Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_autocorrelation.wasp
Title produced by software(Partial) Autocorrelation Function
Date of computationWed, 14 Dec 2016 14:40:32 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481722840ygf21hghayseb1u.htm/, Retrieved Fri, 01 Nov 2024 03:34:26 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299427, Retrieved Fri, 01 Nov 2024 03:34:26 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact93
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [(Partial) Autocorrelation Function] [] [2016-12-14 13:40:32] [2802fcbee976b89d2ab84425d3d65dcf] [Current]
Feedback Forum

Post a new message
Dataseries X:
3606.1
3102.8
3602.5
3247.3
3467.7
3330.2
3367.1
3579.2
3303.8
3513.1
3892.7
4698.2
3876.6
3937.9
4011.5
3881.2
4054.6
3609.9
3788
3603.2
4110.8
4398.5
4402
4249.8
4054.5
3868.7
4165.4
4043.8
4220.2
4078
4129.3
4129.3
4161.5
4193.3
3959.8
3962.8
4079.3
3824.5
4160
3906.2
3907.8
4076.7
4099.4
4213.7
4012.2
4088.4
3911.9
3992.5
4333
4159
4540.8
4515.4
4661.1
4394.3
4916.4
4999.7
4783.4
4889.5
4840.6
4979.2
5442.4
5229.9
5670.3
5129.1
5358
5363.5
5388.7
5409.2
5431.2
5591.9
5622.5
5528.7
4968.7
4812.5
5175.1
4943.2
5007.1
5028.5
5023
5158.3
5248.8
5494
5193.3
4318.2
5726.3
5378.7
5776.1
5626.3
5755.2
5540.9
5560.8
5742.6
5592.9
5782.6
5611.5
5653.5
5438.7
5084.7
5736.2
5497.2
5650.9
5645.8
5634
5747.2
5585.2
5952.5
5833.5
5778.4
6096.9
5797.6
6187.9
5849.6
6096.6
5757.8
6248.1
6110.5
5919.8
6082.2
5886.9
6167.4
6458.9
6282.3
6762.1
6698.1
6017.3
5790.5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299427&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299427&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299427&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.92771310.41360
20.90030610.10590
30.8578589.62940
40.8221599.22870
50.8010958.99230
60.7620218.55370
70.7435678.34650
80.7079997.94730
90.6846247.68490
100.6637227.45030
110.6340497.11720
120.623026.99340
130.5877696.59770
140.5799196.50960
150.5533196.2110
160.5345586.00040
170.5212165.85060
180.4880925.47880
190.4771285.35580
200.4498465.04951e-06
210.4314384.84292e-06

\begin{tabular}{lllllllll}
\hline
Autocorrelation Function \tabularnewline
Time lag k & ACF(k) & T-STAT & P-value \tabularnewline
1 & 0.927713 & 10.4136 & 0 \tabularnewline
2 & 0.900306 & 10.1059 & 0 \tabularnewline
3 & 0.857858 & 9.6294 & 0 \tabularnewline
4 & 0.822159 & 9.2287 & 0 \tabularnewline
5 & 0.801095 & 8.9923 & 0 \tabularnewline
6 & 0.762021 & 8.5537 & 0 \tabularnewline
7 & 0.743567 & 8.3465 & 0 \tabularnewline
8 & 0.707999 & 7.9473 & 0 \tabularnewline
9 & 0.684624 & 7.6849 & 0 \tabularnewline
10 & 0.663722 & 7.4503 & 0 \tabularnewline
11 & 0.634049 & 7.1172 & 0 \tabularnewline
12 & 0.62302 & 6.9934 & 0 \tabularnewline
13 & 0.587769 & 6.5977 & 0 \tabularnewline
14 & 0.579919 & 6.5096 & 0 \tabularnewline
15 & 0.553319 & 6.211 & 0 \tabularnewline
16 & 0.534558 & 6.0004 & 0 \tabularnewline
17 & 0.521216 & 5.8506 & 0 \tabularnewline
18 & 0.488092 & 5.4788 & 0 \tabularnewline
19 & 0.477128 & 5.3558 & 0 \tabularnewline
20 & 0.449846 & 5.0495 & 1e-06 \tabularnewline
21 & 0.431438 & 4.8429 & 2e-06 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299427&T=1

