Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 14 Dec 2016 13:55:28 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481720135i5weyj4wgfuco5w.htm/, Retrieved Fri, 01 Nov 2024 03:48:10 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299383, Retrieved Fri, 01 Nov 2024 03:48:10 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact86
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [] [2016-12-14 12:55:28] [57f1f1af0ba442a9c0352eeef9ded060] [Current]
Feedback Forum

Post a new message
Dataseries X:
4393.9
4248
4346.2
4351.7
4424.4
4468.4
4519.1
4518.2
4574.5
4509.6
4337.9
4441.8
4414.1
4465.9
4426
4518.8
4606.3
4647.4
4650.8
4650.2
4720.1
4655
4520.8
4617.3
4488.1
4527.4
4618.3
4642.8
4667.3
4640.6
4716.9
4719.4
4817.3
4764.5
4514.1
4625
4617.7
4361.3
4474.9
4623.8
4692
4672.1
4721.5
4784.6
4858.7
4813.3
4628.2
4710.4
4698.4
4631
4727.4
4719.9
4890.6
4839.9
4867.5
4898.3
4675.7
4981.9
4771.1
4827.8
4685
4646.1
4815
4911.8
4958.4
5019.4
5024.3
5035.8
5082.4
5179.2
4963.2
4951.3
4876.4
4812.1
5004.1
5093.8
5063.1
5078.6
5251.5
5263.2
5280.5
5386.1
5227.3
5149.5
5128.6
5087.7
5188.5
5084
5258.6
5348.9
5280
5374.2
5458.4
5315
5294.5
5341.4
5068
5156.9
5184.7
5280.7
5339
5377.7
5388.6
5443.6
5528.7
5539
5292
5351.5
5163.7
5105
5248.1
5370.9
5484.9
5510.7
5484.9
5567.8
5275.6




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299383&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299383&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299383&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11710118
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 1171 & 0 & 118 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299383&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]1171[/C][C]0[/C][C]118[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299383&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299383&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11710118
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
14393.94487.39329732721-118.1745557043234418.5812583771293.4932973272062
242484249.92291729459-175.0691440861354421.146226791541.92291729458975
34346.24352.22249013733-83.53368534330064423.711195205976.02249013732762
44351.74310.27662025535-34.22018592108994427.34356566574-41.4233797446523
54424.44380.5907534098337.23331046465754430.97593612551-43.8092465901691
64468.44449.0569396927452.30031533083194435.44274497643-19.3430603072602
74519.14522.6930818518675.59736432079044439.909553827353.59308185186455
84518.24487.24409177764103.6612683401344445.49463988223-30.9559082223604
94574.54599.5550633236298.36521073927034451.0797259371125.0550633236226
104509.64431.25469873705125.2408295393434462.70447172361-78.3453012629498
114337.94263.07883986011-61.60805737022234474.32921751011-74.8211601398871
124441.84414.71573534055-19.79265373425724488.6769183937-27.0842646594456
134414.14443.34993642703-118.1745557043234503.024619277329.2499364270261
144465.94590.02237176096-175.0691440861354516.84677232518124.122371760956
1544264404.86475997024-83.53368534330064530.66892537306-21.1352400297583
164518.84528.78325701408-34.22018592108994543.036928907019.98325701407521
174606.34619.9617570943737.23331046465754555.4049324409713.6617570943727
184647.44677.4458917514452.30031533083194565.0537929177330.0458917514379
194650.84651.2999822847275.59736432079044574.702653394490.499982284719408
204650.24613.24709277331103.6612683401344583.49163888655-36.9529072266851
214720.14749.5541648821298.36521073927034592.2806243786129.4541648821187
2246554583.36479308061125.2408295393434601.39437738005-71.6352069193936
234520.84492.69992698873-61.60805737022234610.50813038149-28.1000730112692
244617.34637.38819041566-19.79265373425724617.004463318620.0881904156568
254488.14470.87375944861-118.1745557043234623.50079625571-17.2262405513857
264527.44600.30597772055-175.0691440861354629.5631663655872.9059777205539
274618.34684.50814886785-83.53368534330064635.6255364754566.2081488678496
284642.84679.76026769607-34.22018592108994640.0599182250236.9602676960667
294667.34652.8723895607537.23331046465754644.4942999746-14.4276104392529
304640.64583.6104826095852.30031533083194645.28920205959-56.9895173904179
314716.94712.1185315346375.59736432079044646.08410414458-4.78146846536856
324719.44692.90642741265103.6612683401344642.23230424722-26.4935725873538
334817.34897.8542849108798.36521073927034638.3805043498680.554284910867
344764.54768.38344126015125.2408295393434635.37572920053.88344126015454
354514.14457.43710331908-61.60805737022234632.37095405114-56.6628966809194
3646254637.37936582436-19.79265373425724632.4132879098912.3793658243649
374617.74721.11893393568-118.1745557043234632.45562176864103.418933935679
384361.34262.43427685615-175.0691440861354635.23486722999-98.8657231438519
394474.94395.31957265197-83.53368534330064638.01411269133-79.5804273480298
404623.84638.36928926016-34.22018592108994643.4508966609314.5692892601564
4146924697.879008904837.23331046465754648.887680630545.87900890480432
424672.14632.686870489252.30031533083194659.21281417997-39.4131295108027
434721.54697.8646879498175.59736432079044669.5379477294-23.6353120501944
444784.64781.188682535103.6612683401344684.35004912486-3.4113174649965
454858.74919.8726387404198.36521073927034699.1621505203261.1726387404078
464813.34786.01780484933125.2408295393434715.34136561133-27.2821951506721
474628.24586.48747666788-61.60805737022234731.52058070234-41.7125233321158
484710.44696.05185902963-19.79265373425724744.54079470463-14.3481409703727
494698.44757.4135469974-118.1745557043234757.5610087069259.0135469974011
5046314672.44366758363-175.0691440861354764.6254765025141.443667583625
514727.44766.6437410452-83.53368534330064771.689944298139.2437410452021
524719.94697.90795125633-34.22018592108994776.11223466476-21.9920487436657
