Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 14 Dec 2016 14:38:35 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481722737m79edygsgdl84gp.htm/, Retrieved Fri, 01 Nov 2024 03:34:02 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299425, Retrieved Fri, 01 Nov 2024 03:34:02 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact107
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [] [2016-12-14 13:38:35] [349958aef20b862f8399a5ba04d6f6e3] [Current]
Feedback Forum

Post a new message
Dataseries X:
876
80
2492
529
606
164
138
601
789
146
218
939
980
610
583
432
558
281
139
778
517
609
344
809
188
318
201
608
43
622
746
285
757
861
35
267
815
501
977
740
950
616
848
770
887
808
326
932
649
916
857
894
418
464
477
340
327
776
192
819
323
39
207
614
520
801
92
747
412
570




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299425&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299425&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299425&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal701071
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 701 & 0 & 71 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299425&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]701[/C][C]0[/C][C]71[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299425&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299425&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal701071
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
1876865.62841275501149.3595438991552837.012043345833-10.3715872449886
280-466.020511211955-174.217509016662800.238020228617-546.020511211955
324923914.99815498127305.537847907331763.46399711141422.99815498127
4529266.84333668867758.7165188040853732.440144507238-262.156663311323
5606569.022426713268-58.4387186163443701.416291903076-36.9775732867319
6164-267.033505504945-78.9474582229147673.98096372786-431.033505504945
7138-210.922966863961-159.622668688683646.545635552644-348.922966863961
8601558.11229092743527.6586500632879616.229059009277-42.8877090725651
9789929.31363868181762.7738788522726585.912482465911140.313638681817
10146-349.72346169269281.3662433953792560.357218297312-495.723461692692
11218223.911529719092-322.713483847806534.8019541287145.91152971909219
129391135.31683070005208.527312154501534.155857145451196.316830700047
139801377.1306959386649.3595438991552533.509760162189397.130695938655
14610858.544195948645-174.217509016662535.673313068017248.544195948645
15583322.625286118826305.537847907331537.836865973844-260.374713881174
16432268.3169438798158.7165188040853536.966537316105-163.68305612019
17558638.342509957978-58.4387186163443536.09620865836680.3425099579779
18281117.757777822304-78.9474582229147523.18968040061-163.242222177696
19139-72.6604834541711-159.622668688683510.283152142854-211.660483454171
207781039.4308887495427.6586500632879488.910461187176261.430888749536
21517503.68835091622962.7738788522726467.537770231498-13.3116490837709
22609683.05383114955381.3662433953792453.57992545506874.0538311495528
23344571.091403169168-322.713483847806439.622080678638227.091403169168
24809972.40285184804208.527312154501437.069835997459163.40285184804
25188-107.87713521543549.3595438991552434.51759131628-295.877135215435
26318371.559361209661-174.217509016662438.65814780700153.5593612096612
27201-346.336552205052305.537847907331442.798704297721-547.336552205052
28608711.00397762738658.7165188040853446.279503568528103.003977627386
