Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_histogram.wasp
Title produced by softwareHistogram
Date of computationWed, 14 Dec 2016 14:37:44 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481722718r2lei1ty1xgpb1t.htm/, Retrieved Fri, 01 Nov 2024 03:39:07 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299424, Retrieved Fri, 01 Nov 2024 03:39:07 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact101
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Histogram] [som gw] [2016-12-14 13:37:44] [8263efc94e08b372ab727a2b95bd56b1] [Current]
Feedback Forum

Post a new message
Dataseries X:
13
13
14
11
12
14
12
12
12
13
14
12
17
15
14
11
15
9
11
13
12
14
12
14
13
14
14
14
14
12
11
15
10
15
14
12
14
14
12
12
12
13
13
15
12
12
13
12
8
12
14
13
9
14
12
12
17
13
10
12
15
13
13
14
11
14
14
15
16
12
14
12
15
14
14
12
14
12
12
14
14
15
12
16
10
12
13
15
11
11
12
12
12
15
12
11
16
12
11
16
14
13
14
14
12
14
14
12
12
12
13
16
13
11
15
13
10
16
12
12
12
13
12
14
11
14
14
12
12
14
12
13
14
12
17
12
16
12
12
12
14
14
14
13
15
11
13
14
15
11
12
11
12
12
14
11
15
12
15
11
12
12
11
14
13
12




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299424&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299424&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299424&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Frequency Table (Histogram)
BinsMidpointAbs. FrequencyRel. FrequencyCumul. Rel. Freq.Density
[8,8.5[8.2510.0060240.0060240.012048
[8.5,9[8.75000.0060240
[9,9.5[9.2520.0120480.0180720.024096
[9.5,10[9.75000.0180720
[10,10.5[10.2540.0240960.0421690.048193
[10.5,11[10.75000.0421690
[11,11.5[11.25170.102410.1445780.204819
[11.5,12[11.75000.1445780
[12,12.5[12.25540.3253010.469880.650602
[12.5,13[12.75000.469880
[13,13.5[13.25220.132530.602410.26506
[13.5,14[13.75000.602410
[14,14.5[14.25400.2409640.8433730.481928
[14.5,15[14.75000.8433730
[15,15.5[15.25160.0963860.9397590.192771
[15.5,16[15.75000.9397590
[16,16.5[16.2570.0421690.9819280.084337
[16.5,17]16.7530.01807210.036145

\begin{tabular}{lllllllll}
\hline
Frequency Table (Histogram) \tabularnewline
Bins & Midpoint & Abs. Frequency & Rel. Frequency & Cumul. Rel. Freq. & Density \tabularnewline
[8,8.5[ & 8.25 & 1 & 0.006024 & 0.006024 & 0.012048 \tabularnewline
[8.5,9[ & 8.75 & 0 & 0 & 0.006024 & 0 \tabularnewline
[9,9.5[ & 9.25 & 2 & 0.012048 & 0.018072 & 0.024096 \tabularnewline
[9.5,10[ & 9.75 & 0 & 0 & 0.018072 & 0 \tabularnewline
[10,10.5[ & 10.25 & 4 & 0.024096 & 0.042169 & 0.048193 \tabularnewline
[10.5,11[ & 10.75 & 0 & 0 & 0.042169 & 0 \tabularnewline
[11,11.5[ & 11.25 & 17 & 0.10241 & 0.144578 & 0.204819 \tabularnewline
[11.5,12[ & 11.75 & 0 & 0 & 0.144578 & 0 \tabularnewline
[12,12.5[ & 12.25 & 54 & 0.325301 & 0.46988 & 0.650602 \tabularnewline
[12.5,13[ & 12.75 & 0 & 0 & 0.46988 & 0 \tabularnewline
[13,13.5[ & 13.25 & 22 & 0.13253 & 0.60241 & 0.26506 \tabularnewline
[13.5,14[ & 13.75 & 0 & 0 & 0.60241 & 0 \tabularnewline
[14,14.5[ & 14.25 & 40 & 0.240964 & 0.843373 & 0.481928 \tabularnewline
[14.5,15[ & 14.75 & 0 & 0 & 0.843373 & 0 \tabularnewline
[15,15.5[ & 15.25 & 16 & 0.096386 & 0.939759 & 0.192771 \tabularnewline
[15.5,16[ & 15.75 & 0 & 0 & 0.939759 & 0 \tabularnewline
[16,16.5[ & 16.25 & 7 & 0.042169 & 0.981928 & 0.084337 \tabularnewline
[16.5,17] & 16.75 & 3 & 0.018072 & 1 & 0.036145 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299424&T=1