534890.64963.4321645039337.23331046465754780.5345250314172.8321645039305
544839.94842.8467443245152.30031533083194784.652940344662.94674432450665
554867.54870.631280021375.59736432079044788.771355657913.13128002129906
564898.34899.66311739559103.6612683401344793.275614264271.36311739559278
574675.74455.2549163900998.36521073927034797.77987287064-220.445083609908
584981.95031.70105291503125.2408295393434806.8581175456349.801052915026
594771.14787.8716951496-61.60805737022234815.9363622206316.7716951495968
604827.84844.97642748589-19.79265373425724830.4162262483717.1764274858915
6146854643.27846542822-118.1745557043234844.89609027611-41.7215345717841
624646.14603.95235906073-175.0691440861354863.3167850254-42.1476409392681
6348154831.7962055686-83.53368534330064881.737479774716.7962055686012
644911.84957.15664689657-34.22018592108994900.6635390245245.3566468965673
654958.44959.9770912609937.23331046465754919.589598274351.57709126099508
665019.45051.516962076252.30031533083194934.9827225929732.1169620761966
675024.35022.6267887676175.59736432079044950.37584691159-1.67321123238526
685035.85003.76674657404103.6612683401344964.17198508583-32.0332534259614
695082.45088.4666660006798.36521073927034977.968123260066.06666600066728
705179.25243.30676135667125.2408295393434989.8524091039964.106761356672
714963.24986.27136242231-61.60805737022235001.7366949479123.0713624223126
724951.34908.41267959451-19.79265373425725013.97997413975-42.8873204054889
734876.44844.75130237274-118.1745557043235026.22325333158-31.6486976272608
744812.14758.0052087974-175.0691440861355041.26393528874-54.0947912026049
755004.15035.4290680974-83.53368534330065056.304617245931.3290680974042
765093.85146.61371061239-34.22018592108995075.206475308752.8137106123868
775063.14994.8583561638337.23331046465755094.10833337151-68.2416438361679
785078.64990.109463074352.30031533083195114.79022159487-88.4905369257003
795251.55291.9305258609875.59736432079045135.4721098182340.4305258609829
805263.25268.53793596279103.6612683401345154.200795697085.3379359627852
815280.55289.7053076847998.36521073927035172.929481575949.20530768479421
825386.15460.23151018796125.2408295393435186.727660272774.1315101879618
835227.35315.68221840077-61.60805737022235200.5258389694688.3822184007668
845149.55107.59519533792-19.79265373425725211.19745839634-41.9048046620828
855128.65153.5054778811-118.1745557043235221.8690778232224.9054778810996
865087.75121.82316286222-175.0691440861355228.6459812239134.1231628622209
875188.55225.1108007187-83.53368534330065235.422884624636.6108007186967
8850844961.44961500785-34.22018592108995240.77057091324-122.550384992151
895258.65233.8484323334737.23331046465755246.11825720188-24.7515676665353
905348.95393.8565965260852.30031533083195251.6430881430944.9565965260763
9152805227.234716594975.59736432079045257.16791908431-52.7652834050959
925374.25381.63613794656103.6612683401345263.102593713317.43613794655539
935458.45549.3975209184198.36521073927035269.0372683423290.9975209184122
9453155229.02894937491125.2408295393435275.73022108575-85.9710506250894
955294.55368.18488354105-61.60805737022235282.4231738291873.6848835410465
965341.45414.26190706213-19.79265373425725288.3307466721272.8619070621326
9750684959.93623618925-118.1745557043235294.23831951507-108.06376381075
985156.95188.19430265715-175.0691440861355300.6748414289831.2943026571538
995184.75145.82232200041-83.53368534330065307.11136334289-38.8776779995869
1005280.75280.85104236007-34.22018592108995314.769143561020.15104236006664
10153395318.3397657561837.23331046465755322.42692377916-20.6602342438173
1025377.75374.6729717782452.30031533083195328.42671289092-3.02702822175524
1035388.65367.1761336765275.59736432079045334.42650200269-21.4238663234764
1045443.65445.19624274688103.6612683401345338.342488912991.59624274687576
1055528.75616.7763134374398.36521073927035342.258475823388.0763134374347
10655395605.11552864287125.2408295393435347.6436418177966.1155286428693
10752925292.57924955794-61.60805737022235353.028807812280.579249557940784
1085351.55362.58296987743-19.79265373425725360.2096838568311.0829698774269
1095163.75078.18399580294-118.1745557043235367.39055990138-85.5160041970566
11051055016.59302604678-175.0691440861355368.47611803935-88.406973953216
1115248.15210.17200916598-83.53368534330065369.56167617732-37.9279908340204
1125370.95406.67361156257-34.22018592108995369.3465743585235.773611562573
1135484.95563.4352169956337.23331046465755369.1314725397178.5352169956304
1145510.75599.5625626529352.30031533083195369.5371220162488.862562652931
1155484.95524.2598641864575.59736432079045369.9427714927639.3598641864464
1165567.85661.312990009103.6612683401345370.6257416508793.5129900089951
1175275.65081.5260774517598.36521073927035371.30871180898-194.07392254825

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 4393.9 & 4487.39329732721 & -118.174555704323 & 4418.58125837712 & 93.4932973272062 \tabularnewline
2 & 4248 & 4249.92291729459 & -175.069144086135 & 4421.14622679154 & 1.92291729458975 \tabularnewline
3 & 4346.2 & 4352.22249013733 & -83.5336853433006 & 4423.71119520597 & 6.02249013732762 \tabularnewline
4 & 4351.7 & 4310.27662025535 & -34.2201859210899 & 4427.34356566574 & -41.4233797446523 \tabularnewline
5 & 4424.4 & 4380.59075340983 & 37.2333104646575 & 4430.97593612551 & -43.8092465901691 \tabularnewline
6 & 4468.4 & 4449.05693969274 & 52.3003153308319 & 4435.44274497643 & -19.3430603072602 \tabularnewline
7 & 4519.1 & 4522.69308185186 & 75.5973643207904 & 4439.90955382735 & 3.59308185186455 \tabularnewline
8 & 4518.2 & 4487.24409177764 & 103.661268340134 & 4445.49463988223 & -30.9559082223604 \tabularnewline
9 & 4574.5 & 4599.55506332362 & 98.3652107392703 & 4451.07972593711 & 25.0550633236226 \tabularnewline
10 & 4509.6 & 4431.25469873705 & 125.240829539343 & 4462.70447172361 & -78.3453012629498 \tabularnewline