2943-305.321584222991-58.4387186163443449.760302839335-348.321584222991
30622864.670688644978-78.9474582229147458.276769577937242.670688644978
317461184.82943237214-159.622668688683466.793236316538438.829432372145
3228550.471465060015727.6586500632879491.869884876696-234.528534939984
33757934.27958771087362.7738788522726516.946533436854177.279587710873
348611093.3412414797881.3662433953792547.292515124837232.341241479784
3535-184.925012965013-322.713483847806577.638496812819-219.925012965013
36267-277.128354805746208.527312154501602.601042651244-544.128354805746
37815953.07686761117549.3595438991552627.56358848967138.076867611175
38501524.950272839599-174.217509016662651.26723617706223.9502728395994
39977973.491268228215305.537847907331674.970883864455-3.50873177178528
40740722.26653724875658.7165188040853699.016943947159-17.7334627512441
419501235.37571458648-58.4387186163443723.063004029863285.375714586481
42616568.368085189134-78.9474582229147742.579373033781-47.6319148108661
438481093.52692665098-159.622668688683762.095742037698245.526926650985
44770743.98464944748927.6586500632879768.356700489223-26.0153505525112
45887936.60846220697962.7738788522726774.61765894074849.6084622069792
46808768.33519583159981.3662433953792766.298560773022-39.6648041684015
47326216.73402124251-322.713483847806757.979462605296-109.26597875749
48932919.487693670863208.527312154501735.984994174636-12.5123063291372
49649534.64993035686949.3595438991552713.990525743976-114.350069643131
509161320.82967091382-174.217509016662685.38783810284404.829670913822
51857751.677001630966305.537847907331656.785150461703-105.322998369034
528941096.2292126369258.7165188040853633.054268558997202.229212636918
53418285.115331960054-58.4387186163443609.32338665629-132.884668039946
54464423.569869430788-78.9474582229147583.377588792127-40.4301305692121
55477556.19087776072-159.622668688683557.43179092796379.1908777607199
56340133.11501717315227.6586500632879519.22633276356-206.884982826848
57327110.20524654857162.7738788522726481.020874599157-216.794753451429
587761015.0170622711281.3662433953792455.616694333504239.017062271117
59192276.500969779954-322.713483847806430.21251406785284.5009697799541
608191000.76943846855208.527312154501428.703249376948181.769438468551
61323169.446471414849.3595438991552427.193984686044-153.5535285852
6239-184.643106218751-174.217509016662436.860615235413-223.643106218751
63207-338.065093692112305.537847907331446.527245784781-545.065093692112
64614716.9036724509558.7165188040853452.379808744964102.90367245095
65520640.206346911197-58.4387186163443458.232371705148120.206346911197
668011214.26908992055-78.9474582229147466.678368302362413.269089920553
6792-131.501696210893-159.622668688683475.124364899576-223.501696210893
68747980.33295763634527.6586500632879486.008392300367233.332957636345
69412264.33370144656962.7738788522726496.892419701159-147.666298553431
70570549.89978638803781.3662433953792508.733970216584-20.1002136119632

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 876 & 865.628412755011 & 49.3595438991552 & 837.012043345833 & -10.3715872449886 \tabularnewline
2 & 80 & -466.020511211955 & -174.217509016662 & 800.238020228617 & -546.020511211955 \tabularnewline
3 & 2492 & 3914.99815498127 & 305.537847907331 & 763.4639971114 & 1422.99815498127 \tabularnewline
4 & 529 & 266.843336688677 & 58.7165188040853 & 732.440144507238 & -262.156663311323 \tabularnewline
