Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationWed, 14 Dec 2016 14:11:05 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481721220pnbnfg7cgdn041x.htm/, Retrieved Fri, 01 Nov 2024 03:41:22 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299399, Retrieved Fri, 01 Nov 2024 03:41:22 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact104
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [ARIMA] [2016-12-14 13:11:05] [d42b2dfaed369a60e2334709a5cede2f] [Current]
Feedback Forum

Post a new message
Dataseries X:
1800
2000
2200
2250
2400
2350
2350
2250
2250
2200
2150
2150
1900
2050
2100
2100
1900
1950
1900
1950
2000
2050
1900
2050
1750
1950
2250
2150
2250
2500
2250
2300
2550
2550
2600
2900
2400
2750
3300
3200
3150
3200
3200
3250
3600
3550
3600
3600
3300
3650
4200
3900
3950
4200
4300
4350
4650
4650
4450
4750
4300
4600
5350
4750
4900
4700
4500
4700
4700
4350
4400
4450
4050
4700
5050
4750
4800
4900
5000
5050
5400
5400
5350
5600
5200
6000
6650
6050
6050
6400
6400
6100
7050
6450
6250
6600
6000
6600
7400
6650
6250
6650




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299399&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299399&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299399&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[102])
906399.99999999999-------
916399.99999999999-------
926100-------
937050-------
946450-------
956250-------
966600-------
976000-------
986600-------
997400-------
1006650-------
1016250-------
1026650-------
103NA6471.83865936.42927055.537NA0.27480.59530.2748
104NA6344.62325701.1227060.7581NANA0.74840.2016
105NA6881.00746046.20387831.0729NANA0.36370.6832
106NA6545.03635590.18117662.9898NANA0.56620.427
107NA6393.84615325.6867676.2445NANA0.5870.3477
108NA6661.96175412.33848200.1032NANA0.53150.5061
109NA6013.54314764.94487589.3221NANA0.50670.2143
110NA6712.51155192.25068677.8961NANA0.54470.5249
111NA7489.28045658.63719912.1607NANA0.52880.7514
112NA6862.16415067.47719292.4536NANA0.56790.5679
113NA6743.76514870.7129337.1088NANA0.64550.5282
114NA7010.46974955.36529917.8734NANA0.5960.596
115NA6909.66944733.323710086.6821NANANA0.5636
116NA6836.75014559.783810250.7385NANANA0.5427
117NA7416.54224816.449911420.2576NANANA0.6463
118NA7087.51084478.353111216.8041NANANA0.5823
119NA6948.38654276.001811290.9388NANANA0.5536
120NA7254.80974350.20212098.8091NANANA0.5967
121NA6564.25643836.881311230.3348NANANA0.4856
122NA7341.38964185.613612876.4876NANANA0.5967
123NA8203.4364564.66114742.9046NANANA0.6792
124NA7526.88154089.786313852.5441NANANA0.6071
125NA7405.55643931.542913949.2986NANANA0.5895
126NA7705.87713999.303914847.7193NANANA0.614

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[102]) \tabularnewline
90 & 6399.99999999999 & - & - & - & - & - & - & - \tabularnewline
91 & 6399.99999999999 & - & - & - & - & - & - & - \tabularnewline
92 & 6100 & - & - & - & - & - & - & - \tabularnewline
93 & 7050 & - & - & - & - & - & - & - \tabularnewline
94 & 6450 & - & - & - & - & - & - & - \tabularnewline
95 & 6250 & - & - & - & - & - & - & - \tabularnewline
96 & 6600 & - & - & - & - & - & - & - \tabularnewline
97 & 6000 & - & - & - & - & - & - & - \tabularnewline
98 & 6600 & - & - & - & - & - & - & - \tabularnewline
99 & 7400 & - & - & - & - & - & - & - \tabularnewline
100 & 6650 & - & - & - & - & - & - & - \tabularnewline
101 & 6250 & - & - & - & - & - & - & - \tabularnewline
102 & 6650 & - & - & - & - & - & - & - \tabularnewline
103 & NA & 6471.8386 & 5936.4292 & 7055.537 & NA & 0.2748 & 0.5953 & 0.2748 \tabularnewline
104 & NA & 6344.6232 & 5701.122 & 7060.7581 & NA & NA & 0.7484 & 0.2016 \tabularnewline
105 & NA & 6881.0074 & 6046.2038 & 7831.0729 & NA & NA & 0.3637 & 0.6832 \tabularnewline
106 & NA & 6545.0363 & 5590.1811 & 7662.9898 & NA & NA & 0.5662 & 0.427 \tabularnewline
107 & NA & 6393.8461 & 5325.686 & 7676.2445 & NA & NA & 0.587 & 0.3477 \tabularnewline
108 & NA & 6661.9617 & 5412.3384 & 8200.1032 & NA & NA & 0.5315 & 0.5061 \tabularnewline
109 & NA & 6013.5431 & 4764.9448 & 7589.3221 & NA & NA & 0.5067 & 0.2143 \tabularnewline