11 & 4337.9 & 4263.07883986011 & -61.6080573702223 & 4474.32921751011 & -74.8211601398871 \tabularnewline
12 & 4441.8 & 4414.71573534055 & -19.7926537342572 & 4488.6769183937 & -27.0842646594456 \tabularnewline
13 & 4414.1 & 4443.34993642703 & -118.174555704323 & 4503.0246192773 & 29.2499364270261 \tabularnewline
14 & 4465.9 & 4590.02237176096 & -175.069144086135 & 4516.84677232518 & 124.122371760956 \tabularnewline
15 & 4426 & 4404.86475997024 & -83.5336853433006 & 4530.66892537306 & -21.1352400297583 \tabularnewline
16 & 4518.8 & 4528.78325701408 & -34.2201859210899 & 4543.03692890701 & 9.98325701407521 \tabularnewline
17 & 4606.3 & 4619.96175709437 & 37.2333104646575 & 4555.40493244097 & 13.6617570943727 \tabularnewline
18 & 4647.4 & 4677.44589175144 & 52.3003153308319 & 4565.05379291773 & 30.0458917514379 \tabularnewline
19 & 4650.8 & 4651.29998228472 & 75.5973643207904 & 4574.70265339449 & 0.499982284719408 \tabularnewline
20 & 4650.2 & 4613.24709277331 & 103.661268340134 & 4583.49163888655 & -36.9529072266851 \tabularnewline
21 & 4720.1 & 4749.55416488212 & 98.3652107392703 & 4592.28062437861 & 29.4541648821187 \tabularnewline
22 & 4655 & 4583.36479308061 & 125.240829539343 & 4601.39437738005 & -71.6352069193936 \tabularnewline
23 & 4520.8 & 4492.69992698873 & -61.6080573702223 & 4610.50813038149 & -28.1000730112692 \tabularnewline
24 & 4617.3 & 4637.38819041566 & -19.7926537342572 & 4617.0044633186 & 20.0881904156568 \tabularnewline
25 & 4488.1 & 4470.87375944861 & -118.174555704323 & 4623.50079625571 & -17.2262405513857 \tabularnewline
26 & 4527.4 & 4600.30597772055 & -175.069144086135 & 4629.56316636558 & 72.9059777205539 \tabularnewline
27 & 4618.3 & 4684.50814886785 & -83.5336853433006 & 4635.62553647545 & 66.2081488678496 \tabularnewline
28 & 4642.8 & 4679.76026769607 & -34.2201859210899 & 4640.05991822502 & 36.9602676960667 \tabularnewline
29 & 4667.3 & 4652.87238956075 & 37.2333104646575 & 4644.4942999746 & -14.4276104392529 \tabularnewline
30 & 4640.6 & 4583.61048260958 & 52.3003153308319 & 4645.28920205959 & -56.9895173904179 \tabularnewline
31 & 4716.9 & 4712.11853153463 & 75.5973643207904 & 4646.08410414458 & -4.78146846536856 \tabularnewline
32 & 4719.4 & 4692.90642741265 & 103.661268340134 & 4642.23230424722 & -26.4935725873538 \tabularnewline
33 & 4817.3 & 4897.85428491087 & 98.3652107392703 & 4638.38050434986 & 80.554284910867 \tabularnewline
34 & 4764.5 & 4768.38344126015 & 125.240829539343 & 4635.3757292005 & 3.88344126015454 \tabularnewline
35 & 4514.1 & 4457.43710331908 & -61.6080573702223 & 4632.37095405114 & -56.6628966809194 \tabularnewline
36 & 4625 & 4637.37936582436 & -19.7926537342572 & 4632.41328790989 & 12.3793658243649 \tabularnewline
37 & 4617.7 & 4721.11893393568 & -118.174555704323 & 4632.45562176864 & 103.418933935679 \tabularnewline
38 & 4361.3 & 4262.43427685615 & -175.069144086135 & 4635.23486722999 & -98.8657231438519 \tabularnewline
39 & 4474.9 & 4395.31957265197 & -83.5336853433006 & 4638.01411269133 & -79.5804273480298 \tabularnewline
40 & 4623.8 & 4638.36928926016 & -34.2201859210899 & 4643.45089666093 & 14.5692892601564 \tabularnewline
41 & 4692 & 4697.8790089048 & 37.2333104646575 & 4648.88768063054 & 5.87900890480432 \tabularnewline
42 & 4672.1 & 4632.6868704892 & 52.3003153308319 & 4659.21281417997 & -39.4131295108027 \tabularnewline
43 & 4721.5 & 4697.86468794981 & 75.5973643207904 & 4669.5379477294 & -23.6353120501944 \tabularnewline
44 & 4784.6 & 4781.188682535 & 103.661268340134 & 4684.35004912486 & -3.4113174649965 \tabularnewline
45 & 4858.7 & 4919.87263874041 & 98.3652107392703 & 4699.16215052032 & 61.1726387404078 \tabularnewline
46 & 4813.3 & 4786.01780484933 & 125.240829539343 & 4715.34136561133 & -27.2821951506721 \tabularnewline
47 & 4628.2 & 4586.48747666788 & -61.6080573702223 & 4731.52058070234 & -41.7125233321158 \tabularnewline
48 & 4710.4 & 4696.05185902963 & -19.7926537342572 & 4744.54079470463 & -14.3481409703727 \tabularnewline
49 & 4698.4 & 4757.4135469974 & -118.174555704323 & 4757.56100870692 & 59.0135469974011 \tabularnewline
50 & 4631 & 4672.44366758363 & -175.069144086135 & 4764.62547650251 & 41.443667583625 \tabularnewline
51 & 4727.4 & 4766.6437410452 & -83.5336853433006 & 4771.6899442981 & 39.2437410452021 \tabularnewline
52 & 4719.9 & 4697.90795125633 & -34.2201859210899 & 4776.11223466476 & -21.9920487436657 \tabularnewline
53 & 4890.6 & 4963.43216450393 & 37.2333104646575 & 4780.53452503141 & 72.8321645039305 \tabularnewline
54 & 4839.9 & 4842.84674432451 & 52.3003153308319 & 4784.65294034466 & 2.94674432450665 \tabularnewline
55 & 4867.5 & 4870.6312800213 & 75.5973643207904 & 4788.77135565791 & 3.13128002129906 \tabularnewline
56 & 4898.3 & 4899.66311739559 & 103.661268340134 & 4793.27561426427 & 1.36311739559278 \tabularnewline
57 & 4675.7 & 4455.25491639009 & 98.3652107392703 & 4797.77987287064 & -220.445083609908 \tabularnewline
58 & 4981.9 & 5031.70105291503 & 125.240829539343 & 4806.85811754563 & 49.801052915026 \tabularnewline
59 & 4771.1 & 4787.8716951496 & -61.6080573702223 & 4815.93636222063 & 16.7716951495968 \tabularnewline
60 & 4827.8 & 4844.97642748589 & -19.7926537342572 & 4830.41622624837 & 17.1764274858915 \tabularnewline
61 & 4685 & 4643.27846542822 & -118.174555704323 & 4844.89609027611 & -41.7215345717841 \tabularnewline
62 & 4646.1 & 4603.95235906073 & -175.069144086135 & 4863.3167850254 & -42.1476409392681 \tabularnewline
63 & 4815 & 4831.7962055686 & -83.5336853433006 & 4881.7374797747 & 16.7962055686012 \tabularnewline
64 & 4911.8 & 4957.15664689657 & -34.2201859210899 & 4900.66353902452 & 45.3566468965673 \tabularnewline
65 & 4958.4 & 4959.97709126099 & 37.2333104646575 & 4919.58959827435 & 1.57709126099508 \tabularnewline