[TABLE]
[ROW][C]Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]ACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.927713[/C][C]10.4136[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.900306[/C][C]10.1059[/C][C]0[/C][/ROW]
[ROW][C]3[/C][C]0.857858[/C][C]9.6294[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]0.822159[/C][C]9.2287[/C][C]0[/C][/ROW]
[ROW][C]5[/C][C]0.801095[/C][C]8.9923[/C][C]0[/C][/ROW]
[ROW][C]6[/C][C]0.762021[/C][C]8.5537[/C][C]0[/C][/ROW]
[ROW][C]7[/C][C]0.743567[/C][C]8.3465[/C][C]0[/C][/ROW]
[ROW][C]8[/C][C]0.707999[/C][C]7.9473[/C][C]0[/C][/ROW]
[ROW][C]9[/C][C]0.684624[/C][C]7.6849[/C][C]0[/C][/ROW]
[ROW][C]10[/C][C]0.663722[/C][C]7.4503[/C][C]0[/C][/ROW]
[ROW][C]11[/C][C]0.634049[/C][C]7.1172[/C][C]0[/C][/ROW]
[ROW][C]12[/C][C]0.62302[/C][C]6.9934[/C][C]0[/C][/ROW]
[ROW][C]13[/C][C]0.587769[/C][C]6.5977[/C][C]0[/C][/ROW]
[ROW][C]14[/C][C]0.579919[/C][C]6.5096[/C][C]0[/C][/ROW]
[ROW][C]15[/C][C]0.553319[/C][C]6.211[/C][C]0[/C][/ROW]
[ROW][C]16[/C][C]0.534558[/C][C]6.0004[/C][C]0[/C][/ROW]
[ROW][C]17[/C][C]0.521216[/C][C]5.8506[/C][C]0[/C][/ROW]
[ROW][C]18[/C][C]0.488092[/C][C]5.4788[/C][C]0[/C][/ROW]
[ROW][C]19[/C][C]0.477128[/C][C]5.3558[/C][C]0[/C][/ROW]
[ROW][C]20[/C][C]0.449846[/C][C]5.0495[/C][C]1e-06[/C][/ROW]
[ROW][C]21[/C][C]0.431438[/C][C]4.8429[/C][C]2e-06[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299427&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299427&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Autocorrelation Function
Time lag kACF(k)T-STATP-value
10.92771310.41360
20.90030610.10590
30.8578589.62940
40.8221599.22870
50.8010958.99230
60.7620218.55370
70.7435678.34650
80.7079997.94730
90.6846247.68490
100.6637227.45030
110.6340497.11720
120.623026.99340
130.5877696.59770
140.5799196.50960
150.5533196.2110
160.5345586.00040
170.5212165.85060
180.4880925.47880
190.4771285.35580
200.4498465.04951e-06
210.4314384.84292e-06







Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.92771310.41360
20.2845673.19430.000886
3-0.028788-0.32310.373563
4-0.007315-0.08210.467346
50.1150161.29110.099525
6-0.082368-0.92460.178476
70.0675620.75840.224821
8-0.056304-0.6320.264263
90.0202880.22770.410111
100.0397230.44590.328219
11-0.043394-0.48710.313516
120.0720180.80840.210191
13-0.095744-1.07470.142276
140.0963881.0820.14067
15-0.04918-0.5520.290949
160.0007590.00850.496608
170.0248950.27940.390179
18-0.090252-1.01310.156484
190.0330360.37080.355694
20-0.014924-0.16750.433616
21-0.024051-0.270.393812

