Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_histogram.wasp
Title produced by softwareHistogram
Date of computationWed, 14 Dec 2016 15:03:17 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481724254vf0apbmuvydi2v0.htm/, Retrieved Fri, 01 Nov 2024 03:46:52 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299461, Retrieved Fri, 01 Nov 2024 03:46:52 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact111
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Histogram] [snsom] [2016-12-14 14:03:17] [8263efc94e08b372ab727a2b95bd56b1] [Current]
Feedback Forum

Post a new message
Dataseries X:
9
9
9
12
9
7
7
6
7
10
10
8
13
9
8
5
12
10
9
12
8
7
10
6
9
9
6
12
7
5
8
11
7
10
8
6
12
7
8
9
8
9
10
12
8
6
15
8
10
11
6
11
10
12
8
5
7
10
10
7
9
11
10
11
6
9
12
12
12
10
9
8
3
9
11
4
6
7
6
7
8
4
5
10
13
9
9
9
11
14
7
4
9
7
9
8
4
9
8
9
7
5
10
5
10
9
11
11
9
12
11
11
7
6
8
10
10
7
7
10
7
7
7
8
11
6
9
9
6
10
6
12
6
10
12
7
7
5
9
7
10
8
9
8
10
6
11
9
11
7
10
12
7
9
8
8
12
5
8
5
9
11
11
11
9
8




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299461&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299461&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299461&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Frequency Table (Histogram)
BinsMidpointAbs. FrequencyRel. FrequencyCumul. Rel. Freq.Density
[3,4[3.510.0060240.0060240.006024
[4,5[4.540.0240960.030120.024096
[5,6[5.590.0542170.0843370.054217
[6,7[6.5150.0903610.1746990.090361
[7,8[7.5250.1506020.3253010.150602
[8,9[8.5220.132530.4578310.13253
[9,10[9.5310.1867470.6445780.186747
[10,11[10.5230.1385540.7831330.138554
[11,12[11.5170.102410.8855420.10241
[12,13[12.5150.0903610.9759040.090361
[13,14[13.520.0120480.9879520.012048
[14,15]14.520.01204810.012048

\begin{tabular}{lllllllll}
\hline
Frequency Table (Histogram) \tabularnewline
Bins & Midpoint & Abs. Frequency & Rel. Frequency & Cumul. Rel. Freq. & Density \tabularnewline
[3,4[ & 3.5 & 1 & 0.006024 & 0.006024 & 0.006024 \tabularnewline
[4,5[ & 4.5 & 4 & 0.024096 & 0.03012 & 0.024096 \tabularnewline
[5,6[ & 5.5 & 9 & 0.054217 & 0.084337 & 0.054217 \tabularnewline
[6,7[ & 6.5 & 15 & 0.090361 & 0.174699 & 0.090361 \tabularnewline
[7,8[ & 7.5 & 25 & 0.150602 & 0.325301 & 0.150602 \tabularnewline
[8,9[ & 8.5 & 22 & 0.13253 & 0.457831 & 0.13253 \tabularnewline
[9,10[ & 9.5 & 31 & 0.186747 & 0.644578 & 0.186747 \tabularnewline
[10,11[ & 10.5 & 23 & 0.138554 & 0.783133 & 0.138554 \tabularnewline
[11,12[ & 11.5 & 17 & 0.10241 & 0.885542 & 0.10241 \tabularnewline
[12,13[ & 12.5 & 15 & 0.090361 & 0.975904 & 0.090361 \tabularnewline
[13,14[ & 13.5 & 2 & 0.012048 & 0.987952 & 0.012048 \tabularnewline
[14,15] & 14.5 & 2 & 0.012048 & 1 & 0.012048 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299461&T=1