66 & 5019.4 & 5051.5169620762 & 52.3003153308319 & 4934.98272259297 & 32.1169620761966 \tabularnewline
67 & 5024.3 & 5022.62678876761 & 75.5973643207904 & 4950.37584691159 & -1.67321123238526 \tabularnewline
68 & 5035.8 & 5003.76674657404 & 103.661268340134 & 4964.17198508583 & -32.0332534259614 \tabularnewline
69 & 5082.4 & 5088.46666600067 & 98.3652107392703 & 4977.96812326006 & 6.06666600066728 \tabularnewline
70 & 5179.2 & 5243.30676135667 & 125.240829539343 & 4989.85240910399 & 64.106761356672 \tabularnewline
71 & 4963.2 & 4986.27136242231 & -61.6080573702223 & 5001.73669494791 & 23.0713624223126 \tabularnewline
72 & 4951.3 & 4908.41267959451 & -19.7926537342572 & 5013.97997413975 & -42.8873204054889 \tabularnewline
73 & 4876.4 & 4844.75130237274 & -118.174555704323 & 5026.22325333158 & -31.6486976272608 \tabularnewline
74 & 4812.1 & 4758.0052087974 & -175.069144086135 & 5041.26393528874 & -54.0947912026049 \tabularnewline
75 & 5004.1 & 5035.4290680974 & -83.5336853433006 & 5056.3046172459 & 31.3290680974042 \tabularnewline
76 & 5093.8 & 5146.61371061239 & -34.2201859210899 & 5075.2064753087 & 52.8137106123868 \tabularnewline
77 & 5063.1 & 4994.85835616383 & 37.2333104646575 & 5094.10833337151 & -68.2416438361679 \tabularnewline
78 & 5078.6 & 4990.1094630743 & 52.3003153308319 & 5114.79022159487 & -88.4905369257003 \tabularnewline
79 & 5251.5 & 5291.93052586098 & 75.5973643207904 & 5135.47210981823 & 40.4305258609829 \tabularnewline
80 & 5263.2 & 5268.53793596279 & 103.661268340134 & 5154.20079569708 & 5.3379359627852 \tabularnewline
81 & 5280.5 & 5289.70530768479 & 98.3652107392703 & 5172.92948157594 & 9.20530768479421 \tabularnewline
82 & 5386.1 & 5460.23151018796 & 125.240829539343 & 5186.7276602727 & 74.1315101879618 \tabularnewline
83 & 5227.3 & 5315.68221840077 & -61.6080573702223 & 5200.52583896946 & 88.3822184007668 \tabularnewline
84 & 5149.5 & 5107.59519533792 & -19.7926537342572 & 5211.19745839634 & -41.9048046620828 \tabularnewline
85 & 5128.6 & 5153.5054778811 & -118.174555704323 & 5221.86907782322 & 24.9054778810996 \tabularnewline
86 & 5087.7 & 5121.82316286222 & -175.069144086135 & 5228.64598122391 & 34.1231628622209 \tabularnewline
87 & 5188.5 & 5225.1108007187 & -83.5336853433006 & 5235.4228846246 & 36.6108007186967 \tabularnewline
88 & 5084 & 4961.44961500785 & -34.2201859210899 & 5240.77057091324 & -122.550384992151 \tabularnewline
89 & 5258.6 & 5233.84843233347 & 37.2333104646575 & 5246.11825720188 & -24.7515676665353 \tabularnewline
90 & 5348.9 & 5393.85659652608 & 52.3003153308319 & 5251.64308814309 & 44.9565965260763 \tabularnewline
91 & 5280 & 5227.2347165949 & 75.5973643207904 & 5257.16791908431 & -52.7652834050959 \tabularnewline
92 & 5374.2 & 5381.63613794656 & 103.661268340134 & 5263.10259371331 & 7.43613794655539 \tabularnewline
93 & 5458.4 & 5549.39752091841 & 98.3652107392703 & 5269.03726834232 & 90.9975209184122 \tabularnewline
94 & 5315 & 5229.02894937491 & 125.240829539343 & 5275.73022108575 & -85.9710506250894 \tabularnewline
95 & 5294.5 & 5368.18488354105 & -61.6080573702223 & 5282.42317382918 & 73.6848835410465 \tabularnewline
96 & 5341.4 & 5414.26190706213 & -19.7926537342572 & 5288.33074667212 & 72.8619070621326 \tabularnewline
97 & 5068 & 4959.93623618925 & -118.174555704323 & 5294.23831951507 & -108.06376381075 \tabularnewline
98 & 5156.9 & 5188.19430265715 & -175.069144086135 & 5300.67484142898 & 31.2943026571538 \tabularnewline
99 & 5184.7 & 5145.82232200041 & -83.5336853433006 & 5307.11136334289 & -38.8776779995869 \tabularnewline
100 & 5280.7 & 5280.85104236007 & -34.2201859210899 & 5314.76914356102 & 0.15104236006664 \tabularnewline
101 & 5339 & 5318.33976575618 & 37.2333104646575 & 5322.42692377916 & -20.6602342438173 \tabularnewline
102 & 5377.7 & 5374.67297177824 & 52.3003153308319 & 5328.42671289092 & -3.02702822175524 \tabularnewline
103 & 5388.6 & 5367.17613367652 & 75.5973643207904 & 5334.42650200269 & -21.4238663234764 \tabularnewline
104 & 5443.6 & 5445.19624274688 & 103.661268340134 & 5338.34248891299 & 1.59624274687576 \tabularnewline
105 & 5528.7 & 5616.77631343743 & 98.3652107392703 & 5342.2584758233 & 88.0763134374347 \tabularnewline
106 & 5539 & 5605.11552864287 & 125.240829539343 & 5347.64364181779 & 66.1155286428693 \tabularnewline
107 & 5292 & 5292.57924955794 & -61.6080573702223 & 5353.02880781228 & 0.579249557940784 \tabularnewline
108 & 5351.5 & 5362.58296987743 & -19.7926537342572 & 5360.20968385683 & 11.0829698774269 \tabularnewline
109 & 5163.7 & 5078.18399580294 & -118.174555704323 & 5367.39055990138 & -85.5160041970566 \tabularnewline
110 & 5105 & 5016.59302604678 & -175.069144086135 & 5368.47611803935 & -88.406973953216 \tabularnewline
111 & 5248.1 & 5210.17200916598 & -83.5336853433006 & 5369.56167617732 & -37.9279908340204 \tabularnewline
112 & 5370.9 & 5406.67361156257 & -34.2201859210899 & 5369.34657435852 & 35.773611562573 \tabularnewline
113 & 5484.9 & 5563.43521699563 & 37.2333104646575 & 5369.13147253971 & 78.5352169956304 \tabularnewline
114 & 5510.7 & 5599.56256265293 & 52.3003153308319 & 5369.53712201624 & 88.862562652931 \tabularnewline
115 & 5484.9 & 5524.25986418645 & 75.5973643207904 & 5369.94277149276 & 39.3598641864464 \tabularnewline
116 & 5567.8 & 5661.312990009 & 103.661268340134 & 5370.62574165087 & 93.5129900089951 \tabularnewline
117 & 5275.6 & 5081.52607745175 & 98.3652107392703 & 5371.30871180898 & -194.07392254825 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299383&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]4393.9[/C][C]4487.39329732721[/C][C]-118.174555704323[/C][C]4418.58125837712[/C][C]93.4932973272062[/C][/ROW]
[ROW][C]2[/C][C]4248[/C][C]4249.92291729459[/C][C]-175.069144086135[/C][C]4421.14622679154[/C][C]1.92291729458975[/C][/ROW]
[ROW][C]3[/C][C]4346.2[/C][C]4352.22249013733[/C][C]-83.5336853433006[/C][C]4423.71119520597[/C][C]6.02249013732762[/C][/ROW]