110 & NA & 6712.5115 & 5192.2506 & 8677.8961 & NA & NA & 0.5447 & 0.5249 \tabularnewline
111 & NA & 7489.2804 & 5658.6371 & 9912.1607 & NA & NA & 0.5288 & 0.7514 \tabularnewline
112 & NA & 6862.1641 & 5067.4771 & 9292.4536 & NA & NA & 0.5679 & 0.5679 \tabularnewline
113 & NA & 6743.7651 & 4870.712 & 9337.1088 & NA & NA & 0.6455 & 0.5282 \tabularnewline
114 & NA & 7010.4697 & 4955.3652 & 9917.8734 & NA & NA & 0.596 & 0.596 \tabularnewline
115 & NA & 6909.6694 & 4733.3237 & 10086.6821 & NA & NA & NA & 0.5636 \tabularnewline
116 & NA & 6836.7501 & 4559.7838 & 10250.7385 & NA & NA & NA & 0.5427 \tabularnewline
117 & NA & 7416.5422 & 4816.4499 & 11420.2576 & NA & NA & NA & 0.6463 \tabularnewline
118 & NA & 7087.5108 & 4478.3531 & 11216.8041 & NA & NA & NA & 0.5823 \tabularnewline
119 & NA & 6948.3865 & 4276.0018 & 11290.9388 & NA & NA & NA & 0.5536 \tabularnewline
120 & NA & 7254.8097 & 4350.202 & 12098.8091 & NA & NA & NA & 0.5967 \tabularnewline
121 & NA & 6564.2564 & 3836.8813 & 11230.3348 & NA & NA & NA & 0.4856 \tabularnewline
122 & NA & 7341.3896 & 4185.6136 & 12876.4876 & NA & NA & NA & 0.5967 \tabularnewline
123 & NA & 8203.436 & 4564.661 & 14742.9046 & NA & NA & NA & 0.6792 \tabularnewline
124 & NA & 7526.8815 & 4089.7863 & 13852.5441 & NA & NA & NA & 0.6071 \tabularnewline
125 & NA & 7405.5564 & 3931.5429 & 13949.2986 & NA & NA & NA & 0.5895 \tabularnewline
126 & NA & 7705.8771 & 3999.3039 & 14847.7193 & NA & NA & NA & 0.614 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299399&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[102])[/C][/ROW]
[ROW][C]90[/C][C]6399.99999999999[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]91[/C][C]6399.99999999999[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]92[/C][C]6100[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]93[/C][C]7050[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]94[/C][C]6450[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]95[/C][C]6250[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]96[/C][C]6600[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]97[/C][C]6000[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]98[/C][C]6600[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]99[/C][C]7400[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]100[/C][C]6650[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]101[/C][C]6250[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]102[/C][C]6650[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]103[/C][C]NA[/C][C]6471.8386[/C][C]5936.4292[/C][C]7055.537[/C][C]NA[/C][C]0.2748[/C][C]0.5953[/C][C]0.2748[/C][/ROW]
[ROW][C]104[/C][C]NA[/C][C]6344.6232[/C][C]5701.122[/C][C]7060.7581[/C][C]NA[/C][C]NA[/C][C]0.7484[/C][C]0.2016[/C][/ROW]
[ROW][C]105[/C][C]NA[/C][C]6881.0074[/C][C]6046.2038[/C][C]7831.0729[/C][C]NA[/C][C]NA[/C][C]0.3637[/C][C]0.6832[/C][/ROW]
[ROW][C]106[/C][C]NA[/C][C]6545.0363[/C][C]5590.1811[/C][C]7662.9898[/C][C]NA[/C][C]NA[/C][C]0.5662[/C][C]0.427[/C][/ROW]
[ROW][C]107[/C][C]NA[/C][C]6393.8461[/C][C]5325.686[/C][C]7676.2445[/C][C]NA[/C][C]NA[/C][C]0.587[/C][C]0.3477[/C][/ROW]
[ROW][C]108[/C][C]NA[/C][C]6661.9617[/C][C]5412.3384[/C][C]8200.1032[/C][C]NA[/C][C]NA[/C][C]0.5315[/C][C]0.5061[/C][/ROW]
[ROW][C]109[/C][C]NA[/C][C]6013.5431[/C][C]4764.9448[/C][C]7589.3221[/C][C]NA[/C][C]NA[/C][C]0.5067[/C][C]0.2143[/C][/ROW]
[ROW][C]110[/C][C]NA[/C][C]6712.5115[/C][C]5192.2506[/C][C]8677.8961[/C][C]NA[/C][C]NA[/C][C]0.5447[/C][C]0.5249[/C][/ROW]
[ROW][C]111[/C][C]NA[/C][C]7489.2804[/C][C]5658.6371[/C][C]9912.1607[/C][C]NA[/C][C]NA[/C][C]0.5288[/C][C]0.7514[/C][/ROW]
[ROW][C]112[/C][C]NA[/C][C]6862.1641[/C][C]5067.4771[/C][C]9292.4536[/C][C]NA[/C][C]NA[/C][C]0.5679[/C][C]0.5679[/C][/ROW]
[ROW][C]113[/C][C]NA[/C][C]6743.7651[/C][C]4870.712[/C][C]9337.1088[/C][C]NA[/C][C]NA[/C][C]0.6455[/C][C]0.5282[/C][/ROW]
[ROW][C]114[/C][C]NA[/C][C]7010.4697[/C][C]4955.3652[/C][C]9917.8734[/C][C]NA[/C][C]NA[/C][C]0.596[/C][C]0.596[/C][/ROW]
[ROW][C]115[/C][C]NA[/C][C]6909.6694[/C][C]4733.3237[/C][C]10086.6821[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5636[/C][/ROW]
