Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_One Factor ANOVA.wasp
Title produced by softwareOne-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)
Date of computationWed, 14 Dec 2016 14:10:00 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481721816n55wd8c4s9xn57a.htm/, Retrieved Fri, 01 Nov 2024 03:45:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299408, Retrieved Fri, 01 Nov 2024 03:45:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact113
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [One-Way-Between-Groups ANOVA- Free Statistics Software (Calculator)] [Hypothese - 1 way...] [2016-12-14 13:10:00] [8fee619fda962476c4dedef05f7f9476] [Current]
Feedback Forum

Post a new message
Dataseries X:
3	14
4	19
5	17
4	17
4	15
5	20
5	15
5	19
5	15
5	15
5	19
4	20
4	18
4	15
5	14
4	20
4	16
5	16
4	16
4	10
4	19
4	19
5	16
5	15
4	18
4	17
5	19
5	17
5	19
4	20
5	5
4	19
5	16
4	15
4	16
4	18
5	16
4	15
5	17
5	20
4	19
5	7
5	13
4	16
3	16
5	18
5	18
4	16
3	17
4	19
4	16
4	19
4	13
4	16
4	13
5	12
4	17
4	17
4	17
4	16
4	16
5	14
4	16
4	13
4	16
4	14
4	20
3	12
4	13
4	18
4	14
5	19
4	18
4	14
5	18
5	19
3	15
5	14
4	17
5	19
5	13
5	19
5	18
4	20
4	15
2	15
4	15
5	20
5	15
5	19
4	18
4	18
4	15
5	20
4	17
5	18
4	19
4	20
5	17
4	15
5	16
4	18
4	18
4	14
3	15
4	12
3	17
5	14
4	18
4	17
5	17
4	20
4	16
4	14
4	15
4	18
4	20
5	17
4	17
4	17
5	17
4	15
4	17
3	18
4	17
4	20
4	15
3	16
4	15
5	18
3	11
4	15
5	18
5	20
4	19
4	14
4	16
3	15
5	17
4	18
5	20
4	17
4	18
3	15
4	16
4	11
4	15
3	18
4	17
5	16
3	12
4	19
5	18
4	15
5	17
4	19
4	18
4	19
4	16
4	16
3	16
4	14




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time4 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299408&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]4 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299408&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299408&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time4 seconds
R ServerBig Analytics Cloud Computing Center







ANOVA Model
ITHSUM ~ TVDC3
means150.1331.6171.635

\begin{tabular}{lllllllll}
\hline
ANOVA Model \tabularnewline
ITHSUM  ~  TVDC3 \tabularnewline
means & 15 & 0.133 & 1.617 & 1.635 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299408&T=1

[TABLE]
[ROW][C]ANOVA Model[/C][/ROW]
[ROW][C]ITHSUM  ~  TVDC3[/C][/ROW]
[ROW][C]means[/C][C]15[/C][C]0.133[/C][C]1.617[/C][C]1.635[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299408&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299408&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Model
ITHSUM ~ TVDC3
means150.1331.6171.635







ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
TVDC3332.39710.7991.7770.154
Residuals158960.0046.076

\begin{tabular}{lllllllll}
\hline
ANOVA Statistics \tabularnewline
  & Df & Sum Sq & Mean Sq & F value & Pr(>F) \tabularnewline
TVDC3 & 3 & 32.397 & 10.799 & 1.777 & 0.154 \tabularnewline
Residuals & 158 & 960.004 & 6.076 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299408&T=2

[TABLE]
[ROW][C]ANOVA Statistics[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]Sum Sq[/C][C]Mean Sq[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]TVDC3[/C][C]3[/C][C]32.397[/C][C]10.799[/C][C]1.777[/C][C]0.154[/C][/ROW]
[ROW][C]Residuals[/C][C]158[/C][C]960.004[/C][C]6.076[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299408&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299408&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

ANOVA Statistics
DfSum SqMean SqF valuePr(>F)
TVDC3332.39710.7991.7770.154
Residuals158960.0046.076







Tukey Honest Significant Difference Comparisons
difflwruprp adj
3-20.133-6.4776.7441
4-21.617-4.8178.0510.915
5-21.635-4.8278.0960.913
4-31.484-0.2963.2630.138
5-31.501-0.3753.3770.165
5-40.018-1.0891.1241

\begin{tabular}{lllllllll}
\hline
Tukey Honest Significant Difference Comparisons \tabularnewline
  & diff & lwr & upr & p adj \tabularnewline
3-2 & 0.133 & -6.477 & 6.744 & 1 \tabularnewline
4-2 & 1.617 & -4.817 & 8.051 & 0.915 \tabularnewline
5-2 & 1.635 & -4.827 & 8.096 & 0.913 \tabularnewline
4-3 & 1.484 & -0.296 & 3.263 & 0.138 \tabularnewline
5-3 & 1.501 & -0.375 & 3.377 & 0.165 \tabularnewline
5-4 & 0.018 & -1.089 & 1.124 & 1 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299408&T=3