[ROW][C]4[/C][C]4351.7[/C][C]4310.27662025535[/C][C]-34.2201859210899[/C][C]4427.34356566574[/C][C]-41.4233797446523[/C][/ROW]
[ROW][C]5[/C][C]4424.4[/C][C]4380.59075340983[/C][C]37.2333104646575[/C][C]4430.97593612551[/C][C]-43.8092465901691[/C][/ROW]
[ROW][C]6[/C][C]4468.4[/C][C]4449.05693969274[/C][C]52.3003153308319[/C][C]4435.44274497643[/C][C]-19.3430603072602[/C][/ROW]
[ROW][C]7[/C][C]4519.1[/C][C]4522.69308185186[/C][C]75.5973643207904[/C][C]4439.90955382735[/C][C]3.59308185186455[/C][/ROW]
[ROW][C]8[/C][C]4518.2[/C][C]4487.24409177764[/C][C]103.661268340134[/C][C]4445.49463988223[/C][C]-30.9559082223604[/C][/ROW]
[ROW][C]9[/C][C]4574.5[/C][C]4599.55506332362[/C][C]98.3652107392703[/C][C]4451.07972593711[/C][C]25.0550633236226[/C][/ROW]
[ROW][C]10[/C][C]4509.6[/C][C]4431.25469873705[/C][C]125.240829539343[/C][C]4462.70447172361[/C][C]-78.3453012629498[/C][/ROW]
[ROW][C]11[/C][C]4337.9[/C][C]4263.07883986011[/C][C]-61.6080573702223[/C][C]4474.32921751011[/C][C]-74.8211601398871[/C][/ROW]
[ROW][C]12[/C][C]4441.8[/C][C]4414.71573534055[/C][C]-19.7926537342572[/C][C]4488.6769183937[/C][C]-27.0842646594456[/C][/ROW]
[ROW][C]13[/C][C]4414.1[/C][C]4443.34993642703[/C][C]-118.174555704323[/C][C]4503.0246192773[/C][C]29.2499364270261[/C][/ROW]
[ROW][C]14[/C][C]4465.9[/C][C]4590.02237176096[/C][C]-175.069144086135[/C][C]4516.84677232518[/C][C]124.122371760956[/C][/ROW]
[ROW][C]15[/C][C]4426[/C][C]4404.86475997024[/C][C]-83.5336853433006[/C][C]4530.66892537306[/C][C]-21.1352400297583[/C][/ROW]
[ROW][C]16[/C][C]4518.8[/C][C]4528.78325701408[/C][C]-34.2201859210899[/C][C]4543.03692890701[/C][C]9.98325701407521[/C][/ROW]
[ROW][C]17[/C][C]4606.3[/C][C]4619.96175709437[/C][C]37.2333104646575[/C][C]4555.40493244097[/C][C]13.6617570943727[/C][/ROW]
[ROW][C]18[/C][C]4647.4[/C][C]4677.44589175144[/C][C]52.3003153308319[/C][C]4565.05379291773[/C][C]30.0458917514379[/C][/ROW]
[ROW][C]19[/C][C]4650.8[/C][C]4651.29998228472[/C][C]75.5973643207904[/C][C]4574.70265339449[/C][C]0.499982284719408[/C][/ROW]
[ROW][C]20[/C][C]4650.2[/C][C]4613.24709277331[/C][C]103.661268340134[/C][C]4583.49163888655[/C][C]-36.9529072266851[/C][/ROW]
[ROW][C]21[/C][C]4720.1[/C][C]4749.55416488212[/C][C]98.3652107392703[/C][C]4592.28062437861[/C][C]29.4541648821187[/C][/ROW]
[ROW][C]22[/C][C]4655[/C][C]4583.36479308061[/C][C]125.240829539343[/C][C]4601.39437738005[/C][C]-71.6352069193936[/C][/ROW]
[ROW][C]23[/C][C]4520.8[/C][C]4492.69992698873[/C][C]-61.6080573702223[/C][C]4610.50813038149[/C][C]-28.1000730112692[/C][/ROW]
[ROW][C]24[/C][C]4617.3[/C][C]4637.38819041566[/C][C]-19.7926537342572[/C][C]4617.0044633186[/C][C]20.0881904156568[/C][/ROW]
[ROW][C]25[/C][C]4488.1[/C][C]4470.87375944861[/C][C]-118.174555704323[/C][C]4623.50079625571[/C][C]-17.2262405513857[/C][/ROW]
[ROW][C]26[/C][C]4527.4[/C][C]4600.30597772055[/C][C]-175.069144086135[/C][C]4629.56316636558[/C][C]72.9059777205539[/C][/ROW]
[ROW][C]27[/C][C]4618.3[/C][C]4684.50814886785[/C][C]-83.5336853433006[/C][C]4635.62553647545[/C][C]66.2081488678496[/C][/ROW]
[ROW][C]28[/C][C]4642.8[/C][C]4679.76026769607[/C][C]-34.2201859210899[/C][C]4640.05991822502[/C][C]36.9602676960667[/C][/ROW]
[ROW][C]29[/C][C]4667.3[/C][C]4652.87238956075[/C][C]37.2333104646575[/C][C]4644.4942999746[/C][C]-14.4276104392529[/C][/ROW]
[ROW][C]30[/C][C]4640.6[/C][C]4583.61048260958[/C][C]52.3003153308319[/C][C]4645.28920205959[/C][C]-56.9895173904179[/C][/ROW]
[ROW][C]31[/C][C]4716.9[/C][C]4712.11853153463[/C][C]75.5973643207904[/C][C]4646.08410414458[/C][C]-4.78146846536856[/C][/ROW]
[ROW][C]32[/C][C]4719.4[/C][C]4692.90642741265[/C][C]103.661268340134[/C][C]4642.23230424722[/C][C]-26.4935725873538[/C][/ROW]
[ROW][C]33[/C][C]4817.3[/C][C]4897.85428491087[/C][C]98.3652107392703[/C][C]4638.38050434986[/C][C]80.554284910867[/C][/ROW]
[ROW][C]34[/C][C]4764.5[/C][C]4768.38344126015[/C][C]125.240829539343[/C][C]4635.3757292005[/C][C]3.88344126015454[/C][/ROW]
[ROW][C]35[/C][C]4514.1[/C][C]4457.43710331908[/C][C]-61.6080573702223[/C][C]4632.37095405114[/C][C]-56.6628966809194[/C][/ROW]
[ROW][C]36[/C][C]4625[/C][C]4637.37936582436[/C][C]-19.7926537342572[/C][C]4632.41328790989[/C][C]12.3793658243649[/C][/ROW]
[ROW][C]37[/C][C]4617.7[/C][C]4721.11893393568[/C][C]-118.174555704323[/C][C]4632.45562176864[/C][C]103.418933935679[/C][/ROW]
[ROW][C]38[/C][C]4361.3[/C][C]4262.43427685615[/C][C]-175.069144086135[/C][C]4635.23486722999[/C][C]-98.8657231438519[/C][/ROW]
[ROW][C]39[/C][C]4474.9[/C][C]4395.31957265197[/C][C]-83.5336853433006[/C][C]4638.01411269133[/C][C]-79.5804273480298[/C][/ROW]
[ROW][C]40[/C][C]4623.8[/C][C]4638.36928926016[/C][C]-34.2201859210899[/C][C]4643.45089666093[/C][C]14.5692892601564[/C][/ROW]
[ROW][C]41[/C][C]4692[/C][C]4697.8790089048[/C][C]37.2333104646575[/C][C]4648.88768063054[/C][C]5.87900890480432[/C][/ROW]
[ROW][C]42[/C][C]4672.1[/C][C]4632.6868704892[/C][C]52.3003153308319[/C][C]4659.21281417997[/C][C]-39.4131295108027[/C][/ROW]
[ROW][C]43[/C][C]4721.5[/C][C]4697.86468794981[/C][C]75.5973643207904[/C][C]4669.5379477294[/C][C]-23.6353120501944[/C][/ROW]
[ROW][C]44[/C][C]4784.6[/C][C]4781.188682535[/C][C]103.661268340134[/C][C]4684.35004912486[/C][C]-3.4113174649965[/C][/ROW]
[ROW][C]45[/C][C]4858.7[/C][C]4919.87263874041[/C][C]98.3652107392703[/C][C]4699.16215052032[/C][C]61.1726387404078[/C][/ROW]
[ROW][C]46[/C][C]4813.3[/C][C]4786.01780484933[/C][C]125.240829539343[/C][C]4715.34136561133[/C][C]-27.2821951506721[/C][/ROW]
[ROW][C]47[/C][C]4628.2[/C][C]4586.48747666788[/C][C]-61.6080573702223[/C][C]4731.52058070234[/C][C]-41.7125233321158[/C][/ROW]
[ROW][C]48[/C][C]4710.4[/C][C]4696.05185902963[/C][C]-19.7926537342572[/C][C]4744.54079470463[/C][C]-14.3481409703727[/C][/ROW]
[ROW][C]49[/C][C]4698.4[/C][C]4757.4135469974[/C][C]-118.174555704323[/C][C]4757.56100870692[/C][C]59.0135469974011[/C][/ROW]