[TABLE]
[ROW][C]Frequency Table (Histogram)[/C][/ROW]
[ROW][C]Bins[/C][C]Midpoint[/C][C]Abs. Frequency[/C][C]Rel. Frequency[/C][C]Cumul. Rel. Freq.[/C][C]Density[/C][/ROW]
[ROW][C][8,8.5[[/C][C]8.25[/C][C]1[/C][C]0.006024[/C][C]0.006024[/C][C]0.012048[/C][/ROW]
[ROW][C][8.5,9[[/C][C]8.75[/C][C]0[/C][C]0[/C][C]0.006024[/C][C]0[/C][/ROW]
[ROW][C][9,9.5[[/C][C]9.25[/C][C]2[/C][C]0.012048[/C][C]0.018072[/C][C]0.024096[/C][/ROW]
[ROW][C][9.5,10[[/C][C]9.75[/C][C]0[/C][C]0[/C][C]0.018072[/C][C]0[/C][/ROW]
[ROW][C][10,10.5[[/C][C]10.25[/C][C]4[/C][C]0.024096[/C][C]0.042169[/C][C]0.048193[/C][/ROW]
[ROW][C][10.5,11[[/C][C]10.75[/C][C]0[/C][C]0[/C][C]0.042169[/C][C]0[/C][/ROW]
[ROW][C][11,11.5[[/C][C]11.25[/C][C]17[/C][C]0.10241[/C][C]0.144578[/C][C]0.204819[/C][/ROW]
[ROW][C][11.5,12[[/C][C]11.75[/C][C]0[/C][C]0[/C][C]0.144578[/C][C]0[/C][/ROW]
[ROW][C][12,12.5[[/C][C]12.25[/C][C]54[/C][C]0.325301[/C][C]0.46988[/C][C]0.650602[/C][/ROW]
[ROW][C][12.5,13[[/C][C]12.75[/C][C]0[/C][C]0[/C][C]0.46988[/C][C]0[/C][/ROW]
[ROW][C][13,13.5[[/C][C]13.25[/C][C]22[/C][C]0.13253[/C][C]0.60241[/C][C]0.26506[/C][/ROW]
[ROW][C][13.5,14[[/C][C]13.75[/C][C]0[/C][C]0[/C][C]0.60241[/C][C]0[/C][/ROW]
[ROW][C][14,14.5[[/C][C]14.25[/C][C]40[/C][C]0.240964[/C][C]0.843373[/C][C]0.481928[/C][/ROW]
[ROW][C][14.5,15[[/C][C]14.75[/C][C]0[/C][C]0[/C][C]0.843373[/C][C]0[/C][/ROW]
[ROW][C][15,15.5[[/C][C]15.25[/C][C]16[/C][C]0.096386[/C][C]0.939759[/C][C]0.192771[/C][/ROW]
[ROW][C][15.5,16[[/C][C]15.75[/C][C]0[/C][C]0[/C][C]0.939759[/C][C]0[/C][/ROW]
[ROW][C][16,16.5[[/C][C]16.25[/C][C]7[/C][C]0.042169[/C][C]0.981928[/C][C]0.084337[/C][/ROW]
[ROW][C][16.5,17][/C][C]16.75[/C][C]3[/C][C]0.018072[/C][C]1[/C][C]0.036145[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299424&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299424&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Frequency Table (Histogram)
BinsMidpointAbs. FrequencyRel. FrequencyCumul. Rel. Freq.Density
[8,8.5[8.2510.0060240.0060240.012048
[8.5,9[8.75000.0060240
[9,9.5[9.2520.0120480.0180720.024096
[9.5,10[9.75000.0180720
[10,10.5[10.2540.0240960.0421690.048193
[10.5,11[10.75000.0421690
[11,11.5[11.25170.102410.1445780.204819
[11.5,12[11.75000.1445780
[12,12.5[12.25540.3253010.469880.650602
[12.5,13[12.75000.469880
[13,13.5[13.25220.132530.602410.26506
[13.5,14[13.75000.602410
[14,14.5[14.25400.2409640.8433730.481928
[14.5,15[14.75000.8433730
[15,15.5[15.25160.0963860.9397590.192771
[15.5,16[15.75000.9397590
[16,16.5[16.2570.0421690.9819280.084337
[16.5,17]16.7530.01807210.036145



