Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 14 Dec 2016 15:17:32 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t14817250623fcib31nwc8ol7r.htm/, Retrieved Fri, 01 Nov 2024 03:32:12 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299479, Retrieved Fri, 01 Nov 2024 03:32:12 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact99
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [] [2016-12-14 14:17:32] [349958aef20b862f8399a5ba04d6f6e3] [Current]
Feedback Forum

Post a new message
Dataseries X:
5520
3880
4840
4360
3800
4560
4560
5120
4320
5380
4860
4560
5820
4260
3720
4500
5200
4300
5460
4800
4500
4640
4600
5400
5220
3700
5180
4360
3920
4760
4600
4580
4300
4920
3940
5640
4800
4120
4940
4540
4100
4940
4660
4180
3960
4380
4480
5860
4760
4440
5020




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299479&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299479&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299479&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal511052
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 511 & 0 & 52 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299479&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]511[/C][C]0[/C][C]52[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299479&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299479&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal511052
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
155205856.64445455632565.9229743877924617.43257105589336.644454556323
238803712.9489651549-579.4261212769434626.47715612205-167.051034845103
348404965.2531533893279.22510542246914635.52174118821125.253153389323
443604278.11254885654-201.7963756098574643.68382675331-81.8874511434578
538003330.25769856253-382.1036108809484651.84591231842-469.742301437474
645604461.211051291292.398634885278544656.39031382343-98.7889487087114
745604277.16381259331181.9014720782444660.93471532844-282.836187406688
851205549.1077025649326.88386540548824664.00843202958429.107702564933
943204351.05135113788-378.1334998685984667.0821487307131.0513511378849
1053805902.79879408363175.523320687594681.67788522878522.798794083626
1148605214.5462128895-190.8198346163544696.27362172685354.546212889501
1245603704.3665448462700.4241453183444715.20930983545-855.633455153798
1358206339.93202766815565.9229743877924734.14499794405519.932027668154
1442604359.62636742553-579.4261212769434739.7997538514199.6263674255342
1537202615.3203848187779.22510542246914745.45450975876-1104.67961518123
1645004460.88403872633-201.7963756098574740.91233688352-39.1159612736674
1752006045.73344687266-382.1036108809484736.37016400829845.733446872662
1843003859.211745517512.398634885278544738.38961959721-440.788254482492
1954605997.68945273561181.9014720782444740.40907518614537.689452735613
2048004830.0972591724526.88386540548824743.0188754220630.0972591724503
2145004632.50482421062-378.1334998685984745.62867565798132.504824210619
2246404369.601444958175.523320687594734.87523435441-270.398555042001
2346004666.69804156551-190.8198346163544724.1217930508466.6980415655125
2454005405.34667449574700.4241453183444694.229180185915.34667449574226
2552205209.74045829122565.9229743877924664.33656732099-10.2595417087778
2637003336.83666647416-579.4261212769434642.58945480278-363.16333352584
2751805659.9325522929579.22510542246914620.84234228458479.932552292952
2843604312.74259575484-201.7963756098574609.05377985501-47.2574042451552