[ROW][C]50[/C][C]4631[/C][C]4672.44366758363[/C][C]-175.069144086135[/C][C]4764.62547650251[/C][C]41.443667583625[/C][/ROW]
[ROW][C]51[/C][C]4727.4[/C][C]4766.6437410452[/C][C]-83.5336853433006[/C][C]4771.6899442981[/C][C]39.2437410452021[/C][/ROW]
[ROW][C]52[/C][C]4719.9[/C][C]4697.90795125633[/C][C]-34.2201859210899[/C][C]4776.11223466476[/C][C]-21.9920487436657[/C][/ROW]
[ROW][C]53[/C][C]4890.6[/C][C]4963.43216450393[/C][C]37.2333104646575[/C][C]4780.53452503141[/C][C]72.8321645039305[/C][/ROW]
[ROW][C]54[/C][C]4839.9[/C][C]4842.84674432451[/C][C]52.3003153308319[/C][C]4784.65294034466[/C][C]2.94674432450665[/C][/ROW]
[ROW][C]55[/C][C]4867.5[/C][C]4870.6312800213[/C][C]75.5973643207904[/C][C]4788.77135565791[/C][C]3.13128002129906[/C][/ROW]
[ROW][C]56[/C][C]4898.3[/C][C]4899.66311739559[/C][C]103.661268340134[/C][C]4793.27561426427[/C][C]1.36311739559278[/C][/ROW]
[ROW][C]57[/C][C]4675.7[/C][C]4455.25491639009[/C][C]98.3652107392703[/C][C]4797.77987287064[/C][C]-220.445083609908[/C][/ROW]
[ROW][C]58[/C][C]4981.9[/C][C]5031.70105291503[/C][C]125.240829539343[/C][C]4806.85811754563[/C][C]49.801052915026[/C][/ROW]
[ROW][C]59[/C][C]4771.1[/C][C]4787.8716951496[/C][C]-61.6080573702223[/C][C]4815.93636222063[/C][C]16.7716951495968[/C][/ROW]
[ROW][C]60[/C][C]4827.8[/C][C]4844.97642748589[/C][C]-19.7926537342572[/C][C]4830.41622624837[/C][C]17.1764274858915[/C][/ROW]
[ROW][C]61[/C][C]4685[/C][C]4643.27846542822[/C][C]-118.174555704323[/C][C]4844.89609027611[/C][C]-41.7215345717841[/C][/ROW]
[ROW][C]62[/C][C]4646.1[/C][C]4603.95235906073[/C][C]-175.069144086135[/C][C]4863.3167850254[/C][C]-42.1476409392681[/C][/ROW]
[ROW][C]63[/C][C]4815[/C][C]4831.7962055686[/C][C]-83.5336853433006[/C][C]4881.7374797747[/C][C]16.7962055686012[/C][/ROW]
[ROW][C]64[/C][C]4911.8[/C][C]4957.15664689657[/C][C]-34.2201859210899[/C][C]4900.66353902452[/C][C]45.3566468965673[/C][/ROW]
[ROW][C]65[/C][C]4958.4[/C][C]4959.97709126099[/C][C]37.2333104646575[/C][C]4919.58959827435[/C][C]1.57709126099508[/C][/ROW]
[ROW][C]66[/C][C]5019.4[/C][C]5051.5169620762[/C][C]52.3003153308319[/C][C]4934.98272259297[/C][C]32.1169620761966[/C][/ROW]
[ROW][C]67[/C][C]5024.3[/C][C]5022.62678876761[/C][C]75.5973643207904[/C][C]4950.37584691159[/C][C]-1.67321123238526[/C][/ROW]
[ROW][C]68[/C][C]5035.8[/C][C]5003.76674657404[/C][C]103.661268340134[/C][C]4964.17198508583[/C][C]-32.0332534259614[/C][/ROW]
[ROW][C]69[/C][C]5082.4[/C][C]5088.46666600067[/C][C]98.3652107392703[/C][C]4977.96812326006[/C][C]6.06666600066728[/C][/ROW]
[ROW][C]70[/C][C]5179.2[/C][C]5243.30676135667[/C][C]125.240829539343[/C][C]4989.85240910399[/C][C]64.106761356672[/C][/ROW]
[ROW][C]71[/C][C]4963.2[/C][C]4986.27136242231[/C][C]-61.6080573702223[/C][C]5001.73669494791[/C][C]23.0713624223126[/C][/ROW]
[ROW][C]72[/C][C]4951.3[/C][C]4908.41267959451[/C][C]-19.7926537342572[/C][C]5013.97997413975[/C][C]-42.8873204054889[/C][/ROW]
[ROW][C]73[/C][C]4876.4[/C][C]4844.75130237274[/C][C]-118.174555704323[/C][C]5026.22325333158[/C][C]-31.6486976272608[/C][/ROW]
[ROW][C]74[/C][C]4812.1[/C][C]4758.0052087974[/C][C]-175.069144086135[/C][C]5041.26393528874[/C][C]-54.0947912026049[/C][/ROW]
[ROW][C]75[/C][C]5004.1[/C][C]5035.4290680974[/C][C]-83.5336853433006[/C][C]5056.3046172459[/C][C]31.3290680974042[/C][/ROW]
[ROW][C]76[/C][C]5093.8[/C][C]5146.61371061239[/C][C]-34.2201859210899[/C][C]5075.2064753087[/C][C]52.8137106123868[/C][/ROW]
[ROW][C]77[/C][C]5063.1[/C][C]4994.85835616383[/C][C]37.2333104646575[/C][C]5094.10833337151[/C][C]-68.2416438361679[/C][/ROW]
[ROW][C]78[/C][C]5078.6[/C][C]4990.1094630743[/C][C]52.3003153308319[/C][C]5114.79022159487[/C][C]-88.4905369257003[/C][/ROW]
[ROW][C]79[/C][C]5251.5[/C][C]5291.93052586098[/C][C]75.5973643207904[/C][C]5135.47210981823[/C][C]40.4305258609829[/C][/ROW]
[ROW][C]80[/C][C]5263.2[/C][C]5268.53793596279[/C][C]103.661268340134[/C][C]5154.20079569708[/C][C]5.3379359627852[/C][/ROW]
[ROW][C]81[/C][C]5280.5[/C][C]5289.70530768479[/C][C]98.3652107392703[/C][C]5172.92948157594[/C][C]9.20530768479421[/C][/ROW]
[ROW][C]82[/C][C]5386.1[/C][C]5460.23151018796[/C][C]125.240829539343[/C][C]5186.7276602727[/C][C]74.1315101879618[/C][/ROW]
[ROW][C]83[/C][C]5227.3[/C][C]5315.68221840077[/C][C]-61.6080573702223[/C][C]5200.52583896946[/C][C]88.3822184007668[/C][/ROW]
[ROW][C]84[/C][C]5149.5[/C][C]5107.59519533792[/C][C]-19.7926537342572[/C][C]5211.19745839634[/C][C]-41.9048046620828[/C][/ROW]
[ROW][C]85[/C][C]5128.6[/C][C]5153.5054778811[/C][C]-118.174555704323[/C][C]5221.86907782322[/C][C]24.9054778810996[/C][/ROW]
[ROW][C]86[/C][C]5087.7[/C][C]5121.82316286222[/C][C]-175.069144086135[/C][C]5228.64598122391[/C][C]34.1231628622209[/C][/ROW]
[ROW][C]87[/C][C]5188.5[/C][C]5225.1108007187[/C][C]-83.5336853433006[/C][C]5235.4228846246[/C][C]36.6108007186967[/C][/ROW]
[ROW][C]88[/C][C]5084[/C][C]4961.44961500785[/C][C]-34.2201859210899[/C][C]5240.77057091324[/C][C]-122.550384992151[/C][/ROW]
[ROW][C]89[/C][C]5258.6[/C][C]5233.84843233347[/C][C]37.2333104646575[/C][C]5246.11825720188[/C][C]-24.7515676665353[/C][/ROW]
[ROW][C]90[/C][C]5348.9[/C][C]5393.85659652608[/C][C]52.3003153308319[/C][C]5251.64308814309[/C][C]44.9565965260763[/C][/ROW]
[ROW][C]91[/C][C]5280[/C][C]5227.2347165949[/C][C]75.5973643207904[/C][C]5257.16791908431[/C][C]-52.7652834050959[/C][/ROW]
[ROW][C]92[/C][C]5374.2[/C][C]5381.63613794656[/C][C]103.661268340134[/C][C]5263.10259371331[/C][C]7.43613794655539[/C][/ROW]
[ROW][C]93[/C][C]5458.4[/C][C]5549.39752091841[/C][C]98.3652107392703[/C][C]5269.03726834232[/C][C]90.9975209184122[/C][/ROW]
[ROW][C]94[/C][C]5315[/C][C]5229.02894937491[/C][C]125.240829539343[/C][C]5275.73022108575[/C][C]-85.9710506250894[/C][/ROW]
[ROW][C]95[/C][C]5294.5[/C][C]5368.18488354105[/C][C]-61.6080573702223[/C][C]5282.42317382918[/C][C]73.6848835410465[/C][/ROW]
