Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationWed, 14 Dec 2016 14:44:44 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481723144k1jqzd7vq68jthr.htm/, Retrieved Fri, 01 Nov 2024 03:30:01 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299434, Retrieved Fri, 01 Nov 2024 03:30:01 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact95
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-14 13:44:44] [2802fcbee976b89d2ab84425d3d65dcf] [Current]
Feedback Forum

Post a new message
Dataseries X:
517.5
688.5
844.5
1083
1095
1413
1563
1542
1566
1686
1728
3064.5
3294
3666
4512
5241
5425.5
5295
5530.5
5737.5
5799
5439
5479.5
5421
5689.5
5785.5
5890.5
5860.5
5515.5
5544
5727
6453
6670.5
7158
7582.5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299434&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299434&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299434&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.9079255.37143e-06
20.8149024.8211.4e-05
30.725024.28936.7e-05
40.6353663.75890.000312
50.552283.26730.001218
60.4752392.81160.004012
70.3995542.36380.011885
80.3120271.8460.036684
90.2190971.29620.101695
100.1255690.74290.231256
110.0334390.19780.422162
12-0.027359-0.16190.436174
13-0.086642-0.51260.305732
14-0.140545-0.83150.205671
15-0.184339-1.09060.141458

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.907925 & 5.3714 & 3e-06 \tabularnewline
2 & 0.814902 & 4.821 & 1.4e-05 \tabularnewline
3 & 0.72502 & 4.2893 & 6.7e-05 \tabularnewline
4 & 0.635366 & 3.7589 & 0.000312 \tabularnewline
5 & 0.55228 & 3.2673 & 0.001218 \tabularnewline
6 & 0.475239 & 2.8116 & 0.004012 \tabularnewline
7 & 0.399554 & 2.3638 & 0.011885 \tabularnewline
8 & 0.312027 & 1.846 & 0.036684 \tabularnewline
9 & 0.219097 & 1.2962 & 0.101695 \tabularnewline
10 & 0.125569 & 0.7429 & 0.231256 \tabularnewline
11 & 0.033439 & 0.1978 & 0.422162 \tabularnewline
12 & -0.027359 & -0.1619 & 0.436174 \tabularnewline
13 & -0.086642 & -0.5126 & 0.305732 \tabularnewline
14 & -0.140545 & -0.8315 & 0.205671 \tabularnewline
15 & -0.184339 & -1.0906 & 0.141458 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299434&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.907925[/C][C]5.3714[/C][C]3e-06[/C][/ROW]
[ROW][C]2[/C][C]0.814902[/C][C]4.821[/C][C]1.4e-05[/C][/ROW]
[ROW][C]3[/C][C]0.72502[/C][C]4.2893[/C][C]6.7e-05[/C][/ROW]
[ROW][C]4[/C][C]0.635366[/C][C]3.7589[/C][C]0.000312[/C][/ROW]
[ROW][C]5[/C][C]0.55228[/C][C]3.2673[/C][C]0.001218[/C][/ROW]
[ROW][C]6[/C][C]0.475239[/C][C]2.8116[/C][C]0.004012[/C][/ROW]
[ROW][C]7[/C][C]0.399554[/C][C]2.3638[/C][C]0.011885[/C][/ROW]
[ROW][C]8[/C][C]0.312027[/C][C]1.846[/C][C]0.036684[/C][/ROW]
[ROW][C]9[/C][C]0.219097[/C][C]1.2962[/C][C]0.101695[/C][/ROW]
[ROW][C]10[/C][C]0.125569[/C][C]0.7429[/C][C]0.231256[/C][/ROW]
[ROW][C]11[/C][C]0.033439[/C][C]0.1978[/C][C]0.422162[/C][/ROW]
[ROW][C]12[/C][C]-0.027359[/C][C]-0.1619[/C][C]0.436174[/C][/ROW]
[ROW][C]13[/C][C]-0.086642[/C][C]-0.5126[/C][C]0.305732[/C][/ROW]
[ROW][C]14[/C][C]-0.140545[/C][C]-0.8315[/C][C]0.205671[/C][/ROW]
[ROW][C]15[/C][C]-0.184339[/C][C]-1.0906[/C][C]0.141458[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299434&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299434&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.9079255.37143e-06
20.8149024.8211.4e-05
30.725024.28936.7e-05
40.6353663.75890.000312
50.552283.26730.001218
60.4752392.81160.004012
70.3995542.36380.011885
80.3120271.8460.036684
90.2190971.29620.101695
100.1255690.74290.231256
110.0334390.19780.422162
12-0.027359-0.16190.436174
13-0.086642-0.51260.305732
14-0.140545-0.83150.205671
15-0.184339-1.09060.141458