2939203624.8383934555-382.1036108809484597.26521742545-295.161606544498
3047604929.615886974332.398634885278544587.98547814039169.615886974333
3146004439.39278906642181.9014720782444578.70573885533-160.607210933576
3245804555.4057014023226.88386540548824577.71043319219-24.594298597679
3343004401.41837233955-378.1334998685984576.71512752905101.418372339549
3449205079.90776627856175.523320687594584.56891303385159.90776627856
3539403478.3971360777-190.8198346163544592.42269853865-461.602863922296
3656405978.71371756343700.4241453183444600.86213711822338.713717563432
3748004424.77544991441565.9229743877924609.3015756978-375.224550085592
3841204220.32859844157-579.4261212769434599.09752283537100.328598441573
3949405211.8814246045979.22510542246914588.89346997294271.881424604592
4045404705.0016605919-201.7963756098574576.79471501796165.001660591898
4141004017.40765081797-382.1036108809484564.69596006298-82.5923491820313
4249405307.874158136912.398634885278544569.72720697781367.87415813691
4346604563.34007402911181.9014720782444574.75845389264-96.6599259708892
4441803740.8893290787526.88386540548824592.22680551577-439.110670921254
4539603688.43834272971-378.1334998685984609.69515713889-271.561657270288
4643803958.26665956097175.523320687594626.21001975144-421.733340439035
4744804508.09495225235-190.8198346163544642.72488236428.0949522523524
4858606357.53789542504700.4241453183444662.03795925661497.537895425045
4947604272.72598946299565.9229743877924681.35103614922-487.274010537015
5044404753.99923740832-579.4261212769434705.42688386862313.999237408323
5150205231.2721629895179.22510542246914729.50273158802211.272162989515

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 5520 & 5856.64445455632 & 565.922974387792 & 4617.43257105589 & 336.644454556323 \tabularnewline
2 & 3880 & 3712.9489651549 & -579.426121276943 & 4626.47715612205 & -167.051034845103 \tabularnewline
3 & 4840 & 4965.25315338932 & 79.2251054224691 & 4635.52174118821 & 125.253153389323 \tabularnewline
4 & 4360 & 4278.11254885654 & -201.796375609857 & 4643.68382675331 & -81.8874511434578 \tabularnewline
5 & 3800 & 3330.25769856253 & -382.103610880948 & 4651.84591231842 & -469.742301437474 \tabularnewline
6 & 4560 & 4461.21105129129 & 2.39863488527854 & 4656.39031382343 & -98.7889487087114 \tabularnewline
7 & 4560 & 4277.16381259331 & 181.901472078244 & 4660.93471532844 & -282.836187406688 \tabularnewline
8 & 5120 & 5549.10770256493 & 26.8838654054882 & 4664.00843202958 & 429.107702564933 \tabularnewline
9 & 4320 & 4351.05135113788 & -378.133499868598 & 4667.08214873071 & 31.0513511378849 \tabularnewline
10 & 5380 & 5902.79879408363 & 175.52332068759 & 4681.67788522878 & 522.798794083626 \tabularnewline
11 & 4860 & 5214.5462128895 & -190.819834616354 & 4696.27362172685 & 354.546212889501 \tabularnewline
12 & 4560 & 3704.3665448462 & 700.424145318344 & 4715.20930983545 & -855.633455153798 \tabularnewline
13 & 5820 & 6339.93202766815 & 565.922974387792 & 4734.14499794405 & 519.932027668154 \tabularnewline
14 & 4260 & 4359.62636742553 & -579.426121276943 & 4739.79975385141 & 99.6263674255342 \tabularnewline
15 & 3720 & 2615.32038481877 & 79.2251054224691 & 4745.45450975876 & -1104.67961518123 \tabularnewline
16 & 4500 & 4460.88403872633 & -201.796375609857 & 4740.91233688352 & -39.1159612736674 \tabularnewline
17 & 5200 & 6045.73344687266 & -382.103610880948 & 4736.37016400829 & 845.733446872662 \tabularnewline
