tests[/C][C]OK/NOK[/C][/ROW]
[ROW][C]1% type I error level[/C][C]0[/C][C] 0[/C][C]OK[/C][/ROW]
[ROW][C]5% type I error level[/C][C]15[/C][C]0.0967742[/C][C]NOK[/C][/ROW]
[ROW][C]10% type I error level[/C][C]38[/C][C]0.245161[/C][C]NOK[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299490&T=6

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299490&T=6

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity
Description# significant tests% significant testsOK/NOK
1% type I error level0 0OK
5% type I error level150.0967742NOK
10% type I error level380.245161NOK







Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.3765, df1 = 2, df2 = 162, p-value = 0.0961
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.67063, df1 = 6, df2 = 158, p-value = 0.6735
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.1718, df1 = 2, df2 = 162, p-value = 0.3124

\begin{tabular}{lllllllll}
\hline
Ramsey RESET F-Test for powers (2 and 3) of fitted values \tabularnewline
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.3765, df1 = 2, df2 = 162, p-value = 0.0961
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of regressors \tabularnewline
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.67063, df1 = 6, df2 = 158, p-value = 0.6735
\tabularnewline Ramsey RESET F-Test for powers (2 and 3) of principal components \tabularnewline
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.1718, df1 = 2, df2 = 162, p-value = 0.3124
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299490&T=7

[TABLE]
[ROW][C]Ramsey RESET F-Test for powers (2 and 3) of fitted values[/C][/ROW]
[ROW][C]
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.3765, df1 = 2, df2 = 162, p-value = 0.0961
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of regressors[/C][/ROW] [ROW][C]
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.67063, df1 = 6, df2 = 158, p-value = 0.6735
[/C][/ROW] [ROW][C]Ramsey RESET F-Test for powers (2 and 3) of principal components[/C][/ROW] [ROW][C]
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.1718, df1 = 2, df2 = 162, p-value = 0.3124
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299490&T=7

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299490&T=7

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Ramsey RESET F-Test for powers (2 and 3) of fitted values
> reset_test_fitted
	RESET test
data:  mylm
RESET = 2.3765, df1 = 2, df2 = 162, p-value = 0.0961
Ramsey RESET F-Test for powers (2 and 3) of regressors
> reset_test_regressors
	RESET test
data:  mylm
RESET = 0.67063, df1 = 6, df2 = 158, p-value = 0.6735
Ramsey RESET F-Test for powers (2 and 3) of principal components
> reset_test_principal_components
	RESET test
data:  mylm
RESET = 1.1718, df1 = 2, df2 = 162, p-value = 0.3124







Variance Inflation Factors (Multicollinearity)
> vif
     EP1      EP2      EP4 
2.012273 1.948407 1.128271 

\begin{tabular}{lllllllll}
\hline
Variance Inflation Factors (Multicollinearity) \tabularnewline
> vif
     EP1      EP2      EP4 
2.012273 1.948407 1.128271 
\tabularnewline \hline \end{tabular} %Source: https://freestatistics.org/blog/index.php?pk=299490&T=8

[TABLE]
[ROW][C]Variance Inflation Factors (Multicollinearity)[/C][/ROW]
[ROW][C]
> vif
     EP1      EP2      EP4 
2.012273 1.948407 1.128271 
[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299490&T=8

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299490&T=8

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Variance Inflation Factors (Multicollinearity)
> vif
     EP1      EP2      EP4 
2.012273 1.948407 1.128271 