5 & 606 & 569.022426713268 & -58.4387186163443 & 701.416291903076 & -36.9775732867319 \tabularnewline
6 & 164 & -267.033505504945 & -78.9474582229147 & 673.98096372786 & -431.033505504945 \tabularnewline
7 & 138 & -210.922966863961 & -159.622668688683 & 646.545635552644 & -348.922966863961 \tabularnewline
8 & 601 & 558.112290927435 & 27.6586500632879 & 616.229059009277 & -42.8877090725651 \tabularnewline
9 & 789 & 929.313638681817 & 62.7738788522726 & 585.912482465911 & 140.313638681817 \tabularnewline
10 & 146 & -349.723461692692 & 81.3662433953792 & 560.357218297312 & -495.723461692692 \tabularnewline
11 & 218 & 223.911529719092 & -322.713483847806 & 534.801954128714 & 5.91152971909219 \tabularnewline
12 & 939 & 1135.31683070005 & 208.527312154501 & 534.155857145451 & 196.316830700047 \tabularnewline
13 & 980 & 1377.13069593866 & 49.3595438991552 & 533.509760162189 & 397.130695938655 \tabularnewline
14 & 610 & 858.544195948645 & -174.217509016662 & 535.673313068017 & 248.544195948645 \tabularnewline
15 & 583 & 322.625286118826 & 305.537847907331 & 537.836865973844 & -260.374713881174 \tabularnewline
16 & 432 & 268.31694387981 & 58.7165188040853 & 536.966537316105 & -163.68305612019 \tabularnewline
17 & 558 & 638.342509957978 & -58.4387186163443 & 536.096208658366 & 80.3425099579779 \tabularnewline
18 & 281 & 117.757777822304 & -78.9474582229147 & 523.18968040061 & -163.242222177696 \tabularnewline
19 & 139 & -72.6604834541711 & -159.622668688683 & 510.283152142854 & -211.660483454171 \tabularnewline
20 & 778 & 1039.43088874954 & 27.6586500632879 & 488.910461187176 & 261.430888749536 \tabularnewline
21 & 517 & 503.688350916229 & 62.7738788522726 & 467.537770231498 & -13.3116490837709 \tabularnewline
22 & 609 & 683.053831149553 & 81.3662433953792 & 453.579925455068 & 74.0538311495528 \tabularnewline
23 & 344 & 571.091403169168 & -322.713483847806 & 439.622080678638 & 227.091403169168 \tabularnewline
24 & 809 & 972.40285184804 & 208.527312154501 & 437.069835997459 & 163.40285184804 \tabularnewline
25 & 188 & -107.877135215435 & 49.3595438991552 & 434.51759131628 & -295.877135215435 \tabularnewline
26 & 318 & 371.559361209661 & -174.217509016662 & 438.658147807001 & 53.5593612096612 \tabularnewline
27 & 201 & -346.336552205052 & 305.537847907331 & 442.798704297721 & -547.336552205052 \tabularnewline
28 & 608 & 711.003977627386 & 58.7165188040853 & 446.279503568528 & 103.003977627386 \tabularnewline
29 & 43 & -305.321584222991 & -58.4387186163443 & 449.760302839335 & -348.321584222991 \tabularnewline
30 & 622 & 864.670688644978 & -78.9474582229147 & 458.276769577937 & 242.670688644978 \tabularnewline
31 & 746 & 1184.82943237214 & -159.622668688683 & 466.793236316538 & 438.829432372145 \tabularnewline
32 & 285 & 50.4714650600157 & 27.6586500632879 & 491.869884876696 & -234.528534939984 \tabularnewline
33 & 757 & 934.279587710873 & 62.7738788522726 & 516.946533436854 & 177.279587710873 \tabularnewline
34 & 861 & 1093.34124147978 & 81.3662433953792 & 547.292515124837 & 232.341241479784 \tabularnewline
35 & 35 & -184.925012965013 & -322.713483847806 & 577.638496812819 & -219.925012965013 \tabularnewline
36 & 267 & -277.128354805746 & 208.527312154501 & 602.601042651244 & -544.128354805746 \tabularnewline
37 & 815 & 953.076867611175 & 49.3595438991552 & 627.56358848967 & 138.076867611175 \tabularnewline
38 & 501 & 524.950272839599 & -174.217509016662 & 651.267236177062 & 23.9502728395994 \tabularnewline