[TABLE]
[ROW][C]Frequency Table (Histogram)[/C][/ROW]
[ROW][C]Bins[/C][C]Midpoint[/C][C]Abs. Frequency[/C][C]Rel. Frequency[/C][C]Cumul. Rel. Freq.[/C][C]Density[/C][/ROW]
[ROW][C][3,4[[/C][C]3.5[/C][C]1[/C][C]0.006024[/C][C]0.006024[/C][C]0.006024[/C][/ROW]
[ROW][C][4,5[[/C][C]4.5[/C][C]4[/C][C]0.024096[/C][C]0.03012[/C][C]0.024096[/C][/ROW]
[ROW][C][5,6[[/C][C]5.5[/C][C]9[/C][C]0.054217[/C][C]0.084337[/C][C]0.054217[/C][/ROW]
[ROW][C][6,7[[/C][C]6.5[/C][C]15[/C][C]0.090361[/C][C]0.174699[/C][C]0.090361[/C][/ROW]
[ROW][C][7,8[[/C][C]7.5[/C][C]25[/C][C]0.150602[/C][C]0.325301[/C][C]0.150602[/C][/ROW]
[ROW][C][8,9[[/C][C]8.5[/C][C]22[/C][C]0.13253[/C][C]0.457831[/C][C]0.13253[/C][/ROW]
[ROW][C][9,10[[/C][C]9.5[/C][C]31[/C][C]0.186747[/C][C]0.644578[/C][C]0.186747[/C][/ROW]
[ROW][C][10,11[[/C][C]10.5[/C][C]23[/C][C]0.138554[/C][C]0.783133[/C][C]0.138554[/C][/ROW]
[ROW][C][11,12[[/C][C]11.5[/C][C]17[/C][C]0.10241[/C][C]0.885542[/C][C]0.10241[/C][/ROW]
[ROW][C][12,13[[/C][C]12.5[/C][C]15[/C][C]0.090361[/C][C]0.975904[/C][C]0.090361[/C][/ROW]
[ROW][C][13,14[[/C][C]13.5[/C][C]2[/C][C]0.012048[/C][C]0.987952[/C][C]0.012048[/C][/ROW]
[ROW][C][14,15][/C][C]14.5[/C][C]2[/C][C]0.012048[/C][C]1[/C][C]0.012048[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299461&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299461&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Frequency Table (Histogram)
BinsMidpointAbs. FrequencyRel. FrequencyCumul. Rel. Freq.Density
[3,4[3.510.0060240.0060240.006024
[4,5[4.540.0240960.030120.024096
[5,6[5.590.0542170.0843370.054217
[6,7[6.5150.0903610.1746990.090361
[7,8[7.5250.1506020.3253010.150602
[8,9[8.5220.132530.4578310.13253
[9,10[9.5310.1867470.6445780.186747
[10,11[10.5230.1385540.7831330.138554
[11,12[11.5170.102410.8855420.10241
[12,13[12.5150.0903610.9759040.090361
[13,14[13.520.0120480.9879520.012048
[14,15]14.520.01204810.012048



Parameters (Session):
Parameters (R input):
par1 = ; par2 = grey ; par3 = FALSE ; par4 = Unknown ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par3 == 'TRUE') par3 <- TRUE
if (par3 == 'FALSE') par3 <- FALSE
if (par4 == 'Unknown') par1 <- as.numeric(par1)
if (par4 == 'Interval/Ratio') par1 <- as.numeric(par1)
if (par4 == '3-point Likert') par1 <- c(1:3 - 0.5, 3.5)
if (par4 == '4-point Likert') par1 <- c(1:4 - 0.5, 4.5)
if (par4 == '5-point Likert') par1 <- c(1:5 - 0.5, 5.5)
if (par4 == '6-point Likert') par1 <- c(1:6 - 0.5, 6.5)
if (par4 == '7-point Likert') par1 <- c(1:7 - 0.5, 7.5)
if (par4 == '8-point Likert') par1 <- c(1:8 - 0.5, 8.5)
if (par4 == '9-point Likert') par1 <- c(1:9 - 0.5, 9.5)
if (par4 == '10-point Likert') par1 <- c(1:10 - 0.5, 10.5)
bitmap(file='test1.png')
if(is.numeric(x[1])) {
if (is.na(par1)) {
myhist<-hist(x,col=par2,main=main,xlab=xlab,right=par3)
} else {
if (par1 < 0) par1 <- 3
if (par1 > 50) par1 <- 50
myhist<-hist(x,breaks=par1,col=par2,main=main,xlab=xlab,right=par3)
}
} else {
barplot(mytab <- sort(table(x),T),col=par2,main='Frequency Plot',xlab=xlab,ylab='Absolute Frequency')
}
dev.off()
if(is.numeric(x[1])) {
myhist
n <- length(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Frequency Table (Histogram)',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Bins',header=TRUE)
a<-table.element(a,'Midpoint',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.element(a,'Cumul. Rel. Freq.',header=TRUE)
a<-table.element(a,'Density',header=TRUE)
a<-table.row.end(a)
crf <- 0
if (par3 == FALSE) mybracket <- '[' else mybracket <- ']'
mynumrows <- (length(myhist$breaks)-1)
for (i in 1:mynumrows) {
a<-table.row.start(a)
if (i == 1)
dum <- paste('[',myhist$breaks[i],sep='')
else
dum <- paste(mybracket,myhist$breaks[i],sep='')
dum <- paste(dum,myhist$breaks[i+1],sep=',')
if (i==mynumrows)
dum <- paste(dum,']',sep='')
else
dum <- paste(dum,mybracket,sep='')
a<-table.element(a,dum,header=TRUE)
a<-table.element(a,myhist$mids[i])
a<-table.element(a,myhist$counts[i])
rf <- myhist$counts[i]/n
crf <- crf + rf
a<-table.element(a,round(rf,6))
a<-table.element(a,round(crf,6))
a<-table.element(a,round(myhist$density[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
} else {
mytab
reltab <- mytab / sum(mytab)
n <- length(mytab)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Frequency Table (Categorical Data)',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Category',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,labels(mytab)$x[i],header=TRUE)
a<-table.element(a,mytab[i])
a<-table.element(a,round(reltab[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
}