Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 14 Dec 2016 14:36:03 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t14817225960xge4xd32mrilfc.htm/, Retrieved Fri, 01 Nov 2024 03:48:51 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299421, Retrieved Fri, 01 Nov 2024 03:48:51 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact90
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [] [2016-12-14 13:36:03] [349958aef20b862f8399a5ba04d6f6e3] [Current]
Feedback Forum

Post a new message
Dataseries X:
876
80
2492
529
606
164
138
601
789
146
218
939
980
610
583
432
558
281
139
778
517
609
344
809
188
318
201
608
43
622
746
285
757
861
35
267
815
501
977
740
950
616
848
770
887
808
326
932
649
916
857
894
418
464
477
340
327
776
192
819
323
39
207
614
520
801
92
747
412
570




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299421&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299421&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299421&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
1876NANA51.8406NA
280NANA-63.1927NA
32492NANA26.9323NA
4529NANA119.141NA
5606NANA-77.2719NA
6164NANA-72.251NA
7138533.116635.833-102.718-395.116
8601649.682662.25-12.5677-48.6823
9789712.207604.792107.41676.7927
10146631.557521.208110.349-485.557
11218208.524515.167-306.6439.47604
12939737.007518.042218.966201.993
13980574.799522.95851.8406405.201
14610467.182530.375-63.1927142.818
15583553.349526.41726.932329.651
16432653.516534.375119.141-221.516
17558481.645558.917-77.271976.3552
18281486.499558.75-72.251-205.499
19139417.616520.333-102.718-278.616
20778462.599475.167-12.5677315.401
21517554.499447.083107.416-37.499
22609548.849438.5110.34960.151
23344117.732424.375-306.643226.268
24809636.091417.125218.966172.909
25188508.466456.62551.8406-320.466
26318398.182461.375-63.1927-80.1823
27201477.766450.83326.9323-276.766
28608590.474471.333119.14117.526
2943391.686468.958-77.2719-348.686
30622361.249433.5-72.251260.751
31746334.324437.042-102.718411.676
32285458.224470.792-12.5677-173.224
33757618.166510.75107.416138.834
34861658.932548.583110.349202.068
3535285.232591.875-306.643-250.232
36267848.382629.417218.966-581.382
37815685.257633.41751.8406129.743
38501594.682657.875-63.1927-93.6823
39977710.432683.526.9323266.568
40740805.849686.708119.141-65.849
41950619.353696.625-77.2719330.647
42616664.207736.458-72.251-48.2073
43848654.532757.25-102.718193.468
44770755.057767.625-12.567714.9427
45887887.332779.917107.416-0.332292
46808891.682781.333110.349-83.6823
47326458.941765.583-306.643-132.941
48932956.049737.083218.966-24.049
49649767.132715.29251.8406-118.132
50916618.724681.917-63.1927297.276
51857667.599640.66726.9323189.401
52894735.141616119.141158.859
