Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_histogram.wasp
Title produced by softwareHistogram
Date of computationWed, 14 Dec 2016 13:32:00 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481719446jv1x172f73lux7a.htm/, Retrieved Fri, 01 Nov 2024 03:26:45 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299372, Retrieved Fri, 01 Nov 2024 03:26:45 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact190
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-     [Pearson Correlation] [] [2015-09-15 13:18:14] [32b17a345b130fdf5cc88718ed94a974]
- RMPD    [Histogram] [Histogram: soorte...] [2016-12-14 12:32:00] [325a18647724c80085378f2a448a1737] [Current]
- R         [Histogram] [Histogram: soorte...] [2016-12-14 12:45:26] [94d92f6843fa5eeafb3432946c36ea8b]
- RM D      [Simple Linear Regression] [Regressieanalyse] [2016-12-14 12:49:24] [94d92f6843fa5eeafb3432946c36ea8b]
Feedback Forum

Post a new message
Dataseries X:
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5
9.5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299372&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299372&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299372&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Frequency Table (Histogram)
BinsMidpointAbs. FrequencyRel. FrequencyCumul. Rel. Freq.Density
[0,1]0.5280.0754720.0754720.075472
]1,2]1.5150.0404310.1159030.040431
]2,3]2.5120.0323450.1482480.032345
]3,4]3.5340.0916440.2398920.091644
]4,5]4.5290.0781670.3180590.078167
]5,6]5.5270.0727760.3908360.072776
]6,7]6.5600.1617250.5525610.161725
]7,8]7.5830.223720.776280.22372
]8,9]8.5510.1374660.9137470.137466
]9,10]9.5320.08625310.086253

\begin{tabular}{lllllllll}
\hline
Frequency Table (Histogram) \tabularnewline
Bins & Midpoint & Abs. Frequency & Rel. Frequency & Cumul. Rel. Freq. & Density \tabularnewline
[0,1] & 0.5 & 28 & 0.075472 & 0.075472 & 0.075472 \tabularnewline
]1,2] & 1.5 & 15 & 0.040431 & 0.115903 & 0.040431 \tabularnewline
]2,3] & 2.5 & 12 & 0.032345 & 0.148248 & 0.032345 \tabularnewline
]3,4] & 3.5 & 34 & 0.091644 & 0.239892 & 0.091644 \tabularnewline
]4,5] & 4.5 & 29 & 0.078167 & 0.318059 & 0.078167 \tabularnewline
]5,6] & 5.5 & 27 & 0.072776 & 0.390836 & 0.072776 \tabularnewline
]6,7] & 6.5 & 60 & 0.161725 & 0.552561 & 0.161725 \tabularnewline
]7,8] & 7.5 & 83 & 0.22372 & 0.77628 & 0.22372 \tabularnewline
]8,9] & 8.5 & 51 & 0.137466 & 0.913747 & 0.137466 \tabularnewline
]9,10] & 9.5 & 32 & 0.086253 & 1 & 0.086253 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299372&T=1

[TABLE]
[ROW][C]Frequency Table (Histogram)[/C][/ROW]
[ROW][C]Bins[/C][C]Midpoint[/C][C]Abs. Frequency[/C][C]Rel. Frequency[/C][C]Cumul. Rel. Freq.[/C][C]Density[/C][/ROW]
[ROW][C][0,1][/C][C]0.5[/C][C]28[/C][C]0.075472[/C][C]0.075472[/C][C]0.075472[/C][/ROW]
[ROW][C]]1,2][/C][C]1.5[/C][C]15[/C][C]0.040431[/C][C]0.115903[/C][C]0.040431[/C][/ROW]
[ROW][C]]2,3][/C][C]2.5[/C][C]12[/C][C]0.032345[/C][C]0.148248[/C][C]0.032345[/C][/ROW]
[ROW][C]]3,4][/C][C]3.5[/C][C]34[/C][C]0.091644[/C][C]0.239892[/C][C]0.091644[/C][/ROW]
[ROW][C]]4,5][/C][C]4.5[/C][C]29[/C][C]0.078167[/C][C]0.318059[/C][C]0.078167[/C][/ROW]
[ROW][C]]5,6][/C][C]5.5[/C][C]27[/C][C]0.072776[/C][C]0.390836[/C][C]0.072776[/C][/ROW]
[ROW][C]]6,7][/C][C]6.5[/C][C]60[/C][C]0.161725[/C][C]0.552561[/C][C]0.161725[/C][/ROW]
[ROW][C]]7,8][/C][C]7.5[/C][C]83[/C][C]0.22372[/C][C]0.77628[/C][C]0.22372[/C][/ROW]
[ROW][C]]8,9][/C][C]8.5[/C][C]51[/C][C]0.137466[/C][C]0.913747[/C][C]0.137466[/C][/ROW]
[ROW][C]]9,10][/C][C]9.5[/C][C]32[/C][C]0.086253[/C][C]1[/C][C]0.086253[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299372&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299372&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Frequency Table (Histogram)
BinsMidpointAbs. FrequencyRel. FrequencyCumul. Rel. Freq.Density
[0,1]0.5280.0754720.0754720.075472
]1,2]1.5150.0404310.1159030.040431
]2,3]2.5120.0323450.1482480.032345
]3,4]3.5340.0916440.2398920.091644
]4,5]4.5290.0781670.3180590.078167
]5,6]5.5270.0727760.3908360.072776
]6,7]6.5600.1617250.5525610.161725
]7,8]7.5830.223720.776280.22372
]8,9]8.5510.1374660.9137470.137466
]9,10]9.5320.08625310.086253