Parameters (Session):
Parameters (R input):
par1 = 20 ; par2 = grey ; par3 = FALSE ; par4 = Unknown ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
if (par3 == 'TRUE') par3 <- TRUE
if (par3 == 'FALSE') par3 <- FALSE
if (par4 == 'Unknown') par1 <- as.numeric(par1)
if (par4 == 'Interval/Ratio') par1 <- as.numeric(par1)
if (par4 == '3-point Likert') par1 <- c(1:3 - 0.5, 3.5)
if (par4 == '4-point Likert') par1 <- c(1:4 - 0.5, 4.5)
if (par4 == '5-point Likert') par1 <- c(1:5 - 0.5, 5.5)
if (par4 == '6-point Likert') par1 <- c(1:6 - 0.5, 6.5)
if (par4 == '7-point Likert') par1 <- c(1:7 - 0.5, 7.5)
if (par4 == '8-point Likert') par1 <- c(1:8 - 0.5, 8.5)
if (par4 == '9-point Likert') par1 <- c(1:9 - 0.5, 9.5)
if (par4 == '10-point Likert') par1 <- c(1:10 - 0.5, 10.5)
bitmap(file='test1.png')
if(is.numeric(x[1])) {
if (is.na(par1)) {
myhist<-hist(x,col=par2,main=main,xlab=xlab,right=par3)
} else {
if (par1 < 0) par1 <- 3
if (par1 > 50) par1 <- 50
myhist<-hist(x,breaks=par1,col=par2,main=main,xlab=xlab,right=par3)
}
} else {
barplot(mytab <- sort(table(x),T),col=par2,main='Frequency Plot',xlab=xlab,ylab='Absolute Frequency')
}
dev.off()
if(is.numeric(x[1])) {
myhist
n <- length(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Frequency Table (Histogram)',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Bins',header=TRUE)
a<-table.element(a,'Midpoint',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.element(a,'Cumul. Rel. Freq.',header=TRUE)
a<-table.element(a,'Density',header=TRUE)
a<-table.row.end(a)
crf <- 0
if (par3 == FALSE) mybracket <- '[' else mybracket <- ']'
mynumrows <- (length(myhist$breaks)-1)
for (i in 1:mynumrows) {
a<-table.row.start(a)
if (i == 1)
dum <- paste('[',myhist$breaks[i],sep='')
else
dum <- paste(mybracket,myhist$breaks[i],sep='')
dum <- paste(dum,myhist$breaks[i+1],sep=',')
if (i==mynumrows)
dum <- paste(dum,']',sep='')
else
dum <- paste(dum,mybracket,sep='')
a<-table.element(a,dum,header=TRUE)
a<-table.element(a,myhist$mids[i])
a<-table.element(a,myhist$counts[i])
rf <- myhist$counts[i]/n
crf <- crf + rf
a<-table.element(a,round(rf,6))
a<-table.element(a,round(crf,6))
a<-table.element(a,round(myhist$density[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
} else {
mytab
reltab <- mytab / sum(mytab)
n <- length(mytab)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Frequency Table (Categorical Data)',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Category',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,labels(mytab)$x[i],header=TRUE)
a<-table.element(a,mytab[i])
a<-table.element(a,round(reltab[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
}