18 & 4300 & 3859.21174551751 & 2.39863488527854 & 4738.38961959721 & -440.788254482492 \tabularnewline
19 & 5460 & 5997.68945273561 & 181.901472078244 & 4740.40907518614 & 537.689452735613 \tabularnewline
20 & 4800 & 4830.09725917245 & 26.8838654054882 & 4743.01887542206 & 30.0972591724503 \tabularnewline
21 & 4500 & 4632.50482421062 & -378.133499868598 & 4745.62867565798 & 132.504824210619 \tabularnewline
22 & 4640 & 4369.601444958 & 175.52332068759 & 4734.87523435441 & -270.398555042001 \tabularnewline
23 & 4600 & 4666.69804156551 & -190.819834616354 & 4724.12179305084 & 66.6980415655125 \tabularnewline
24 & 5400 & 5405.34667449574 & 700.424145318344 & 4694.22918018591 & 5.34667449574226 \tabularnewline
25 & 5220 & 5209.74045829122 & 565.922974387792 & 4664.33656732099 & -10.2595417087778 \tabularnewline
26 & 3700 & 3336.83666647416 & -579.426121276943 & 4642.58945480278 & -363.16333352584 \tabularnewline
27 & 5180 & 5659.93255229295 & 79.2251054224691 & 4620.84234228458 & 479.932552292952 \tabularnewline
28 & 4360 & 4312.74259575484 & -201.796375609857 & 4609.05377985501 & -47.2574042451552 \tabularnewline
29 & 3920 & 3624.8383934555 & -382.103610880948 & 4597.26521742545 & -295.161606544498 \tabularnewline
30 & 4760 & 4929.61588697433 & 2.39863488527854 & 4587.98547814039 & 169.615886974333 \tabularnewline
31 & 4600 & 4439.39278906642 & 181.901472078244 & 4578.70573885533 & -160.607210933576 \tabularnewline
32 & 4580 & 4555.40570140232 & 26.8838654054882 & 4577.71043319219 & -24.594298597679 \tabularnewline
33 & 4300 & 4401.41837233955 & -378.133499868598 & 4576.71512752905 & 101.418372339549 \tabularnewline
34 & 4920 & 5079.90776627856 & 175.52332068759 & 4584.56891303385 & 159.90776627856 \tabularnewline
35 & 3940 & 3478.3971360777 & -190.819834616354 & 4592.42269853865 & -461.602863922296 \tabularnewline
36 & 5640 & 5978.71371756343 & 700.424145318344 & 4600.86213711822 & 338.713717563432 \tabularnewline
37 & 4800 & 4424.77544991441 & 565.922974387792 & 4609.3015756978 & -375.224550085592 \tabularnewline
38 & 4120 & 4220.32859844157 & -579.426121276943 & 4599.09752283537 & 100.328598441573 \tabularnewline
39 & 4940 & 5211.88142460459 & 79.2251054224691 & 4588.89346997294 & 271.881424604592 \tabularnewline
40 & 4540 & 4705.0016605919 & -201.796375609857 & 4576.79471501796 & 165.001660591898 \tabularnewline
41 & 4100 & 4017.40765081797 & -382.103610880948 & 4564.69596006298 & -82.5923491820313 \tabularnewline
42 & 4940 & 5307.87415813691 & 2.39863488527854 & 4569.72720697781 & 367.87415813691 \tabularnewline
43 & 4660 & 4563.34007402911 & 181.901472078244 & 4574.75845389264 & -96.6599259708892 \tabularnewline
44 & 4180 & 3740.88932907875 & 26.8838654054882 & 4592.22680551577 & -439.110670921254 \tabularnewline
45 & 3960 & 3688.43834272971 & -378.133499868598 & 4609.69515713889 & -271.561657270288 \tabularnewline
46 & 4380 & 3958.26665956097 & 175.52332068759 & 4626.21001975144 & -421.733340439035 \tabularnewline
47 & 4480 & 4508.09495225235 & -190.819834616354 & 4642.724882364 & 28.0949522523524 \tabularnewline
48 & 5860 & 6357.53789542504 & 700.424145318344 & 4662.03795925661 & 497.537895425045 \tabularnewline
49 & 4760 & 4272.72598946299 & 565.922974387792 & 4681.35103614922 & -487.274010537015 \tabularnewline
50 & 4440 & 4753.99923740832 & -579.426121276943 & 4705.42688386862 & 313.999237408323 \tabularnewline