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.9079255.37143e-06
2-0.053656-0.31740.3764
3-0.033302-0.1970.422478
4-0.050995-0.30170.382336
5-0.016938-0.10020.460377
6-0.019494-0.11530.454423
7-0.044319-0.26220.397354
8-0.121867-0.7210.237856
9-0.095895-0.56730.287059
10-0.078889-0.46670.321798
11-0.073486-0.43470.333207
120.0937490.55460.291338
13-0.06519-0.38570.351037
14-0.036978-0.21880.414053
15-0.008157-0.04830.480892

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.907925 & 5.3714 & 3e-06 \tabularnewline
2 & -0.053656 & -0.3174 & 0.3764 \tabularnewline
3 & -0.033302 & -0.197 & 0.422478 \tabularnewline
4 & -0.050995 & -0.3017 & 0.382336 \tabularnewline
5 & -0.016938 & -0.1002 & 0.460377 \tabularnewline
6 & -0.019494 & -0.1153 & 0.454423 \tabularnewline
7 & -0.044319 & -0.2622 & 0.397354 \tabularnewline
8 & -0.121867 & -0.721 & 0.237856 \tabularnewline
9 & -0.095895 & -0.5673 & 0.287059 \tabularnewline
10 & -0.078889 & -0.4667 & 0.321798 \tabularnewline
11 & -0.073486 & -0.4347 & 0.333207 \tabularnewline
12 & 0.093749 & 0.5546 & 0.291338 \tabularnewline
13 & -0.06519 & -0.3857 & 0.351037 \tabularnewline
14 & -0.036978 & -0.2188 & 0.414053 \tabularnewline
15 & -0.008157 & -0.0483 & 0.480892 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299434&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.907925[/C][C]5.3714[/C][C]3e-06[/C][/ROW]
[ROW][C]2[/C][C]-0.053656[/C][C]-0.3174[/C][C]0.3764[/C][/ROW]
[ROW][C]3[/C][C]-0.033302[/C][C]-0.197[/C][C]0.422478[/C][/ROW]
[ROW][C]4[/C][C]-0.050995[/C][C]-0.3017[/C][C]0.382336[/C][/ROW]
[ROW][C]5[/C][C]-0.016938[/C][C]-0.1002[/C][C]0.460377[/C][/ROW]
[ROW][C]6[/C][C]-0.019494[/C][C]-0.1153[/C][C]0.454423[/C][/ROW]
[ROW][C]7[/C][C]-0.044319[/C][C]-0.2622[/C][C]0.397354[/C][/ROW]
[ROW][C]8[/C][C]-0.121867[/C][C]-0.721[/C][C]0.237856[/C][/ROW]
[ROW][C]9[/C][C]-0.095895[/C][C]-0.5673[/C][C]0.287059[/C][/ROW]
[ROW][C]10[/C][C]-0.078889[/C][C]-0.4667[/C][C]0.321798[/C][/ROW]
[ROW][C]11[/C][C]-0.073486[/C][C]-0.4347[/C][C]0.333207[/C][/ROW]
[ROW][C]12[/C][C]0.093749[/C][C]0.5546[/C][C]0.291338[/C][/ROW]
[ROW][C]13[/C][C]-0.06519[/C][C]-0.3857[/C][C]0.351037[/C][/ROW]
[ROW][C]14[/C][C]-0.036978[/C][C]-0.2188[/C][C]0.414053[/C][/ROW]
[ROW][C]15[/C][C]-0.008157[/C][C]-0.0483[/C][C]0.480892[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299434&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299434&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.9079255.37143e-06
2-0.053656-0.31740.3764
3-0.033302-0.1970.422478
4-0.050995-0.30170.382336
5-0.016938-0.10020.460377
6-0.019494-0.11530.454423
7-0.044319-0.26220.397354
8-0.121867-0.7210.237856
9-0.095895-0.56730.287059
10-0.078889-0.46670.321798
11-0.073486-0.43470.333207
120.0937490.55460.291338
13-0.06519-0.38570.351037
14-0.036978-0.21880.414053
15-0.008157-0.04830.480892



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')