[TABLE]
[ROW][C]Tukey Honest Significant Difference Comparisons[/C][/ROW]
[ROW][C] [/C][C]diff[/C][C]lwr[/C][C]upr[/C][C]p adj[/C][/ROW]
[ROW][C]3-2[/C][C]0.133[/C][C]-6.477[/C][C]6.744[/C][C]1[/C][/ROW]
[ROW][C]4-2[/C][C]1.617[/C][C]-4.817[/C][C]8.051[/C][C]0.915[/C][/ROW]
[ROW][C]5-2[/C][C]1.635[/C][C]-4.827[/C][C]8.096[/C][C]0.913[/C][/ROW]
[ROW][C]4-3[/C][C]1.484[/C][C]-0.296[/C][C]3.263[/C][C]0.138[/C][/ROW]
[ROW][C]5-3[/C][C]1.501[/C][C]-0.375[/C][C]3.377[/C][C]0.165[/C][/ROW]
[ROW][C]5-4[/C][C]0.018[/C][C]-1.089[/C][C]1.124[/C][C]1[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299408&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299408&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Tukey Honest Significant Difference Comparisons
difflwruprp adj
3-20.133-6.4776.7441
4-21.617-4.8178.0510.915
5-21.635-4.8278.0960.913
4-31.484-0.2963.2630.138
5-31.501-0.3753.3770.165
5-40.018-1.0891.1241







Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group30.8860.45
158

\begin{tabular}{lllllllll}
\hline
Levenes Test for Homogeneity of Variance \tabularnewline
  & Df & F value & Pr(>F) \tabularnewline
Group & 3 & 0.886 & 0.45 \tabularnewline
  & 158 &   &   \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299408&T=4

[TABLE]
[ROW][C]Levenes Test for Homogeneity of Variance[/C][/ROW]
[ROW][C] [/C][C]Df[/C][C]F value[/C][C]Pr(>F)[/C][/ROW]
[ROW][C]Group[/C][C]3[/C][C]0.886[/C][C]0.45[/C][/ROW]
[ROW][C] [/C][C]158[/C][C] [/C][C] [/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299408&T=4

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299408&T=4

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Levenes Test for Homogeneity of Variance
DfF valuePr(>F)
Group30.8860.45
158



Parameters (Session):
par1 = 112 ; par2 = 221 ; par3 = TRUETRUETRUE ;
Parameters (R input):
par1 = 2 ; par2 = 1 ; par3 = TRUE ;
R code (references can be found in the software module):
par3 <- 'TRUE'
par2 <- '2'
par1 <- '1'
cat1 <- as.numeric(par1) #
cat2<- as.numeric(par2) #
intercept<-as.logical(par3)
x <- t(x)
x1<-as.numeric(x[,cat1])
f1<-as.character(x[,cat2])
xdf<-data.frame(x1,f1)
(V1<-dimnames(y)[[1]][cat1])
(V2<-dimnames(y)[[1]][cat2])
names(xdf)<-c('Response', 'Treatment')
if(intercept == FALSE) (lmxdf<-lm(Response ~ Treatment - 1, data = xdf) ) else (lmxdf<-lm(Response ~ Treatment, data = xdf) )
(aov.xdf<-aov(lmxdf) )
(anova.xdf<-anova(lmxdf) )
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Model', length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, paste(V1, ' ~ ', V2), length(lmxdf$coefficients)+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'means',,TRUE)
for(i in 1:length(lmxdf$coefficients)){
a<-table.element(a, round(lmxdf$coefficients[i], digits=3),,FALSE)
}
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'ANOVA Statistics', 5+1,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ',,TRUE)
a<-table.element(a, 'Df',,FALSE)
a<-table.element(a, 'Sum Sq',,FALSE)
a<-table.element(a, 'Mean Sq',,FALSE)
a<-table.element(a, 'F value',,FALSE)
a<-table.element(a, 'Pr(>F)',,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, V2,,TRUE)
a<-table.element(a, anova.xdf$Df[1],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'F value'[1], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Pr(>F)'[1], digits=3),,FALSE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, 'Residuals',,TRUE)
a<-table.element(a, anova.xdf$Df[2],,FALSE)
a<-table.element(a, round(anova.xdf$'Sum Sq'[2], digits=3),,FALSE)
a<-table.element(a, round(anova.xdf$'Mean Sq'[2], digits=3),,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.element(a, ' ',,FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable1.tab')
bitmap(file='anovaplot.png')
boxplot(Response ~ Treatment, data=xdf, xlab=V2, ylab=V1)
dev.off()
if(intercept==TRUE){
'Tukey Plot'
thsd<-TukeyHSD(aov.xdf)
bitmap(file='TukeyHSDPlot.png')
plot(thsd)
dev.off()
}
if(intercept==TRUE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Tukey Honest Significant Difference Comparisons', 5,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a, ' ', 1, TRUE)
for(i in 1:4){
a<-table.element(a,colnames(thsd[[1]])[i], 1, TRUE)
}
a<-table.row.end(a)
for(i in 1:length(rownames(thsd[[1]]))){
a<-table.row.start(a)
a<-table.element(a,rownames(thsd[[1]])[i], 1, TRUE)
for(j in 1:4){
a<-table.element(a,round(thsd[[1]][i,j], digits=3), 1, FALSE)
}
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
if(intercept==FALSE){
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'TukeyHSD Message', 1,TRUE)
a<-table.row.end(a)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Must Include Intercept to use Tukey Test ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable2.tab')
}
library(car)
lt.lmxdf<-leveneTest(lmxdf)
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Levenes Test for Homogeneity of Variance', 4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
for (i in 1:3){
a<-table.element(a,names(lt.lmxdf)[i], 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Group', 1, TRUE)
for (i in 1:3){
a<-table.element(a,round(lt.lmxdf[[i]][1], digits=3), 1, FALSE)
}
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,' ', 1, TRUE)
a<-table.element(a,lt.lmxdf[[1]][2], 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.element(a,' ', 1, FALSE)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable3.tab')