51 & 5020 & 5231.27216298951 & 79.2251054224691 & 4729.50273158802 & 211.272162989515 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299479&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]5520[/C][C]5856.64445455632[/C][C]565.922974387792[/C][C]4617.43257105589[/C][C]336.644454556323[/C][/ROW]
[ROW][C]2[/C][C]3880[/C][C]3712.9489651549[/C][C]-579.426121276943[/C][C]4626.47715612205[/C][C]-167.051034845103[/C][/ROW]
[ROW][C]3[/C][C]4840[/C][C]4965.25315338932[/C][C]79.2251054224691[/C][C]4635.52174118821[/C][C]125.253153389323[/C][/ROW]
[ROW][C]4[/C][C]4360[/C][C]4278.11254885654[/C][C]-201.796375609857[/C][C]4643.68382675331[/C][C]-81.8874511434578[/C][/ROW]
[ROW][C]5[/C][C]3800[/C][C]3330.25769856253[/C][C]-382.103610880948[/C][C]4651.84591231842[/C][C]-469.742301437474[/C][/ROW]
[ROW][C]6[/C][C]4560[/C][C]4461.21105129129[/C][C]2.39863488527854[/C][C]4656.39031382343[/C][C]-98.7889487087114[/C][/ROW]
[ROW][C]7[/C][C]4560[/C][C]4277.16381259331[/C][C]181.901472078244[/C][C]4660.93471532844[/C][C]-282.836187406688[/C][/ROW]
[ROW][C]8[/C][C]5120[/C][C]5549.10770256493[/C][C]26.8838654054882[/C][C]4664.00843202958[/C][C]429.107702564933[/C][/ROW]
[ROW][C]9[/C][C]4320[/C][C]4351.05135113788[/C][C]-378.133499868598[/C][C]4667.08214873071[/C][C]31.0513511378849[/C][/ROW]
[ROW][C]10[/C][C]5380[/C][C]5902.79879408363[/C][C]175.52332068759[/C][C]4681.67788522878[/C][C]522.798794083626[/C][/ROW]
[ROW][C]11[/C][C]4860[/C][C]5214.5462128895[/C][C]-190.819834616354[/C][C]4696.27362172685[/C][C]354.546212889501[/C][/ROW]
[ROW][C]12[/C][C]4560[/C][C]3704.3665448462[/C][C]700.424145318344[/C][C]4715.20930983545[/C][C]-855.633455153798[/C][/ROW]
[ROW][C]13[/C][C]5820[/C][C]6339.93202766815[/C][C]565.922974387792[/C][C]4734.14499794405[/C][C]519.932027668154[/C][/ROW]
[ROW][C]14[/C][C]4260[/C][C]4359.62636742553[/C][C]-579.426121276943[/C][C]4739.79975385141[/C][C]99.6263674255342[/C][/ROW]
[ROW][C]15[/C][C]3720[/C][C]2615.32038481877[/C][C]79.2251054224691[/C][C]4745.45450975876[/C][C]-1104.67961518123[/C][/ROW]
[ROW][C]16[/C][C]4500[/C][C]4460.88403872633[/C][C]-201.796375609857[/C][C]4740.91233688352[/C][C]-39.1159612736674[/C][/ROW]
[ROW][C]17[/C][C]5200[/C][C]6045.73344687266[/C][C]-382.103610880948[/C][C]4736.37016400829[/C][C]845.733446872662[/C][/ROW]
[ROW][C]18[/C][C]4300[/C][C]3859.21174551751[/C][C]2.39863488527854[/C][C]4738.38961959721[/C][C]-440.788254482492[/C][/ROW]
[ROW][C]19[/C][C]5460[/C][C]5997.68945273561[/C][C]181.901472078244[/C][C]4740.40907518614[/C][C]537.689452735613[/C][/ROW]
[ROW][C]20[/C][C]4800[/C][C]4830.09725917245[/C][C]26.8838654054882[/C][C]4743.01887542206[/C][C]30.0972591724503[/C][/ROW]
[ROW][C]21[/C][C]4500[/C][C]4632.50482421062[/C][C]-378.133499868598[/C][C]4745.62867565798[/C][C]132.504824210619[/C][/ROW]
[ROW][C]22[/C][C]4640[/C][C]4369.601444958[/C][C]175.52332068759[/C][C]4734.87523435441[/C][C]-270.398555042001[/C][/ROW]
[ROW][C]23[/C][C]4600[/C][C]4666.69804156551[/C][C]-190.819834616354[/C][C]4724.12179305084[/C][C]66.6980415655125[/C][/ROW]
[ROW][C]24[/C][C]5400[/C][C]5405.34667449574[/C][C]700.424145318344[/C][C]4694.22918018591[/C][C]5.34667449574226[/C][/ROW]
[ROW][C]25[/C][C]5220[/C][C]5209.74045829122[/C][C]565.922974387792[/C][C]4664.33656732099[/C][C]-10.2595417087778[/C][/ROW]
[ROW][C]26[/C][C]3700[/C][C]3336.83666647416[/C][C]-579.426121276943[/C][C]4642.58945480278[/C][C]-363.16333352584[/C][/ROW]
[ROW][C]27[/C][C]5180[/C][C]5659.93255229295[/C][C]79.2251054224691[/C][C]4620.84234228458[/C][C]479.932552292952[/C][/ROW]