53418531.811609.083-77.2719-113.811
54464526.541598.792-72.251-62.5406
55477477.782580.5-102.718-0.782292
56340517.807530.375-12.5677-177.807
57327574.166466.75107.416-247.166
58776538.349428110.349237.651
59192113.941420.583-306.64378.0594
60819657.841438.875218.966161.159
61323488.716436.87551.8406-165.716
6239374.599437.792-63.1927-335.599
63207485.224458.29226.9323-278.224
64614572.391453.25119.14141.6094
65520NANA-77.2719NA
66801NANA-72.251NA
6792NANA-102.718NA
68747NANA-12.5677NA
69412NANA107.416NA
70570NANA110.349NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 876 & NA & NA & 51.8406 & NA \tabularnewline
2 & 80 & NA & NA & -63.1927 & NA \tabularnewline
3 & 2492 & NA & NA & 26.9323 & NA \tabularnewline
4 & 529 & NA & NA & 119.141 & NA \tabularnewline
5 & 606 & NA & NA & -77.2719 & NA \tabularnewline
6 & 164 & NA & NA & -72.251 & NA \tabularnewline
7 & 138 & 533.116 & 635.833 & -102.718 & -395.116 \tabularnewline
8 & 601 & 649.682 & 662.25 & -12.5677 & -48.6823 \tabularnewline
9 & 789 & 712.207 & 604.792 & 107.416 & 76.7927 \tabularnewline
10 & 146 & 631.557 & 521.208 & 110.349 & -485.557 \tabularnewline
11 & 218 & 208.524 & 515.167 & -306.643 & 9.47604 \tabularnewline
12 & 939 & 737.007 & 518.042 & 218.966 & 201.993 \tabularnewline
13 & 980 & 574.799 & 522.958 & 51.8406 & 405.201 \tabularnewline
14 & 610 & 467.182 & 530.375 & -63.1927 & 142.818 \tabularnewline
15 & 583 & 553.349 & 526.417 & 26.9323 & 29.651 \tabularnewline
16 & 432 & 653.516 & 534.375 & 119.141 & -221.516 \tabularnewline
17 & 558 & 481.645 & 558.917 & -77.2719 & 76.3552 \tabularnewline
18 & 281 & 486.499 & 558.75 & -72.251 & -205.499 \tabularnewline
19 & 139 & 417.616 & 520.333 & -102.718 & -278.616 \tabularnewline
20 & 778 & 462.599 & 475.167 & -12.5677 & 315.401 \tabularnewline
21 & 517 & 554.499 & 447.083 & 107.416 & -37.499 \tabularnewline
22 & 609 & 548.849 & 438.5 & 110.349 & 60.151 \tabularnewline
23 & 344 & 117.732 & 424.375 & -306.643 & 226.268 \tabularnewline
24 & 809 & 636.091 & 417.125 & 218.966 & 172.909 \tabularnewline
25 & 188 & 508.466 & 456.625 & 51.8406 & -320.466 \tabularnewline
26 & 318 & 398.182 & 461.375 & -63.1927 & -80.1823 \tabularnewline
27 & 201 & 477.766 & 450.833 & 26.9323 & -276.766 \tabularnewline
28 & 608 & 590.474 & 471.333 & 119.141 & 17.526 \tabularnewline
29 & 43 & 391.686 & 468.958 & -77.2719 & -348.686 \tabularnewline
30 & 622 & 361.249 & 433.5 & -72.251 & 260.751 \tabularnewline
31 & 746 & 334.324 & 437.042 & -102.718 & 411.676 \tabularnewline
32 & 285 & 458.224 & 470.792 & -12.5677 & -173.224 \tabularnewline
33 & 757 & 618.166 & 510.75 & 107.416 & 138.834 \tabularnewline
34 & 861 & 658.932 & 548.583 & 110.349 & 202.068 \tabularnewline