39 & 977 & 973.491268228215 & 305.537847907331 & 674.970883864455 & -3.50873177178528 \tabularnewline
40 & 740 & 722.266537248756 & 58.7165188040853 & 699.016943947159 & -17.7334627512441 \tabularnewline
41 & 950 & 1235.37571458648 & -58.4387186163443 & 723.063004029863 & 285.375714586481 \tabularnewline
42 & 616 & 568.368085189134 & -78.9474582229147 & 742.579373033781 & -47.6319148108661 \tabularnewline
43 & 848 & 1093.52692665098 & -159.622668688683 & 762.095742037698 & 245.526926650985 \tabularnewline
44 & 770 & 743.984649447489 & 27.6586500632879 & 768.356700489223 & -26.0153505525112 \tabularnewline
45 & 887 & 936.608462206979 & 62.7738788522726 & 774.617658940748 & 49.6084622069792 \tabularnewline
46 & 808 & 768.335195831599 & 81.3662433953792 & 766.298560773022 & -39.6648041684015 \tabularnewline
47 & 326 & 216.73402124251 & -322.713483847806 & 757.979462605296 & -109.26597875749 \tabularnewline
48 & 932 & 919.487693670863 & 208.527312154501 & 735.984994174636 & -12.5123063291372 \tabularnewline
49 & 649 & 534.649930356869 & 49.3595438991552 & 713.990525743976 & -114.350069643131 \tabularnewline
50 & 916 & 1320.82967091382 & -174.217509016662 & 685.38783810284 & 404.829670913822 \tabularnewline
51 & 857 & 751.677001630966 & 305.537847907331 & 656.785150461703 & -105.322998369034 \tabularnewline
52 & 894 & 1096.22921263692 & 58.7165188040853 & 633.054268558997 & 202.229212636918 \tabularnewline
53 & 418 & 285.115331960054 & -58.4387186163443 & 609.32338665629 & -132.884668039946 \tabularnewline
54 & 464 & 423.569869430788 & -78.9474582229147 & 583.377588792127 & -40.4301305692121 \tabularnewline
55 & 477 & 556.19087776072 & -159.622668688683 & 557.431790927963 & 79.1908777607199 \tabularnewline
56 & 340 & 133.115017173152 & 27.6586500632879 & 519.22633276356 & -206.884982826848 \tabularnewline
57 & 327 & 110.205246548571 & 62.7738788522726 & 481.020874599157 & -216.794753451429 \tabularnewline
58 & 776 & 1015.01706227112 & 81.3662433953792 & 455.616694333504 & 239.017062271117 \tabularnewline
59 & 192 & 276.500969779954 & -322.713483847806 & 430.212514067852 & 84.5009697799541 \tabularnewline
60 & 819 & 1000.76943846855 & 208.527312154501 & 428.703249376948 & 181.769438468551 \tabularnewline
61 & 323 & 169.4464714148 & 49.3595438991552 & 427.193984686044 & -153.5535285852 \tabularnewline
62 & 39 & -184.643106218751 & -174.217509016662 & 436.860615235413 & -223.643106218751 \tabularnewline
63 & 207 & -338.065093692112 & 305.537847907331 & 446.527245784781 & -545.065093692112 \tabularnewline
64 & 614 & 716.90367245095 & 58.7165188040853 & 452.379808744964 & 102.90367245095 \tabularnewline
65 & 520 & 640.206346911197 & -58.4387186163443 & 458.232371705148 & 120.206346911197 \tabularnewline
66 & 801 & 1214.26908992055 & -78.9474582229147 & 466.678368302362 & 413.269089920553 \tabularnewline
67 & 92 & -131.501696210893 & -159.622668688683 & 475.124364899576 & -223.501696210893 \tabularnewline
68 & 747 & 980.332957636345 & 27.6586500632879 & 486.008392300367 & 233.332957636345 \tabularnewline
69 & 412 & 264.333701446569 & 62.7738788522726 & 496.892419701159 & -147.666298553431 \tabularnewline
70 & 570 & 549.899786388037 & 81.3662433953792 & 508.733970216584 & -20.1002136119632 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299425&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]876[/C][C]865.628412755011[/C][C]49.3595438991552[/C][C]837.012043345833[/C][C]-10.3715872449886[/C][/ROW]