[ROW][C]116[/C][C]NA[/C][C]6836.7501[/C][C]4559.7838[/C][C]10250.7385[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5427[/C][/ROW]
[ROW][C]117[/C][C]NA[/C][C]7416.5422[/C][C]4816.4499[/C][C]11420.2576[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.6463[/C][/ROW]
[ROW][C]118[/C][C]NA[/C][C]7087.5108[/C][C]4478.3531[/C][C]11216.8041[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5823[/C][/ROW]
[ROW][C]119[/C][C]NA[/C][C]6948.3865[/C][C]4276.0018[/C][C]11290.9388[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5536[/C][/ROW]
[ROW][C]120[/C][C]NA[/C][C]7254.8097[/C][C]4350.202[/C][C]12098.8091[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5967[/C][/ROW]
[ROW][C]121[/C][C]NA[/C][C]6564.2564[/C][C]3836.8813[/C][C]11230.3348[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.4856[/C][/ROW]
[ROW][C]122[/C][C]NA[/C][C]7341.3896[/C][C]4185.6136[/C][C]12876.4876[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5967[/C][/ROW]
[ROW][C]123[/C][C]NA[/C][C]8203.436[/C][C]4564.661[/C][C]14742.9046[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.6792[/C][/ROW]
[ROW][C]124[/C][C]NA[/C][C]7526.8815[/C][C]4089.7863[/C][C]13852.5441[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.6071[/C][/ROW]
[ROW][C]125[/C][C]NA[/C][C]7405.5564[/C][C]3931.5429[/C][C]13949.2986[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5895[/C][/ROW]
[ROW][C]126[/C][C]NA[/C][C]7705.8771[/C][C]3999.3039[/C][C]14847.7193[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.614[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299399&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299399&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[102])
906399.99999999999-------
916399.99999999999-------
926100-------
937050-------
946450-------
956250-------
966600-------
976000-------
986600-------
997400-------
1006650-------
1016250-------
1026650-------
103NA6471.83865936.42927055.537NA0.27480.59530.2748
104NA6344.62325701.1227060.7581NANA0.74840.2016
105NA6881.00746046.20387831.0729NANA0.36370.6832
106NA6545.03635590.18117662.9898NANA0.56620.427
107NA6393.84615325.6867676.2445NANA0.5870.3477
108NA6661.96175412.33848200.1032NANA0.53150.5061
109NA6013.54314764.94487589.3221NANA0.50670.2143
110NA6712.51155192.25068677.8961NANA0.54470.5249
111NA7489.28045658.63719912.1607NANA0.52880.7514
112NA6862.16415067.47719292.4536NANA0.56790.5679
113NA6743.76514870.7129337.1088NANA0.64550.5282
114NA7010.46974955.36529917.8734NANA0.5960.596
115NA6909.66944733.323710086.6821NANANA0.5636
116NA6836.75014559.783810250.7385NANANA0.5427
117NA7416.54224816.449911420.2576NANANA0.6463
118NA7087.51084478.353111216.8041NANANA0.5823
119NA6948.38654276.001811290.9388NANANA0.5536
120NA7254.80974350.20212098.8091NANANA0.5967
121NA6564.25643836.881311230.3348NANANA0.4856
122NA7341.38964185.613612876.4876NANANA0.5967
123NA8203.4364564.66114742.9046NANANA0.6792
124NA7526.88154089.786313852.5441NANANA0.6071
125NA7405.55643931.542913949.2986NANANA0.5895
126NA7705.87713999.303914847.7193NANANA0.614







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1030.046NANANANA00NANA
1040.0576NANANANANANANANA
1050.0704NANANANANANANANA
1060.0871NANANANANANANANA
1070.1023NANANANANANANANA
1080.1178NANANANANANANANA
1090.1337NANANANANANANANA
1100.1494NANANANANANANANA
1110.1651NANANANANANANANA
1120.1807NANANANANANANANA
1130.1962NANANANANANANANA
1140.2116NANANANANANANANA
1150.2346NANANANANANANANA
1160.2548NANANANANANANANA
1170.2754NANANANANANANANA
1180.2973NANANANANANANANA
1190.3189NANANANANANANANA
1200.3407NANANANANANANANA
1210.3627NANANANANANANANA
1220.3847NANANANANANANANA
1230.4067NANANANANANANANA
1240.4288NANANANANANANANA
1250.4508NANANANANANANANA
1260.4729NANANANANANANANA

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
103 & 0.046 & NA & NA & NA & NA & 0 & 0 & NA & NA \tabularnewline
104 & 0.0576 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
105 & 0.0704 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
106 & 0.0871 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
107 & 0.1023 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