35 & 35 & 285.232 & 591.875 & -306.643 & -250.232 \tabularnewline
36 & 267 & 848.382 & 629.417 & 218.966 & -581.382 \tabularnewline
37 & 815 & 685.257 & 633.417 & 51.8406 & 129.743 \tabularnewline
38 & 501 & 594.682 & 657.875 & -63.1927 & -93.6823 \tabularnewline
39 & 977 & 710.432 & 683.5 & 26.9323 & 266.568 \tabularnewline
40 & 740 & 805.849 & 686.708 & 119.141 & -65.849 \tabularnewline
41 & 950 & 619.353 & 696.625 & -77.2719 & 330.647 \tabularnewline
42 & 616 & 664.207 & 736.458 & -72.251 & -48.2073 \tabularnewline
43 & 848 & 654.532 & 757.25 & -102.718 & 193.468 \tabularnewline
44 & 770 & 755.057 & 767.625 & -12.5677 & 14.9427 \tabularnewline
45 & 887 & 887.332 & 779.917 & 107.416 & -0.332292 \tabularnewline
46 & 808 & 891.682 & 781.333 & 110.349 & -83.6823 \tabularnewline
47 & 326 & 458.941 & 765.583 & -306.643 & -132.941 \tabularnewline
48 & 932 & 956.049 & 737.083 & 218.966 & -24.049 \tabularnewline
49 & 649 & 767.132 & 715.292 & 51.8406 & -118.132 \tabularnewline
50 & 916 & 618.724 & 681.917 & -63.1927 & 297.276 \tabularnewline
51 & 857 & 667.599 & 640.667 & 26.9323 & 189.401 \tabularnewline
52 & 894 & 735.141 & 616 & 119.141 & 158.859 \tabularnewline
53 & 418 & 531.811 & 609.083 & -77.2719 & -113.811 \tabularnewline
54 & 464 & 526.541 & 598.792 & -72.251 & -62.5406 \tabularnewline
55 & 477 & 477.782 & 580.5 & -102.718 & -0.782292 \tabularnewline
56 & 340 & 517.807 & 530.375 & -12.5677 & -177.807 \tabularnewline
57 & 327 & 574.166 & 466.75 & 107.416 & -247.166 \tabularnewline
58 & 776 & 538.349 & 428 & 110.349 & 237.651 \tabularnewline
59 & 192 & 113.941 & 420.583 & -306.643 & 78.0594 \tabularnewline
60 & 819 & 657.841 & 438.875 & 218.966 & 161.159 \tabularnewline
61 & 323 & 488.716 & 436.875 & 51.8406 & -165.716 \tabularnewline
62 & 39 & 374.599 & 437.792 & -63.1927 & -335.599 \tabularnewline
63 & 207 & 485.224 & 458.292 & 26.9323 & -278.224 \tabularnewline
64 & 614 & 572.391 & 453.25 & 119.141 & 41.6094 \tabularnewline
65 & 520 & NA & NA & -77.2719 & NA \tabularnewline
66 & 801 & NA & NA & -72.251 & NA \tabularnewline
67 & 92 & NA & NA & -102.718 & NA \tabularnewline
68 & 747 & NA & NA & -12.5677 & NA \tabularnewline
69 & 412 & NA & NA & 107.416 & NA \tabularnewline
70 & 570 & NA & NA & 110.349 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299421&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]876[/C][C]NA[/C][C]NA[/C][C]51.8406[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]80[/C][C]NA[/C][C]NA[/C][C]-63.1927[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]2492[/C][C]NA[/C][C]NA[/C][C]26.9323[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]529[/C][C]NA[/C][C]NA[/C][C]119.141[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]606[/C][C]NA[/C][C]NA[/C][C]-77.2719[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]164[/C][C]NA[/C][C]NA[/C][C]-72.251[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]138[/C][C]533.116[/C][C]635.833[/C][C]-102.718[/C][C]-395.116[/C][/ROW]