\begin{tabular}{lllllllll}
\hline
Partial Autocorrelation Function \tabularnewline
Time lag k & PACF(k) & T-STAT & P-value \tabularnewline
1 & 0.927713 & 10.4136 & 0 \tabularnewline
2 & 0.284567 & 3.1943 & 0.000886 \tabularnewline
3 & -0.028788 & -0.3231 & 0.373563 \tabularnewline
4 & -0.007315 & -0.0821 & 0.467346 \tabularnewline
5 & 0.115016 & 1.2911 & 0.099525 \tabularnewline
6 & -0.082368 & -0.9246 & 0.178476 \tabularnewline
7 & 0.067562 & 0.7584 & 0.224821 \tabularnewline
8 & -0.056304 & -0.632 & 0.264263 \tabularnewline
9 & 0.020288 & 0.2277 & 0.410111 \tabularnewline
10 & 0.039723 & 0.4459 & 0.328219 \tabularnewline
11 & -0.043394 & -0.4871 & 0.313516 \tabularnewline
12 & 0.072018 & 0.8084 & 0.210191 \tabularnewline
13 & -0.095744 & -1.0747 & 0.142276 \tabularnewline
14 & 0.096388 & 1.082 & 0.14067 \tabularnewline
15 & -0.04918 & -0.552 & 0.290949 \tabularnewline
16 & 0.000759 & 0.0085 & 0.496608 \tabularnewline
17 & 0.024895 & 0.2794 & 0.390179 \tabularnewline
18 & -0.090252 & -1.0131 & 0.156484 \tabularnewline
19 & 0.033036 & 0.3708 & 0.355694 \tabularnewline
20 & -0.014924 & -0.1675 & 0.433616 \tabularnewline
21 & -0.024051 & -0.27 & 0.393812 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299427&T=2

[TABLE]
[ROW][C]Partial Autocorrelation Function[/C][/ROW]
[ROW][C]Time lag k[/C][C]PACF(k)[/C][C]T-STAT[/C][C]P-value[/C][/ROW]
[ROW][C]1[/C][C]0.927713[/C][C]10.4136[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]0.284567[/C][C]3.1943[/C][C]0.000886[/C][/ROW]
[ROW][C]3[/C][C]-0.028788[/C][C]-0.3231[/C][C]0.373563[/C][/ROW]
[ROW][C]4[/C][C]-0.007315[/C][C]-0.0821[/C][C]0.467346[/C][/ROW]
[ROW][C]5[/C][C]0.115016[/C][C]1.2911[/C][C]0.099525[/C][/ROW]
[ROW][C]6[/C][C]-0.082368[/C][C]-0.9246[/C][C]0.178476[/C][/ROW]
[ROW][C]7[/C][C]0.067562[/C][C]0.7584[/C][C]0.224821[/C][/ROW]
[ROW][C]8[/C][C]-0.056304[/C][C]-0.632[/C][C]0.264263[/C][/ROW]
[ROW][C]9[/C][C]0.020288[/C][C]0.2277[/C][C]0.410111[/C][/ROW]
[ROW][C]10[/C][C]0.039723[/C][C]0.4459[/C][C]0.328219[/C][/ROW]
[ROW][C]11[/C][C]-0.043394[/C][C]-0.4871[/C][C]0.313516[/C][/ROW]
[ROW][C]12[/C][C]0.072018[/C][C]0.8084[/C][C]0.210191[/C][/ROW]
[ROW][C]13[/C][C]-0.095744[/C][C]-1.0747[/C][C]0.142276[/C][/ROW]
[ROW][C]14[/C][C]0.096388[/C][C]1.082[/C][C]0.14067[/C][/ROW]
[ROW][C]15[/C][C]-0.04918[/C][C]-0.552[/C][C]0.290949[/C][/ROW]
[ROW][C]16[/C][C]0.000759[/C][C]0.0085[/C][C]0.496608[/C][/ROW]
[ROW][C]17[/C][C]0.024895[/C][C]0.2794[/C][C]0.390179[/C][/ROW]
[ROW][C]18[/C][C]-0.090252[/C][C]-1.0131[/C][C]0.156484[/C][/ROW]
[ROW][C]19[/C][C]0.033036[/C][C]0.3708[/C][C]0.355694[/C][/ROW]
[ROW][C]20[/C][C]-0.014924[/C][C]-0.1675[/C][C]0.433616[/C][/ROW]
[ROW][C]21[/C][C]-0.024051[/C][C]-0.27[/C][C]0.393812[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299427&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299427&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Partial Autocorrelation Function
Time lag kPACF(k)T-STATP-value
10.92771310.41360
20.2845673.19430.000886
3-0.028788-0.32310.373563
4-0.007315-0.08210.467346
50.1150161.29110.099525
6-0.082368-0.92460.178476
70.0675620.75840.224821
8-0.056304-0.6320.264263
90.0202880.22770.410111
100.0397230.44590.328219
11-0.043394-0.48710.313516
120.0720180.80840.210191
13-0.095744-1.07470.142276
140.0963881.0820.14067
15-0.04918-0.5520.290949
160.0007590.00850.496608
170.0248950.27940.390179
18-0.090252-1.01310.156484
190.0330360.37080.355694
20-0.014924-0.16750.433616
21-0.024051-0.270.393812