108 & 0.1178 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
109 & 0.1337 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
110 & 0.1494 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
111 & 0.1651 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
112 & 0.1807 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
113 & 0.1962 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
114 & 0.2116 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
115 & 0.2346 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
116 & 0.2548 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
117 & 0.2754 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
118 & 0.2973 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
119 & 0.3189 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
120 & 0.3407 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
121 & 0.3627 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
122 & 0.3847 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
123 & 0.4067 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
124 & 0.4288 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
125 & 0.4508 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
126 & 0.4729 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299399&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]103[/C][C]0.046[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0[/C][C]0[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]104[/C][C]0.0576[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]105[/C][C]0.0704[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]106[/C][C]0.0871[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]107[/C][C]0.1023[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]108[/C][C]0.1178[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]109[/C][C]0.1337[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]110[/C][C]0.1494[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]111[/C][C]0.1651[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]112[/C][C]0.1807[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]113[/C][C]0.1962[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]114[/C][C]0.2116[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]115[/C][C]0.2346[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]116[/C][C]0.2548[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]117[/C][C]0.2754[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]118[/C][C]0.2973[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]119[/C][C]0.3189[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]120[/C][C]0.3407[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]121[/C][C]0.3627[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]0.3847[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]0.4067[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]0.4288[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]0.4508[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]0.4729[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299399&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299399&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1030.046NANANANA00NANA
1040.0576NANANANANANANANA
1050.0704NANANANANANANANA
1060.0871NANANANANANANANA
1070.1023NANANANANANANANA
1080.1178NANANANANANANANA
1090.1337NANANANANANANANA
1100.1494NANANANANANANANA
1110.1651NANANANANANANANA
1120.1807NANANANANANANANA
1130.1962NANANANANANANANA
1140.2116NANANANANANANANA
1150.2346NANANANANANANANA
1160.2548NANANANANANANANA
1170.2754NANANANANANANANA
1180.2973NANANANANANANANA
1190.3189NANANANANANANANA
1200.3407NANANANANANANANA
1210.3627NANANANANANANANA
1220.3847NANANANANANANANA
1230.4067NANANANANANANANA
1240.4288NANANANANANANANA
1250.4508NANANANANANANANA
1260.4729NANANANANANANANA



Parameters (Session):
par1 = 0 ; par2 = 0.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
Parameters (R input):
par1 = 0 ; par2 = 0.0 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 3 ; par7 = 1 ; par8 = 0 ; par9 = 1 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')