[ROW][C]8[/C][C]601[/C][C]649.682[/C][C]662.25[/C][C]-12.5677[/C][C]-48.6823[/C][/ROW]
[ROW][C]9[/C][C]789[/C][C]712.207[/C][C]604.792[/C][C]107.416[/C][C]76.7927[/C][/ROW]
[ROW][C]10[/C][C]146[/C][C]631.557[/C][C]521.208[/C][C]110.349[/C][C]-485.557[/C][/ROW]
[ROW][C]11[/C][C]218[/C][C]208.524[/C][C]515.167[/C][C]-306.643[/C][C]9.47604[/C][/ROW]
[ROW][C]12[/C][C]939[/C][C]737.007[/C][C]518.042[/C][C]218.966[/C][C]201.993[/C][/ROW]
[ROW][C]13[/C][C]980[/C][C]574.799[/C][C]522.958[/C][C]51.8406[/C][C]405.201[/C][/ROW]
[ROW][C]14[/C][C]610[/C][C]467.182[/C][C]530.375[/C][C]-63.1927[/C][C]142.818[/C][/ROW]
[ROW][C]15[/C][C]583[/C][C]553.349[/C][C]526.417[/C][C]26.9323[/C][C]29.651[/C][/ROW]
[ROW][C]16[/C][C]432[/C][C]653.516[/C][C]534.375[/C][C]119.141[/C][C]-221.516[/C][/ROW]
[ROW][C]17[/C][C]558[/C][C]481.645[/C][C]558.917[/C][C]-77.2719[/C][C]76.3552[/C][/ROW]
[ROW][C]18[/C][C]281[/C][C]486.499[/C][C]558.75[/C][C]-72.251[/C][C]-205.499[/C][/ROW]
[ROW][C]19[/C][C]139[/C][C]417.616[/C][C]520.333[/C][C]-102.718[/C][C]-278.616[/C][/ROW]
[ROW][C]20[/C][C]778[/C][C]462.599[/C][C]475.167[/C][C]-12.5677[/C][C]315.401[/C][/ROW]
[ROW][C]21[/C][C]517[/C][C]554.499[/C][C]447.083[/C][C]107.416[/C][C]-37.499[/C][/ROW]
[ROW][C]22[/C][C]609[/C][C]548.849[/C][C]438.5[/C][C]110.349[/C][C]60.151[/C][/ROW]
[ROW][C]23[/C][C]344[/C][C]117.732[/C][C]424.375[/C][C]-306.643[/C][C]226.268[/C][/ROW]
[ROW][C]24[/C][C]809[/C][C]636.091[/C][C]417.125[/C][C]218.966[/C][C]172.909[/C][/ROW]
[ROW][C]25[/C][C]188[/C][C]508.466[/C][C]456.625[/C][C]51.8406[/C][C]-320.466[/C][/ROW]
[ROW][C]26[/C][C]318[/C][C]398.182[/C][C]461.375[/C][C]-63.1927[/C][C]-80.1823[/C][/ROW]
[ROW][C]27[/C][C]201[/C][C]477.766[/C][C]450.833[/C][C]26.9323[/C][C]-276.766[/C][/ROW]
[ROW][C]28[/C][C]608[/C][C]590.474[/C][C]471.333[/C][C]119.141[/C][C]17.526[/C][/ROW]
[ROW][C]29[/C][C]43[/C][C]391.686[/C][C]468.958[/C][C]-77.2719[/C][C]-348.686[/C][/ROW]
[ROW][C]30[/C][C]622[/C][C]361.249[/C][C]433.5[/C][C]-72.251[/C][C]260.751[/C][/ROW]
[ROW][C]31[/C][C]746[/C][C]334.324[/C][C]437.042[/C][C]-102.718[/C][C]411.676[/C][/ROW]
[ROW][C]32[/C][C]285[/C][C]458.224[/C][C]470.792[/C][C]-12.5677[/C][C]-173.224[/C][/ROW]
[ROW][C]33[/C][C]757[/C][C]618.166[/C][C]510.75[/C][C]107.416[/C][C]138.834[/C][/ROW]
[ROW][C]34[/C][C]861[/C][C]658.932[/C][C]548.583[/C][C]110.349[/C][C]202.068[/C][/ROW]
[ROW][C]35[/C][C]35[/C][C]285.232[/C][C]591.875[/C][C]-306.643[/C][C]-250.232[/C][/ROW]