[ROW][C]96[/C][C]5341.4[/C][C]5414.26190706213[/C][C]-19.7926537342572[/C][C]5288.33074667212[/C][C]72.8619070621326[/C][/ROW]
[ROW][C]97[/C][C]5068[/C][C]4959.93623618925[/C][C]-118.174555704323[/C][C]5294.23831951507[/C][C]-108.06376381075[/C][/ROW]
[ROW][C]98[/C][C]5156.9[/C][C]5188.19430265715[/C][C]-175.069144086135[/C][C]5300.67484142898[/C][C]31.2943026571538[/C][/ROW]
[ROW][C]99[/C][C]5184.7[/C][C]5145.82232200041[/C][C]-83.5336853433006[/C][C]5307.11136334289[/C][C]-38.8776779995869[/C][/ROW]
[ROW][C]100[/C][C]5280.7[/C][C]5280.85104236007[/C][C]-34.2201859210899[/C][C]5314.76914356102[/C][C]0.15104236006664[/C][/ROW]
[ROW][C]101[/C][C]5339[/C][C]5318.33976575618[/C][C]37.2333104646575[/C][C]5322.42692377916[/C][C]-20.6602342438173[/C][/ROW]
[ROW][C]102[/C][C]5377.7[/C][C]5374.67297177824[/C][C]52.3003153308319[/C][C]5328.42671289092[/C][C]-3.02702822175524[/C][/ROW]
[ROW][C]103[/C][C]5388.6[/C][C]5367.17613367652[/C][C]75.5973643207904[/C][C]5334.42650200269[/C][C]-21.4238663234764[/C][/ROW]
[ROW][C]104[/C][C]5443.6[/C][C]5445.19624274688[/C][C]103.661268340134[/C][C]5338.34248891299[/C][C]1.59624274687576[/C][/ROW]
[ROW][C]105[/C][C]5528.7[/C][C]5616.77631343743[/C][C]98.3652107392703[/C][C]5342.2584758233[/C][C]88.0763134374347[/C][/ROW]
[ROW][C]106[/C][C]5539[/C][C]5605.11552864287[/C][C]125.240829539343[/C][C]5347.64364181779[/C][C]66.1155286428693[/C][/ROW]
[ROW][C]107[/C][C]5292[/C][C]5292.57924955794[/C][C]-61.6080573702223[/C][C]5353.02880781228[/C][C]0.579249557940784[/C][/ROW]
[ROW][C]108[/C][C]5351.5[/C][C]5362.58296987743[/C][C]-19.7926537342572[/C][C]5360.20968385683[/C][C]11.0829698774269[/C][/ROW]
[ROW][C]109[/C][C]5163.7[/C][C]5078.18399580294[/C][C]-118.174555704323[/C][C]5367.39055990138[/C][C]-85.5160041970566[/C][/ROW]
[ROW][C]110[/C][C]5105[/C][C]5016.59302604678[/C][C]-175.069144086135[/C][C]5368.47611803935[/C][C]-88.406973953216[/C][/ROW]
[ROW][C]111[/C][C]5248.1[/C][C]5210.17200916598[/C][C]-83.5336853433006[/C][C]5369.56167617732[/C][C]-37.9279908340204[/C][/ROW]
[ROW][C]112[/C][C]5370.9[/C][C]5406.67361156257[/C][C]-34.2201859210899[/C][C]5369.34657435852[/C][C]35.773611562573[/C][/ROW]
[ROW][C]113[/C][C]5484.9[/C][C]5563.43521699563[/C][C]37.2333104646575[/C][C]5369.13147253971[/C][C]78.5352169956304[/C][/ROW]
[ROW][C]114[/C][C]5510.7[/C][C]5599.56256265293[/C][C]52.3003153308319[/C][C]5369.53712201624[/C][C]88.862562652931[/C][/ROW]
[ROW][C]115[/C][C]5484.9[/C][C]5524.25986418645[/C][C]75.5973643207904[/C][C]5369.94277149276[/C][C]39.3598641864464[/C][/ROW]
[ROW][C]116[/C][C]5567.8[/C][C]5661.312990009[/C][C]103.661268340134[/C][C]5370.62574165087[/C][C]93.5129900089951[/C][/ROW]
[ROW][C]117[/C][C]5275.6[/C][C]5081.52607745175[/C][C]98.3652107392703[/C][C]5371.30871180898[/C][C]-194.07392254825[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299383&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299383&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
14393.94487.39329732721-118.1745557043234418.5812583771293.4932973272062
242484249.92291729459-175.0691440861354421.146226791541.92291729458975
34346.24352.22249013733-83.53368534330064423.711195205976.02249013732762
44351.74310.27662025535-34.22018592108994427.34356566574-41.4233797446523
54424.44380.5907534098337.23331046465754430.97593612551-43.8092465901691
64468.44449.0569396927452.30031533083194435.44274497643-19.3430603072602
74519.14522.6930818518675.59736432079044439.909553827353.59308185186455
84518.24487.24409177764103.6612683401344445.49463988223-30.9559082223604
94574.54599.5550633236298.36521073927034451.0797259371125.0550633236226
104509.64431.25469873705125.2408295393434462.70447172361-78.3453012629498
114337.94263.07883986011-61.60805737022234474.32921751011-74.8211601398871
124441.84414.71573534055-19.79265373425724488.6769183937-27.0842646594456
134414.14443.34993642703-118.1745557043234503.024619277329.2499364270261
144465.94590.02237176096-175.0691440861354516.84677232518124.122371760956
1544264404.86475997024-83.53368534330064530.66892537306-21.1352400297583
164518.84528.78325701408-34.22018592108994543.036928907019.98325701407521
174606.34619.9617570943737.23331046465754555.4049324409713.6617570943727
184647.44677.4458917514452.30031533083194565.0537929177330.0458917514379
194650.84651.2999822847275.59736432079044574.702653394490.499982284719408
204650.24613.24709277331103.6612683401344583.49163888655-36.9529072266851
214720.14749.5541648821298.36521073927034592.2806243786129.4541648821187
2246554583.36479308061125.2408295393434601.39437738005-71.6352069193936
234520.84492.69992698873-61.60805737022234610.50813038149-28.1000730112692
244617.34637.38819041566-19.79265373425724617.004463318620.0881904156568
254488.14470.87375944861-118.1745557043234623.50079625571-17.2262405513857
264527.44600.30597772055-175.0691440861354629.5631663655872.9059777205539
274618.34684.50814886785-83.53368534330064635.6255364754566.2081488678496
284642.84679.76026769607-34.22018592108994640.0599182250236.9602676960667
294667.34652.8723895607537.23331046465754644.4942999746-14.4276104392529
304640.64583.6104826095852.30031533083194645.28920205959-56.9895173904179
314716.94712.1185315346375.59736432079044646.08410414458-4.78146846536856
324719.44692.90642741265103.6612683401344642.23230424722-26.4935725873538
334817.34897.8542849108798.36521073927034638.3805043498680.554284910867
344764.54768.38344126015125.2408295393434635.37572920053.88344126015454
354514.14457.43710331908-61.60805737022234632.37095405114-56.6628966809194
3646254637.37936582436-19.79265373425724632.4132879098912.3793658243649
374617.74721.11893393568-118.1745557043234632.45562176864103.418933935679
384361.34262.43427685615-175.0691440861354635.23486722999-98.8657231438519
394474.94395.31957265197-83.53368534330064638.01411269133-79.5804273480298