[ROW][C]2[/C][C]80[/C][C]-466.020511211955[/C][C]-174.217509016662[/C][C]800.238020228617[/C][C]-546.020511211955[/C][/ROW]
[ROW][C]3[/C][C]2492[/C][C]3914.99815498127[/C][C]305.537847907331[/C][C]763.4639971114[/C][C]1422.99815498127[/C][/ROW]
[ROW][C]4[/C][C]529[/C][C]266.843336688677[/C][C]58.7165188040853[/C][C]732.440144507238[/C][C]-262.156663311323[/C][/ROW]
[ROW][C]5[/C][C]606[/C][C]569.022426713268[/C][C]-58.4387186163443[/C][C]701.416291903076[/C][C]-36.9775732867319[/C][/ROW]
[ROW][C]6[/C][C]164[/C][C]-267.033505504945[/C][C]-78.9474582229147[/C][C]673.98096372786[/C][C]-431.033505504945[/C][/ROW]
[ROW][C]7[/C][C]138[/C][C]-210.922966863961[/C][C]-159.622668688683[/C][C]646.545635552644[/C][C]-348.922966863961[/C][/ROW]
[ROW][C]8[/C][C]601[/C][C]558.112290927435[/C][C]27.6586500632879[/C][C]616.229059009277[/C][C]-42.8877090725651[/C][/ROW]
[ROW][C]9[/C][C]789[/C][C]929.313638681817[/C][C]62.7738788522726[/C][C]585.912482465911[/C][C]140.313638681817[/C][/ROW]
[ROW][C]10[/C][C]146[/C][C]-349.723461692692[/C][C]81.3662433953792[/C][C]560.357218297312[/C][C]-495.723461692692[/C][/ROW]
[ROW][C]11[/C][C]218[/C][C]223.911529719092[/C][C]-322.713483847806[/C][C]534.801954128714[/C][C]5.91152971909219[/C][/ROW]
[ROW][C]12[/C][C]939[/C][C]1135.31683070005[/C][C]208.527312154501[/C][C]534.155857145451[/C][C]196.316830700047[/C][/ROW]
[ROW][C]13[/C][C]980[/C][C]1377.13069593866[/C][C]49.3595438991552[/C][C]533.509760162189[/C][C]397.130695938655[/C][/ROW]
[ROW][C]14[/C][C]610[/C][C]858.544195948645[/C][C]-174.217509016662[/C][C]535.673313068017[/C][C]248.544195948645[/C][/ROW]
[ROW][C]15[/C][C]583[/C][C]322.625286118826[/C][C]305.537847907331[/C][C]537.836865973844[/C][C]-260.374713881174[/C][/ROW]
[ROW][C]16[/C][C]432[/C][C]268.31694387981[/C][C]58.7165188040853[/C][C]536.966537316105[/C][C]-163.68305612019[/C][/ROW]
[ROW][C]17[/C][C]558[/C][C]638.342509957978[/C][C]-58.4387186163443[/C][C]536.096208658366[/C][C]80.3425099579779[/C][/ROW]
[ROW][C]18[/C][C]281[/C][C]117.757777822304[/C][C]-78.9474582229147[/C][C]523.18968040061[/C][C]-163.242222177696[/C][/ROW]
[ROW][C]19[/C][C]139[/C][C]-72.6604834541711[/C][C]-159.622668688683[/C][C]510.283152142854[/C][C]-211.660483454171[/C][/ROW]
[ROW][C]20[/C][C]778[/C][C]1039.43088874954[/C][C]27.6586500632879[/C][C]488.910461187176[/C][C]261.430888749536[/C][/ROW]
[ROW][C]21[/C][C]517[/C][C]503.688350916229[/C][C]62.7738788522726[/C][C]467.537770231498[/C][C]-13.3116490837709[/C][/ROW]
[ROW][C]22[/C][C]609[/C][C]683.053831149553[/C][C]81.3662433953792[/C][C]453.579925455068[/C][C]74.0538311495528[/C][/ROW]
[ROW][C]23[/C][C]344[/C][C]571.091403169168[/C][C]-322.713483847806[/C][C]439.622080678638[/C][C]227.091403169168[/C][/ROW]
[ROW][C]24[/C][C]809[/C][C]972.40285184804[/C][C]208.527312154501[/C][C]437.069835997459[/C][C]163.40285184804[/C][/ROW]
[ROW][C]25[/C][C]188[/C][C]-107.877135215435[/C][C]49.3595438991552[/C][C]434.51759131628[/C][C]-295.877135215435[/C][/ROW]
[ROW][C]26[/C][C]318[/C][C]371.559361209661[/C][C]-174.217509016662[/C][C]438.658147807001[/C][C]53.5593612096612[/C][/ROW]
[ROW][C]27[/C][C]201[/C][C]-346.336552205052[/C][C]305.537847907331[/C][C]442.798704297721[/C][C]-547.336552205052[/C][/ROW]
[ROW][C]28[/C][C]608[/C][C]711.003977627386[/C][C]58.7165188040853[/C][C]446.279503568528[/C][C]103.003977627386[/C][/ROW]