[ROW][C]28[/C][C]4360[/C][C]4312.74259575484[/C][C]-201.796375609857[/C][C]4609.05377985501[/C][C]-47.2574042451552[/C][/ROW]
[ROW][C]29[/C][C]3920[/C][C]3624.8383934555[/C][C]-382.103610880948[/C][C]4597.26521742545[/C][C]-295.161606544498[/C][/ROW]
[ROW][C]30[/C][C]4760[/C][C]4929.61588697433[/C][C]2.39863488527854[/C][C]4587.98547814039[/C][C]169.615886974333[/C][/ROW]
[ROW][C]31[/C][C]4600[/C][C]4439.39278906642[/C][C]181.901472078244[/C][C]4578.70573885533[/C][C]-160.607210933576[/C][/ROW]
[ROW][C]32[/C][C]4580[/C][C]4555.40570140232[/C][C]26.8838654054882[/C][C]4577.71043319219[/C][C]-24.594298597679[/C][/ROW]
[ROW][C]33[/C][C]4300[/C][C]4401.41837233955[/C][C]-378.133499868598[/C][C]4576.71512752905[/C][C]101.418372339549[/C][/ROW]
[ROW][C]34[/C][C]4920[/C][C]5079.90776627856[/C][C]175.52332068759[/C][C]4584.56891303385[/C][C]159.90776627856[/C][/ROW]
[ROW][C]35[/C][C]3940[/C][C]3478.3971360777[/C][C]-190.819834616354[/C][C]4592.42269853865[/C][C]-461.602863922296[/C][/ROW]
[ROW][C]36[/C][C]5640[/C][C]5978.71371756343[/C][C]700.424145318344[/C][C]4600.86213711822[/C][C]338.713717563432[/C][/ROW]
[ROW][C]37[/C][C]4800[/C][C]4424.77544991441[/C][C]565.922974387792[/C][C]4609.3015756978[/C][C]-375.224550085592[/C][/ROW]
[ROW][C]38[/C][C]4120[/C][C]4220.32859844157[/C][C]-579.426121276943[/C][C]4599.09752283537[/C][C]100.328598441573[/C][/ROW]
[ROW][C]39[/C][C]4940[/C][C]5211.88142460459[/C][C]79.2251054224691[/C][C]4588.89346997294[/C][C]271.881424604592[/C][/ROW]
[ROW][C]40[/C][C]4540[/C][C]4705.0016605919[/C][C]-201.796375609857[/C][C]4576.79471501796[/C][C]165.001660591898[/C][/ROW]
[ROW][C]41[/C][C]4100[/C][C]4017.40765081797[/C][C]-382.103610880948[/C][C]4564.69596006298[/C][C]-82.5923491820313[/C][/ROW]
[ROW][C]42[/C][C]4940[/C][C]5307.87415813691[/C][C]2.39863488527854[/C][C]4569.72720697781[/C][C]367.87415813691[/C][/ROW]
[ROW][C]43[/C][C]4660[/C][C]4563.34007402911[/C][C]181.901472078244[/C][C]4574.75845389264[/C][C]-96.6599259708892[/C][/ROW]
[ROW][C]44[/C][C]4180[/C][C]3740.88932907875[/C][C]26.8838654054882[/C][C]4592.22680551577[/C][C]-439.110670921254[/C][/ROW]
[ROW][C]45[/C][C]3960[/C][C]3688.43834272971[/C][C]-378.133499868598[/C][C]4609.69515713889[/C][C]-271.561657270288[/C][/ROW]
[ROW][C]46[/C][C]4380[/C][C]3958.26665956097[/C][C]175.52332068759[/C][C]4626.21001975144[/C][C]-421.733340439035[/C][/ROW]
[ROW][C]47[/C][C]4480[/C][C]4508.09495225235[/C][C]-190.819834616354[/C][C]4642.724882364[/C][C]28.0949522523524[/C][/ROW]
[ROW][C]48[/C][C]5860[/C][C]6357.53789542504[/C][C]700.424145318344[/C][C]4662.03795925661[/C][C]497.537895425045[/C][/ROW]
[ROW][C]49[/C][C]4760[/C][C]4272.72598946299[/C][C]565.922974387792[/C][C]4681.35103614922[/C][C]-487.274010537015[/C][/ROW]
[ROW][C]50[/C][C]4440[/C][C]4753.99923740832[/C][C]-579.426121276943[/C][C]4705.42688386862[/C][C]313.999237408323[/C][/ROW]
[ROW][C]51[/C][C]5020[/C][C]5231.27216298951[/C][C]79.2251054224691[/C][C]4729.50273158802[/C][C]211.272162989515[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299479&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299479&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
155205856.64445455632565.9229743877924617.43257105589336.644454556323
238803712.9489651549-579.4261212769434626.47715612205-167.051034845103
348404965.2531533893279.22510542246914635.52174118821125.253153389323
443604278.11254885654-201.7963756098574643.68382675331-81.8874511434578