[ROW][C]36[/C][C]267[/C][C]848.382[/C][C]629.417[/C][C]218.966[/C][C]-581.382[/C][/ROW]
[ROW][C]37[/C][C]815[/C][C]685.257[/C][C]633.417[/C][C]51.8406[/C][C]129.743[/C][/ROW]
[ROW][C]38[/C][C]501[/C][C]594.682[/C][C]657.875[/C][C]-63.1927[/C][C]-93.6823[/C][/ROW]
[ROW][C]39[/C][C]977[/C][C]710.432[/C][C]683.5[/C][C]26.9323[/C][C]266.568[/C][/ROW]
[ROW][C]40[/C][C]740[/C][C]805.849[/C][C]686.708[/C][C]119.141[/C][C]-65.849[/C][/ROW]
[ROW][C]41[/C][C]950[/C][C]619.353[/C][C]696.625[/C][C]-77.2719[/C][C]330.647[/C][/ROW]
[ROW][C]42[/C][C]616[/C][C]664.207[/C][C]736.458[/C][C]-72.251[/C][C]-48.2073[/C][/ROW]
[ROW][C]43[/C][C]848[/C][C]654.532[/C][C]757.25[/C][C]-102.718[/C][C]193.468[/C][/ROW]
[ROW][C]44[/C][C]770[/C][C]755.057[/C][C]767.625[/C][C]-12.5677[/C][C]14.9427[/C][/ROW]
[ROW][C]45[/C][C]887[/C][C]887.332[/C][C]779.917[/C][C]107.416[/C][C]-0.332292[/C][/ROW]
[ROW][C]46[/C][C]808[/C][C]891.682[/C][C]781.333[/C][C]110.349[/C][C]-83.6823[/C][/ROW]
[ROW][C]47[/C][C]326[/C][C]458.941[/C][C]765.583[/C][C]-306.643[/C][C]-132.941[/C][/ROW]
[ROW][C]48[/C][C]932[/C][C]956.049[/C][C]737.083[/C][C]218.966[/C][C]-24.049[/C][/ROW]
[ROW][C]49[/C][C]649[/C][C]767.132[/C][C]715.292[/C][C]51.8406[/C][C]-118.132[/C][/ROW]
[ROW][C]50[/C][C]916[/C][C]618.724[/C][C]681.917[/C][C]-63.1927[/C][C]297.276[/C][/ROW]
[ROW][C]51[/C][C]857[/C][C]667.599[/C][C]640.667[/C][C]26.9323[/C][C]189.401[/C][/ROW]
[ROW][C]52[/C][C]894[/C][C]735.141[/C][C]616[/C][C]119.141[/C][C]158.859[/C][/ROW]
[ROW][C]53[/C][C]418[/C][C]531.811[/C][C]609.083[/C][C]-77.2719[/C][C]-113.811[/C][/ROW]
[ROW][C]54[/C][C]464[/C][C]526.541[/C][C]598.792[/C][C]-72.251[/C][C]-62.5406[/C][/ROW]
[ROW][C]55[/C][C]477[/C][C]477.782[/C][C]580.5[/C][C]-102.718[/C][C]-0.782292[/C][/ROW]
[ROW][C]56[/C][C]340[/C][C]517.807[/C][C]530.375[/C][C]-12.5677[/C][C]-177.807[/C][/ROW]
[ROW][C]57[/C][C]327[/C][C]574.166[/C][C]466.75[/C][C]107.416[/C][C]-247.166[/C][/ROW]
[ROW][C]58[/C][C]776[/C][C]538.349[/C][C]428[/C][C]110.349[/C][C]237.651[/C][/ROW]
[ROW][C]59[/C][C]192[/C][C]113.941[/C][C]420.583[/C][C]-306.643[/C][C]78.0594[/C][/ROW]
[ROW][C]60[/C][C]819[/C][C]657.841[/C][C]438.875[/C][C]218.966[/C][C]161.159[/C][/ROW]
[ROW][C]61[/C][C]323[/C][C]488.716[/C][C]436.875[/C][C]51.8406[/C][C]-165.716[/C][/ROW]
[ROW][C]62[/C][C]39[/C][C]374.599[/C][C]437.792[/C][C]-63.1927[/C][C]-335.599[/C][/ROW]
[ROW][C]63[/C][C]207[/C][C]485.224[/C][C]458.292[/C][C]26.9323[/C][C]-278.224[/C][/ROW]
[ROW][C]64[/C][C]614[/C][C]572.391[/C][C]453.25[/C][C]119.141[/C][C]41.6094[/C][/ROW]
[ROW][C]65[/C][C]520[/C][C]NA[/C][C]NA[/C][C]-77.2719[/C][C]NA[/C][/ROW]
[ROW][C]66[/C][C]801[/C][C]NA[/C][C]NA[/C][C]-72.251[/C][C]NA[/C][/ROW]
[ROW][C]67[/C][C]92[/C][C]NA[/C][C]NA[/C][C]-102.718[/C][C]NA[/C][/ROW]