404623.84638.36928926016-34.22018592108994643.4508966609314.5692892601564
4146924697.879008904837.23331046465754648.887680630545.87900890480432
424672.14632.686870489252.30031533083194659.21281417997-39.4131295108027
434721.54697.8646879498175.59736432079044669.5379477294-23.6353120501944
444784.64781.188682535103.6612683401344684.35004912486-3.4113174649965
454858.74919.8726387404198.36521073927034699.1621505203261.1726387404078
464813.34786.01780484933125.2408295393434715.34136561133-27.2821951506721
474628.24586.48747666788-61.60805737022234731.52058070234-41.7125233321158
484710.44696.05185902963-19.79265373425724744.54079470463-14.3481409703727
494698.44757.4135469974-118.1745557043234757.5610087069259.0135469974011
5046314672.44366758363-175.0691440861354764.6254765025141.443667583625
514727.44766.6437410452-83.53368534330064771.689944298139.2437410452021
524719.94697.90795125633-34.22018592108994776.11223466476-21.9920487436657
534890.64963.4321645039337.23331046465754780.5345250314172.8321645039305
544839.94842.8467443245152.30031533083194784.652940344662.94674432450665
554867.54870.631280021375.59736432079044788.771355657913.13128002129906
564898.34899.66311739559103.6612683401344793.275614264271.36311739559278
574675.74455.2549163900998.36521073927034797.77987287064-220.445083609908
584981.95031.70105291503125.2408295393434806.8581175456349.801052915026
594771.14787.8716951496-61.60805737022234815.9363622206316.7716951495968
604827.84844.97642748589-19.79265373425724830.4162262483717.1764274858915
6146854643.27846542822-118.1745557043234844.89609027611-41.7215345717841
624646.14603.95235906073-175.0691440861354863.3167850254-42.1476409392681
6348154831.7962055686-83.53368534330064881.737479774716.7962055686012
644911.84957.15664689657-34.22018592108994900.6635390245245.3566468965673
654958.44959.9770912609937.23331046465754919.589598274351.57709126099508
665019.45051.516962076252.30031533083194934.9827225929732.1169620761966
675024.35022.6267887676175.59736432079044950.37584691159-1.67321123238526
685035.85003.76674657404103.6612683401344964.17198508583-32.0332534259614
695082.45088.4666660006798.36521073927034977.968123260066.06666600066728
705179.25243.30676135667125.2408295393434989.8524091039964.106761356672
714963.24986.27136242231-61.60805737022235001.7366949479123.0713624223126
724951.34908.41267959451-19.79265373425725013.97997413975-42.8873204054889
734876.44844.75130237274-118.1745557043235026.22325333158-31.6486976272608
744812.14758.0052087974-175.0691440861355041.26393528874-54.0947912026049
755004.15035.4290680974-83.53368534330065056.304617245931.3290680974042
765093.85146.61371061239-34.22018592108995075.206475308752.8137106123868
775063.14994.8583561638337.23331046465755094.10833337151-68.2416438361679
785078.64990.109463074352.30031533083195114.79022159487-88.4905369257003
795251.55291.9305258609875.59736432079045135.4721098182340.4305258609829
805263.25268.53793596279103.6612683401345154.200795697085.3379359627852
815280.55289.7053076847998.36521073927035172.929481575949.20530768479421
825386.15460.23151018796125.2408295393435186.727660272774.1315101879618
835227.35315.68221840077-61.60805737022235200.5258389694688.3822184007668
845149.55107.59519533792-19.79265373425725211.19745839634-41.9048046620828
855128.65153.5054778811-118.1745557043235221.8690778232224.9054778810996
865087.75121.82316286222-175.0691440861355228.6459812239134.1231628622209
875188.55225.1108007187-83.53368534330065235.422884624636.6108007186967
8850844961.44961500785-34.22018592108995240.77057091324-122.550384992151
895258.65233.8484323334737.23331046465755246.11825720188-24.7515676665353
905348.95393.8565965260852.30031533083195251.6430881430944.9565965260763
9152805227.234716594975.59736432079045257.16791908431-52.7652834050959
925374.25381.63613794656103.6612683401345263.102593713317.43613794655539
935458.45549.3975209184198.36521073927035269.0372683423290.9975209184122
9453155229.02894937491125.2408295393435275.73022108575-85.9710506250894
955294.55368.18488354105-61.60805737022235282.4231738291873.6848835410465
965341.45414.26190706213-19.79265373425725288.3307466721272.8619070621326
9750684959.93623618925-118.1745557043235294.23831951507-108.06376381075
985156.95188.19430265715-175.0691440861355300.6748414289831.2943026571538
995184.75145.82232200041-83.53368534330065307.11136334289-38.8776779995869
1005280.75280.85104236007-34.22018592108995314.769143561020.15104236006664
10153395318.3397657561837.23331046465755322.42692377916-20.6602342438173
1025377.75374.6729717782452.30031533083195328.42671289092-3.02702822175524
1035388.65367.1761336765275.59736432079045334.42650200269-21.4238663234764
1045443.65445.19624274688103.6612683401345338.342488912991.59624274687576
1055528.75616.7763134374398.36521073927035342.258475823388.0763134374347
10655395605.11552864287125.2408295393435347.6436418177966.1155286428693
10752925292.57924955794-61.60805737022235353.028807812280.579249557940784
1085351.55362.58296987743-19.79265373425725360.2096838568311.0829698774269
1095163.75078.18399580294-118.1745557043235367.39055990138-85.5160041970566
11051055016.59302604678-175.0691440861355368.47611803935-88.406973953216
1115248.15210.17200916598-83.53368534330065369.56167617732-37.9279908340204
1125370.95406.67361156257-34.22018592108995369.3465743585235.773611562573
1135484.95563.4352169956337.23331046465755369.1314725397178.5352169956304
1145510.75599.5625626529352.30031533083195369.5371220162488.862562652931
1155484.95524.2598641864575.59736432079045369.9427714927639.3598641864464
1165567.85661.312990009103.6612683401345370.6257416508793.5129900089951
1175275.65081.5260774517598.36521073927035371.30871180898-194.07392254825



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')