538003330.25769856253-382.1036108809484651.84591231842-469.742301437474
645604461.211051291292.398634885278544656.39031382343-98.7889487087114
745604277.16381259331181.9014720782444660.93471532844-282.836187406688
851205549.1077025649326.88386540548824664.00843202958429.107702564933
943204351.05135113788-378.1334998685984667.0821487307131.0513511378849
1053805902.79879408363175.523320687594681.67788522878522.798794083626
1148605214.5462128895-190.8198346163544696.27362172685354.546212889501
1245603704.3665448462700.4241453183444715.20930983545-855.633455153798
1358206339.93202766815565.9229743877924734.14499794405519.932027668154
1442604359.62636742553-579.4261212769434739.7997538514199.6263674255342
1537202615.3203848187779.22510542246914745.45450975876-1104.67961518123
1645004460.88403872633-201.7963756098574740.91233688352-39.1159612736674
1752006045.73344687266-382.1036108809484736.37016400829845.733446872662
1843003859.211745517512.398634885278544738.38961959721-440.788254482492
1954605997.68945273561181.9014720782444740.40907518614537.689452735613
2048004830.0972591724526.88386540548824743.0188754220630.0972591724503
2145004632.50482421062-378.1334998685984745.62867565798132.504824210619
2246404369.601444958175.523320687594734.87523435441-270.398555042001
2346004666.69804156551-190.8198346163544724.1217930508466.6980415655125
2454005405.34667449574700.4241453183444694.229180185915.34667449574226
2552205209.74045829122565.9229743877924664.33656732099-10.2595417087778
2637003336.83666647416-579.4261212769434642.58945480278-363.16333352584
2751805659.9325522929579.22510542246914620.84234228458479.932552292952
2843604312.74259575484-201.7963756098574609.05377985501-47.2574042451552
2939203624.8383934555-382.1036108809484597.26521742545-295.161606544498
3047604929.615886974332.398634885278544587.98547814039169.615886974333
3146004439.39278906642181.9014720782444578.70573885533-160.607210933576
3245804555.4057014023226.88386540548824577.71043319219-24.594298597679
3343004401.41837233955-378.1334998685984576.71512752905101.418372339549
3449205079.90776627856175.523320687594584.56891303385159.90776627856
3539403478.3971360777-190.8198346163544592.42269853865-461.602863922296
3656405978.71371756343700.4241453183444600.86213711822338.713717563432
3748004424.77544991441565.9229743877924609.3015756978-375.224550085592
3841204220.32859844157-579.4261212769434599.09752283537100.328598441573
3949405211.8814246045979.22510542246914588.89346997294271.881424604592
4045404705.0016605919-201.7963756098574576.79471501796165.001660591898
4141004017.40765081797-382.1036108809484564.69596006298-82.5923491820313
4249405307.874158136912.398634885278544569.72720697781367.87415813691
4346604563.34007402911181.9014720782444574.75845389264-96.6599259708892
4441803740.8893290787526.88386540548824592.22680551577-439.110670921254
4539603688.43834272971-378.1334998685984609.69515713889-271.561657270288
4643803958.26665956097175.523320687594626.21001975144-421.733340439035
4744804508.09495225235-190.8198346163544642.72488236428.0949522523524
4858606357.53789542504700.4241453183444662.03795925661497.537895425045
4947604272.72598946299565.9229743877924681.35103614922-487.274010537015
5044404753.99923740832-579.4261212769434705.42688386862313.999237408323
5150205231.2721629895179.22510542246914729.50273158802211.272162989515



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')