[ROW][C]68[/C][C]747[/C][C]NA[/C][C]NA[/C][C]-12.5677[/C][C]NA[/C][/ROW]
[ROW][C]69[/C][C]412[/C][C]NA[/C][C]NA[/C][C]107.416[/C][C]NA[/C][/ROW]
[ROW][C]70[/C][C]570[/C][C]NA[/C][C]NA[/C][C]110.349[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299421&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299421&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
1876NANA51.8406NA
280NANA-63.1927NA
32492NANA26.9323NA
4529NANA119.141NA
5606NANA-77.2719NA
6164NANA-72.251NA
7138533.116635.833-102.718-395.116
8601649.682662.25-12.5677-48.6823
9789712.207604.792107.41676.7927
10146631.557521.208110.349-485.557
11218208.524515.167-306.6439.47604
12939737.007518.042218.966201.993
13980574.799522.95851.8406405.201
14610467.182530.375-63.1927142.818
15583553.349526.41726.932329.651
16432653.516534.375119.141-221.516
17558481.645558.917-77.271976.3552
18281486.499558.75-72.251-205.499
19139417.616520.333-102.718-278.616
20778462.599475.167-12.5677315.401
21517554.499447.083107.416-37.499
22609548.849438.5110.34960.151
23344117.732424.375-306.643226.268
24809636.091417.125218.966172.909
25188508.466456.62551.8406-320.466
26318398.182461.375-63.1927-80.1823
27201477.766450.83326.9323-276.766
28608590.474471.333119.14117.526
2943391.686468.958-77.2719-348.686
30622361.249433.5-72.251260.751
31746334.324437.042-102.718411.676
32285458.224470.792-12.5677-173.224
33757618.166510.75107.416138.834
34861658.932548.583110.349202.068
3535285.232591.875-306.643-250.232
36267848.382629.417218.966-581.382
37815685.257633.41751.8406129.743
38501594.682657.875-63.1927-93.6823
39977710.432683.526.9323266.568
40740805.849686.708119.141-65.849
41950619.353696.625-77.2719330.647
42616664.207736.458-72.251-48.2073
43848654.532757.25-102.718193.468
44770755.057767.625-12.567714.9427
45887887.332779.917107.416-0.332292
46808891.682781.333110.349-83.6823
47326458.941765.583-306.643-132.941
48932956.049737.083218.966-24.049
49649767.132715.29251.8406-118.132
50916618.724681.917-63.1927297.276
51857667.599640.66726.9323189.401
52894735.141616119.141158.859
53418531.811609.083-77.2719-113.811
54464526.541598.792-72.251-62.5406
55477477.782580.5-102.718-0.782292
56340517.807530.375-12.5677-177.807
57327574.166466.75107.416-247.166
58776538.349428110.349237.651
59192113.941420.583-306.64378.0594
60819657.841438.875218.966161.159
61323488.716436.87551.8406-165.716
6239374.599437.792-63.1927-335.599
63207485.224458.29226.9323-278.224
64614572.391453.25119.14141.6094
65520NANA-77.2719NA
66801NANA-72.251NA
6792NANA-102.718NA
68747NANA-12.5677NA
69412NANA107.416NA
70570NANA110.349NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- '12'
par1 <- 'multiplicative'
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')