[ROW][C]29[/C][C]43[/C][C]-305.321584222991[/C][C]-58.4387186163443[/C][C]449.760302839335[/C][C]-348.321584222991[/C][/ROW]
[ROW][C]30[/C][C]622[/C][C]864.670688644978[/C][C]-78.9474582229147[/C][C]458.276769577937[/C][C]242.670688644978[/C][/ROW]
[ROW][C]31[/C][C]746[/C][C]1184.82943237214[/C][C]-159.622668688683[/C][C]466.793236316538[/C][C]438.829432372145[/C][/ROW]
[ROW][C]32[/C][C]285[/C][C]50.4714650600157[/C][C]27.6586500632879[/C][C]491.869884876696[/C][C]-234.528534939984[/C][/ROW]
[ROW][C]33[/C][C]757[/C][C]934.279587710873[/C][C]62.7738788522726[/C][C]516.946533436854[/C][C]177.279587710873[/C][/ROW]
[ROW][C]34[/C][C]861[/C][C]1093.34124147978[/C][C]81.3662433953792[/C][C]547.292515124837[/C][C]232.341241479784[/C][/ROW]
[ROW][C]35[/C][C]35[/C][C]-184.925012965013[/C][C]-322.713483847806[/C][C]577.638496812819[/C][C]-219.925012965013[/C][/ROW]
[ROW][C]36[/C][C]267[/C][C]-277.128354805746[/C][C]208.527312154501[/C][C]602.601042651244[/C][C]-544.128354805746[/C][/ROW]
[ROW][C]37[/C][C]815[/C][C]953.076867611175[/C][C]49.3595438991552[/C][C]627.56358848967[/C][C]138.076867611175[/C][/ROW]
[ROW][C]38[/C][C]501[/C][C]524.950272839599[/C][C]-174.217509016662[/C][C]651.267236177062[/C][C]23.9502728395994[/C][/ROW]
[ROW][C]39[/C][C]977[/C][C]973.491268228215[/C][C]305.537847907331[/C][C]674.970883864455[/C][C]-3.50873177178528[/C][/ROW]
[ROW][C]40[/C][C]740[/C][C]722.266537248756[/C][C]58.7165188040853[/C][C]699.016943947159[/C][C]-17.7334627512441[/C][/ROW]
[ROW][C]41[/C][C]950[/C][C]1235.37571458648[/C][C]-58.4387186163443[/C][C]723.063004029863[/C][C]285.375714586481[/C][/ROW]
[ROW][C]42[/C][C]616[/C][C]568.368085189134[/C][C]-78.9474582229147[/C][C]742.579373033781[/C][C]-47.6319148108661[/C][/ROW]
[ROW][C]43[/C][C]848[/C][C]1093.52692665098[/C][C]-159.622668688683[/C][C]762.095742037698[/C][C]245.526926650985[/C][/ROW]
[ROW][C]44[/C][C]770[/C][C]743.984649447489[/C][C]27.6586500632879[/C][C]768.356700489223[/C][C]-26.0153505525112[/C][/ROW]
[ROW][C]45[/C][C]887[/C][C]936.608462206979[/C][C]62.7738788522726[/C][C]774.617658940748[/C][C]49.6084622069792[/C][/ROW]
[ROW][C]46[/C][C]808[/C][C]768.335195831599[/C][C]81.3662433953792[/C][C]766.298560773022[/C][C]-39.6648041684015[/C][/ROW]
[ROW][C]47[/C][C]326[/C][C]216.73402124251[/C][C]-322.713483847806[/C][C]757.979462605296[/C][C]-109.26597875749[/C][/ROW]
[ROW][C]48[/C][C]932[/C][C]919.487693670863[/C][C]208.527312154501[/C][C]735.984994174636[/C][C]-12.5123063291372[/C][/ROW]
[ROW][C]49[/C][C]649[/C][C]534.649930356869[/C][C]49.3595438991552[/C][C]713.990525743976[/C][C]-114.350069643131[/C][/ROW]
[ROW][C]50[/C][C]916[/C][C]1320.82967091382[/C][C]-174.217509016662[/C][C]685.38783810284[/C][C]404.829670913822[/C][/ROW]
[ROW][C]51[/C][C]857[/C][C]751.677001630966[/C][C]305.537847907331[/C][C]656.785150461703[/C][C]-105.322998369034[/C][/ROW]
[ROW][C]52[/C][C]894[/C][C]1096.22921263692[/C][C]58.7165188040853[/C][C]633.054268558997[/C][C]202.229212636918[/C][/ROW]
[ROW][C]53[/C][C]418[/C][C]285.115331960054[/C][C]-58.4387186163443[/C][C]609.32338665629[/C][C]-132.884668039946[/C][/ROW]
[ROW][C]54[/C][C]464[/C][C]423.569869430788[/C][C]-78.9474582229147[/C][C]583.377588792127[/C][C]-40.4301305692121[/C][/ROW]
[ROW][C]55[/C][C]477[/C][C]556.19087776072[/C][C]-159.622668688683[/C][C]557.431790927963[/C][C]79.1908777607199[/C][/ROW]
[ROW][C]56[/C][C]340[/C][C]133.115017173152[/C][C]27.6586500632879[/C][C]519.22633276356[/C][C]-206.884982826848[/C][/ROW]
