Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_One Factor ANOVA.wasp
Title produced by softwareOne-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)
Date of computationWed, 14 Dec 2016 14:38:56 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481723506ft9yqn979cbnvgg.htm/, Retrieved Fri, 01 Nov 2024 03:45:06 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299445, Retrieved Fri, 01 Nov 2024 03:45:06 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact120
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [1 way anova ] [2016-12-14 13:38:56] [8fee619fda962476c4dedef05f7f9476] [Current]
Feedback Forum

Post a new message
Dataseries X:
5	14
5	19
4	17
4	17
5	15
5	20
5	15
4	19
4	15
5	15
4	19
5	20
5	18
4	15
5	14
5	20
4	16
5	16
5	16
5	10
5	19
4	19
5	16
3	15
4	18
4	17
4	19
4	17
5	19
5	20
5	5
5	19
5	16
4	15
4	16
4	18
4	16
4	15
4	17
4	20
5	19
4	7
4	13
4	16
4	16
5	18
4	18
4	16
5	17
4	19
4	16
4	19
3	13
4	16
4	13
4	12
5	17
5	17
5	17
5	16
3	16
4	14
5	16
4	13
4	16
5	14
5	20
4	12
5	13
4	18
4	14
5	19
5	18
5	14
5	18
5	19
4	15
4	14
4	17
5	19
4	13
4	19
5	18
5	20
5	15
2	15
4	15
4	20
3	15
5	19
5	18
5	18
5	15
5	20
4	17
5	12
4	18
5	19
4	20
5	17
5	15
4	16
4	18
4	18
5	14
4	15
5	12
4	17
4	14
4	18
5	17
4	17
5	20
5	16
4	14
5	15
5	18
5	20
3	17
4	17
4	17
4	17
5	15
4	17
4	18
4	17
4	20
5	15
4	16
4	15
2	18
4	11
4	15
5	18
4	20
5	14
4	16
5	15
4	17
4	18
4	20
4	17
5	18
4	15
5	16
5	11
5	15
5	18
4	17
5	16
5	12
5	19
5	18
4	15
5	17
2	19
4	18
5	19
5	16
4	16
4	16
5	14




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time3 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299445&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]3 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299445&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299445&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time3 seconds
R ServerBig Analytics Cloud Computing Center







ANOVA Model
ITHSUM ~ IK3
means17.333-2.133-0.966-0.787

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
ITHSUM  ~  IK3 \tabularnewline
means & 17.333 & -2.133 & -0.966 & -0.787 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299445&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]ITHSUM  ~  IK3[/C][/ROW]
[ROW][C]means[/C][C]17.333[/C][C]-2.133[/C][C]-0.966[/C][C]-0.787[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299445&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299445&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
ITHSUM ~ IK3
means17.333-2.133-0.966-0.787







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
IK3311.3453.7820.6010.615
Residuals158994.4086.294

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
IK3 & 3 & 11.345 & 3.782 & 0.601 & 0.615 \tabularnewline
Residuals & 158 & 994.408 & 6.294 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299445&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]IK3[/C][C]3[/C][C]11.345[/C][C]3.782[/C][C]0.601[/C][C]0.615[/C][/ROW]
[ROW][C]Residuals[/C][C]158[/C][C]994.408[/C][C]6.294[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299445&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299445&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
IK3311.3453.7820.6010.615
Residuals158994.4086.294







Tukey Honest Significant Difference Comparisons
difflwruprp adj
3-2-2.133-6.8912.6240.65
4-2-0.966-4.7982.8650.914
5-2-0.787-4.6223.0490.951
4-31.167-1.8374.1710.745
5-31.347-1.6624.3550.652
5-40.18-0.8711.230.971

\begin{tabular}{lllllllll}
\hline
Tukey Honest Significant Difference Comparisons \tabularnewline
  & diff & lwr & upr & p adj \tabularnewline
3-2 & -2.133 & -6.891 & 2.624 & 0.65 \tabularnewline
4-2 & -0.966 & -4.798 & 2.865 & 0.914 \tabularnewline
5-2 & -0.787 & -4.622 & 3.049 & 0.951 \tabularnewline
4-3 & 1.167 & -1.837 & 4.171 & 0.745 \tabularnewline
5-3 & 1.347 & -1.662 & 4.355 & 0.652 \tabularnewline
5-4 & 0.18 & -0.871 & 1.23 & 0.971 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299445&T=3

[TABLE]
[ROW][C]Tukey Honest Significant Difference Comparisons[/C][/ROW]
[ROW][C] [/C][C]diff[/C][C]lwr[/C][C]upr[/C][C]p adj[/C][/ROW]
[ROW][C]3-2[/C][C]-2.133[/C][C]-6.891[/C][C]2.624[/C][C]0.65[/C][/ROW]
[ROW][C]4-2[/C][C]-0.966[/C][C]-4.798[/C][C]2.865[/C][C]0.914[/C][/ROW]
[ROW][C]5-2[/C][C]-0.787[/C][C]-4.622[/C][C]3.049[/C][C]0.951[/C][/ROW]
[ROW][C]4-3[/C][C]1.167[/C][C]-1.837[/C][C]4.171[/C][C]0.745[/C][/ROW]
[ROW][C]5-3[/C][C]1.347[/C][C]-1.662[/C][C]4.355[/C][C]0.652[/C][/ROW]
[ROW][C]5-4[/C][C]0.18[/C][C]-0.871[/C][C]1.23[/C][C]0.971[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299445&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299445&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tukey Honest Significant Difference Comparisons
difflwruprp adj
3-2-2.133-6.8912.6240.65
4-2-0.966-4.7982.8650.914
5-2-0.787-4.6223.0490.951
4-31.167-1.8374.1710.745
5-31.347-1.6624.3550.652
5-40.18-0.8711.230.971







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group31.3320.266
158

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 3 & 1.332 & 0.266 \tabularnewline
  & 158 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299445&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]3[/C][C]1.332[/C][C]0.266[/C][/ROW]
[ROW][C] [/C][C]158[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299445&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299445&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group31.3320.266
158



Parameters (Session):
par1 = 11222 ; par2 = 22111 ; par3 = TRUETRUETRUENo Linear TrendTRUE ;
Parameters (R input):
par1 = 2 ; par2 = 1 ; par3 = TRUE ;
R code (references can be found in the software module):
par3 <- 'No Linear Trend'
par2 <- '1'
par1 <- '2'
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
intercept<-as.logical(par3)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
xdf<-data.frame(x1,f1)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
names(xdf)<-c('Response', 'Treatment')
if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmxdf$coefficients)){
a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$Df[2],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
dev.off()
if(intercept==TRUE){
'Tukey Plot'
thsd<-TukeyHSD(aov.xdf)
bitmap(file='TukeyHSDPlot.png')
plot(thsd)
dev.off()
}
if(intercept==TRUE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(i in 1:length(rownames(thsd[[1]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-leveneTest(lmxdf)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')