Parameters (Session):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
Parameters (R input):
par1 = 1 ; par2 = Do not include Seasonal Dummies ; par3 = No Linear Trend ; par4 = 0 ; par5 = 0 ;
R code (references can be found in the software module):
par5 <- '0'
par4 <- '0'
par3 <- 'No Linear Trend'
par2 <- 'Do not include Seasonal Dummies'
par1 <- '1'
library(lattice)
library(lmtest)
library(car)
library(MASS)
n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
mywarning <- ''
par1 <- as.numeric(par1)
if(is.na(par1)) {
par1 <- 1
mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
}
if (par4=='') par4 <- 0
par4 <- as.numeric(par4)
if (par5=='') par5 <- 0
par5 <- as.numeric(par5)
x <- na.omit(t(y))
k <- length(x[1,])
n <- length(x[,1])
x1 <- cbind(x[,par1], x[,1:k!=par1])
mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
colnames(x1) <- mycolnames #colnames(x)[par1]
x <- x1
if (par3 == 'First Differences'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'Seasonal Differences (s=12)'){
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if (par3 == 'First and Seasonal Differences (s=12)'){
(n <- n -1)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+1,j] - x[i,j]
}
}
x <- x2
(n <- n - 12)
x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
for (i in 1:n) {
for (j in 1:k) {
x2[i,j] <- x[i+12,j] - x[i,j]
}
}
x <- x2
}
if(par4 > 0) {
x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
for (i in 1:(n-par4)) {
for (j in 1:par4) {
x2[i,j] <- x[i+par4-j,par1]
}
}
x <- cbind(x[(par4+1):n,], x2)
n <- n - par4
}
if(par5 > 0) {
x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
for (i in 1:(n-par5*12)) {
for (j in 1:par5) {
x2[i,j] <- x[i+par5*12-j*12,par1]
}
}
x <- cbind(x[(par5*12+1):n,], x2)
n <- n - par5*12
}
if (par2 == 'Include Monthly Dummies'){
x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
for (i in 1:11){
x2[seq(i,n,12),i] <- 1
}
x <- cbind(x, x2)
}
if (par2 == 'Include Quarterly Dummies'){
x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
for (i in 1:3){
x2[seq(i,n,4),i] <- 1
}
x <- cbind(x, x2)
}
(k <- length(x[n,]))
if (par3 == 'Linear Trend'){
x <- cbind(x, c(1:n))
colnames(x)[k+1] <- 't'
}
print(x)
(k <- length(x[n,]))
head(x)
df <- as.data.frame(x)
(mylm <- lm(df))
(mysum <- summary(mylm))
if (n > n25) {
kp3 <- k + 3
nmkm3 <- n - k - 3
gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
numgqtests <- 0
numsignificant1 <- 0
numsignificant5 <- 0
numsignificant10 <- 0
for (mypoint in kp3:nmkm3) {
j <- 0
numgqtests <- numgqtests + 1
for (myalt in c('greater', 'two.sided', 'less')) {
j <- j + 1
gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
}
if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
}
gqarr
}
bitmap(file='test0.png')
plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
points(x[,1]-mysum$resid)
grid()
dev.off()
bitmap(file='test1.png')
plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
grid()
dev.off()
bitmap(file='test2.png')
sresid <- studres(mylm)
hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
xfit<-seq(min(sresid),max(sresid),length=40)
yfit<-dnorm(xfit)
lines(xfit, yfit)
grid()
dev.off()
bitmap(file='test3.png')
densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
dev.off()
bitmap(file='test4.png')
qqPlot(mylm, main='QQ Plot')
grid()
dev.off()
(myerror <- as.ts(mysum$resid))
bitmap(file='test5.png')
dum <- cbind(lag(myerror,k=1),myerror)
dum
dum1 <- dum[2:length(myerror),]
dum1
z <- as.data.frame(dum1)
print(z)
plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
lines(lowess(z))
abline(lm(z))
grid()
dev.off()
bitmap(file='test6.png')
acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
grid()
dev.off()
bitmap(file='test7.png')
pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
grid()
dev.off()
bitmap(file='test8.png')
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(mylm, las = 1, sub='Residual Diagnostics')
par(opar)
dev.off()
if (n > n25) {
bitmap(file='test9.png')
plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
grid()
dev.off()
}
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
a<-table.row.end(a)
myeq <- colnames(x)[1]
myeq <- paste(myeq, '[t] = ', sep='')
for (i in 1:k){
if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
if (rownames(mysum$coefficients)[i] != '(Intercept)') {
myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
}
}
myeq <- paste(myeq, ' + e[t]')
a<-table.row.start(a)
a<-table.element(a, myeq)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, mywarning)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Variable',header=TRUE)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'S.D.',header=TRUE)
a<-table.element(a,'T-STAT
H0: parameter = 0',header=TRUE)
a<-table.element(a,'2-tail p-value',header=TRUE)
a<-table.element(a,'1-tail p-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:k){
a<-table.row.start(a)
a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple R',1,TRUE)
a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Adjusted R-squared',1,TRUE)
a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (value)',1,TRUE)
a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[2],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
a<-table.element(a, signif(mysum$fstatistic[3],6))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'p-value',1,TRUE)
a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')
myr <- as.numeric(mysum$resid)
myr
if(n < 200) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Time or Index', 1, TRUE)
a<-table.element(a, 'Actuals', 1, TRUE)
a<-table.element(a, 'Interpolation
Forecast', 1, TRUE)
a<-table.element(a, 'Residuals
Prediction Error', 1, TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,i, 1, TRUE)
a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable4.tab')
if (n > n25) {
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'p-values',header=TRUE)
a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'breakpoint index',header=TRUE)
a<-table.element(a,'greater',header=TRUE)
a<-table.element(a,'2-sided',header=TRUE)
a<-table.element(a,'less',header=TRUE)
a<-table.row.end(a)
for (mypoint in kp3:nmkm3) {
a<-table.row.start(a)
a<-table.element(a,mypoint,header=TRUE)
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable5.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Description',header=TRUE)
a<-table.element(a,'# significant tests',header=TRUE)
a<-table.element(a,'% significant tests',header=TRUE)
a<-table.element(a,'OK/NOK',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'1% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant1,6))
a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'5% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant5,6))
a<-table.element(a,signif(numsignificant5/numgqtests,6))
if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'10% type I error level',header=TRUE)
a<-table.element(a,signif(numsignificant10,6))
a<-table.element(a,signif(numsignificant10/numgqtests,6))
if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
a<-table.element(a,dum)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable6.tab')
}
}
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
a<-table.element(a,paste('
',RC.texteval('reset_test_fitted'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
a<-table.element(a,paste('
',RC.texteval('reset_test_regressors'),'
',sep=''))
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
a<-table.element(a,paste('
',RC.texteval('reset_test_principal_components'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable8.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
vif <- vif(mylm)
a<-table.element(a,paste('
',RC.texteval('vif'),'
',sep=''))
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable9.tab')