[ROW][C]57[/C][C]327[/C][C]110.205246548571[/C][C]62.7738788522726[/C][C]481.020874599157[/C][C]-216.794753451429[/C][/ROW]
[ROW][C]58[/C][C]776[/C][C]1015.01706227112[/C][C]81.3662433953792[/C][C]455.616694333504[/C][C]239.017062271117[/C][/ROW]
[ROW][C]59[/C][C]192[/C][C]276.500969779954[/C][C]-322.713483847806[/C][C]430.212514067852[/C][C]84.5009697799541[/C][/ROW]
[ROW][C]60[/C][C]819[/C][C]1000.76943846855[/C][C]208.527312154501[/C][C]428.703249376948[/C][C]181.769438468551[/C][/ROW]
[ROW][C]61[/C][C]323[/C][C]169.4464714148[/C][C]49.3595438991552[/C][C]427.193984686044[/C][C]-153.5535285852[/C][/ROW]
[ROW][C]62[/C][C]39[/C][C]-184.643106218751[/C][C]-174.217509016662[/C][C]436.860615235413[/C][C]-223.643106218751[/C][/ROW]
[ROW][C]63[/C][C]207[/C][C]-338.065093692112[/C][C]305.537847907331[/C][C]446.527245784781[/C][C]-545.065093692112[/C][/ROW]
[ROW][C]64[/C][C]614[/C][C]716.90367245095[/C][C]58.7165188040853[/C][C]452.379808744964[/C][C]102.90367245095[/C][/ROW]
[ROW][C]65[/C][C]520[/C][C]640.206346911197[/C][C]-58.4387186163443[/C][C]458.232371705148[/C][C]120.206346911197[/C][/ROW]
[ROW][C]66[/C][C]801[/C][C]1214.26908992055[/C][C]-78.9474582229147[/C][C]466.678368302362[/C][C]413.269089920553[/C][/ROW]
[ROW][C]67[/C][C]92[/C][C]-131.501696210893[/C][C]-159.622668688683[/C][C]475.124364899576[/C][C]-223.501696210893[/C][/ROW]
[ROW][C]68[/C][C]747[/C][C]980.332957636345[/C][C]27.6586500632879[/C][C]486.008392300367[/C][C]233.332957636345[/C][/ROW]
[ROW][C]69[/C][C]412[/C][C]264.333701446569[/C][C]62.7738788522726[/C][C]496.892419701159[/C][C]-147.666298553431[/C][/ROW]
[ROW][C]70[/C][C]570[/C][C]549.899786388037[/C][C]81.3662433953792[/C][C]508.733970216584[/C][C]-20.1002136119632[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299425&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299425&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
1876865.62841275501149.3595438991552837.012043345833-10.3715872449886
280-466.020511211955-174.217509016662800.238020228617-546.020511211955
324923914.99815498127305.537847907331763.46399711141422.99815498127
4529266.84333668867758.7165188040853732.440144507238-262.156663311323
5606569.022426713268-58.4387186163443701.416291903076-36.9775732867319
6164-267.033505504945-78.9474582229147673.98096372786-431.033505504945
7138-210.922966863961-159.622668688683646.545635552644-348.922966863961
8601558.11229092743527.6586500632879616.229059009277-42.8877090725651
9789929.31363868181762.7738788522726585.912482465911140.313638681817
10146-349.72346169269281.3662433953792560.357218297312-495.723461692692
11218223.911529719092-322.713483847806534.8019541287145.91152971909219
129391135.31683070005208.527312154501534.155857145451196.316830700047
139801377.1306959386649.3595438991552533.509760162189397.130695938655
14610858.544195948645-174.217509016662535.673313068017248.544195948645
15583322.625286118826305.537847907331537.836865973844-260.374713881174
16432268.3169438798158.7165188040853536.966537316105-163.68305612019
17558638.342509957978-58.4387186163443536.09620865836680.3425099579779
18281117.757777822304-78.9474582229147523.18968040061-163.242222177696
19139-72.6604834541711-159.622668688683510.283152142854-211.660483454171
207781039.4308887495427.6586500632879488.910461187176261.430888749536
21517503.68835091622962.7738788522726467.537770231498-13.3116490837709
22609683.05383114955381.3662433953792453.57992545506874.0538311495528