Parameters (Session):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ;
Parameters (R input):
par1 = Default ; par2 = 1 ; par3 = 0 ; par4 = 0 ; par5 = 12 ; par6 = White Noise ; par7 = 0.95 ; par8 = ;
R code (references can be found in the software module):
if (par1 == 'Default') {
par1 = 10*log10(length(x))
} else {
par1 <- as.numeric(par1)
}
par2 <- as.numeric(par2)
par3 <- as.numeric(par3)
par4 <- as.numeric(par4)
par5 <- as.numeric(par5)
if (par6 == 'White Noise') par6 <- 'white' else par6 <- 'ma'
par7 <- as.numeric(par7)
if (par8 != '') par8 <- as.numeric(par8)
x <- na.omit(x)
ox <- x
if (par8 == '') {
if (par2 == 0) {
x <- log(x)
} else {
x <- (x ^ par2 - 1) / par2
}
} else {
x <- log(x,base=par8)
}
if (par3 > 0) x <- diff(x,lag=1,difference=par3)
if (par4 > 0) x <- diff(x,lag=par5,difference=par4)
bitmap(file='picts.png')
op <- par(mfrow=c(2,1))
plot(ox,type='l',main='Original Time Series',xlab='time',ylab='value')
if (par8=='') {
mytitle <- paste('Working Time Series (lambda=',par2,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(lambda=',par2,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
} else {
mytitle <- paste('Working Time Series (base=',par8,', d=',par3,', D=',par4,')',sep='')
mysub <- paste('(base=',par8,', d=',par3,', D=',par4,', CI=', par7, ', CI type=',par6,')',sep='')
}
plot(x,type='l', main=mytitle,xlab='time',ylab='value')
par(op)
dev.off()
bitmap(file='pic1.png')
racf <- acf(x, par1, main='Autocorrelation', xlab='time lag', ylab='ACF', ci.type=par6, ci=par7, sub=mysub)
dev.off()
bitmap(file='pic2.png')
rpacf <- pacf(x,par1,main='Partial Autocorrelation',xlab='lags',ylab='PACF',sub=mysub)
dev.off()
(myacf <- c(racf$acf))
(mypacf <- c(rpacf$acf))
lengthx <- length(x)
sqrtn <- sqrt(lengthx)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'ACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 2:(par1+1)) {
a<-table.row.start(a)
a<-table.element(a,i-1,header=TRUE)
a<-table.element(a,round(myacf[i],6))
mytstat <- myacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Partial Autocorrelation Function',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Time lag k',header=TRUE)
a<-table.element(a,'PACF(k)',header=TRUE)
a<-table.element(a,'T-STAT',header=TRUE)
a<-table.element(a,'P-value',header=TRUE)
a<-table.row.end(a)
for (i in 1:par1) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,round(mypacf[i],6))
mytstat <- mypacf[i]*sqrtn
a<-table.element(a,round(mytstat,4))
a<-table.element(a,round(1-pt(abs(mytstat),lengthx),6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')