23344571.091403169168-322.713483847806439.622080678638227.091403169168
24809972.40285184804208.527312154501437.069835997459163.40285184804
25188-107.87713521543549.3595438991552434.51759131628-295.877135215435
26318371.559361209661-174.217509016662438.65814780700153.5593612096612
27201-346.336552205052305.537847907331442.798704297721-547.336552205052
28608711.00397762738658.7165188040853446.279503568528103.003977627386
2943-305.321584222991-58.4387186163443449.760302839335-348.321584222991
30622864.670688644978-78.9474582229147458.276769577937242.670688644978
317461184.82943237214-159.622668688683466.793236316538438.829432372145
3228550.471465060015727.6586500632879491.869884876696-234.528534939984
33757934.27958771087362.7738788522726516.946533436854177.279587710873
348611093.3412414797881.3662433953792547.292515124837232.341241479784
3535-184.925012965013-322.713483847806577.638496812819-219.925012965013
36267-277.128354805746208.527312154501602.601042651244-544.128354805746
37815953.07686761117549.3595438991552627.56358848967138.076867611175
38501524.950272839599-174.217509016662651.26723617706223.9502728395994
39977973.491268228215305.537847907331674.970883864455-3.50873177178528
40740722.26653724875658.7165188040853699.016943947159-17.7334627512441
419501235.37571458648-58.4387186163443723.063004029863285.375714586481
42616568.368085189134-78.9474582229147742.579373033781-47.6319148108661
438481093.52692665098-159.622668688683762.095742037698245.526926650985
44770743.98464944748927.6586500632879768.356700489223-26.0153505525112
45887936.60846220697962.7738788522726774.61765894074849.6084622069792
46808768.33519583159981.3662433953792766.298560773022-39.6648041684015
47326216.73402124251-322.713483847806757.979462605296-109.26597875749
48932919.487693670863208.527312154501735.984994174636-12.5123063291372
49649534.64993035686949.3595438991552713.990525743976-114.350069643131
509161320.82967091382-174.217509016662685.38783810284404.829670913822
51857751.677001630966305.537847907331656.785150461703-105.322998369034
528941096.2292126369258.7165188040853633.054268558997202.229212636918
53418285.115331960054-58.4387186163443609.32338665629-132.884668039946
54464423.569869430788-78.9474582229147583.377588792127-40.4301305692121
55477556.19087776072-159.622668688683557.43179092796379.1908777607199
56340133.11501717315227.6586500632879519.22633276356-206.884982826848
57327110.20524654857162.7738788522726481.020874599157-216.794753451429
587761015.0170622711281.3662433953792455.616694333504239.017062271117
59192276.500969779954-322.713483847806430.21251406785284.5009697799541
608191000.76943846855208.527312154501428.703249376948181.769438468551
61323169.446471414849.3595438991552427.193984686044-153.5535285852
6239-184.643106218751-174.217509016662436.860615235413-223.643106218751
63207-338.065093692112305.537847907331446.527245784781-545.065093692112
64614716.9036724509558.7165188040853452.379808744964102.90367245095
65520640.206346911197-58.4387186163443458.232371705148120.206346911197
668011214.26908992055-78.9474582229147466.678368302362413.269089920553
6792-131.501696210893-159.622668688683475.124364899576-223.501696210893
68747980.33295763634527.6586500632879486.008392300367233.332957636345
69412264.33370144656962.7738788522726496.892419701159-147.666298553431
70570549.89978638803781.3662433953792508.733970216584-20.1002136119632



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')