Parameters (Session):
par1 = 8 ; par2 = 0 ;
Parameters (R input):
par1 = 11 ; par2 = grey ; par3 = TRUE ; par4 = Interval/Ratio ;
R code (references can be found in the software module):
par4 <- 'Unknown'
par3 <- 'TRUE'
par2 <- 'grey'
par1 <- '11'
par1 <- as.numeric(par1)
if (par3 == 'TRUE') par3 <- TRUE
if (par3 == 'FALSE') par3 <- FALSE
if (par4 == 'Unknown') par1 <- as.numeric(par1)
if (par4 == 'Interval/Ratio') par1 <- as.numeric(par1)
if (par4 == '3-point Likert') par1 <- c(1:3 - 0.5, 3.5)
if (par4 == '4-point Likert') par1 <- c(1:4 - 0.5, 4.5)
if (par4 == '5-point Likert') par1 <- c(1:5 - 0.5, 5.5)
if (par4 == '6-point Likert') par1 <- c(1:6 - 0.5, 6.5)
if (par4 == '7-point Likert') par1 <- c(1:7 - 0.5, 7.5)
if (par4 == '8-point Likert') par1 <- c(1:8 - 0.5, 8.5)
if (par4 == '9-point Likert') par1 <- c(1:9 - 0.5, 9.5)
if (par4 == '10-point Likert') par1 <- c(1:10 - 0.5, 10.5)
bitmap(file='test1.png')
if(is.numeric(x[1])) {
if (is.na(par1)) {
myhist<-hist(x,col=par2,main=main,xlab=xlab,right=par3)
} else {
if (par1 < 0) par1 <- 3
if (par1 > 50) par1 <- 50
myhist<-hist(x,breaks=par1,col=par2,main=main,xlab=xlab,right=par3)
}
} else {
barplot(mytab <- sort(table(x),T),col=par2,main='Frequency Plot',xlab=xlab,ylab='Absolute Frequency')
}
dev.off()
if(is.numeric(x[1])) {
myhist
n <- length(x)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Frequency Table (Histogram)',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Bins',header=TRUE)
a<-table.element(a,'Midpoint',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.element(a,'Cumul. Rel. Freq.',header=TRUE)
a<-table.element(a,'Density',header=TRUE)
a<-table.row.end(a)
crf <- 0
if (par3 == FALSE) mybracket <- '[' else mybracket <- ']'
mynumrows <- (length(myhist$breaks)-1)
for (i in 1:mynumrows) {
a<-table.row.start(a)
if (i == 1)
dum <- paste('[',myhist$breaks[i],sep='')
else
dum <- paste(mybracket,myhist$breaks[i],sep='')
dum <- paste(dum,myhist$breaks[i+1],sep=',')
if (i==mynumrows)
dum <- paste(dum,']',sep='')
else
dum <- paste(dum,mybracket,sep='')
a<-table.element(a,dum,header=TRUE)
a<-table.element(a,myhist$mids[i])
a<-table.element(a,myhist$counts[i])
rf <- myhist$counts[i]/n
crf <- crf + rf
a<-table.element(a,round(rf,6))
a<-table.element(a,round(crf,6))
a<-table.element(a,round(myhist$density[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
} else {
mytab
reltab <- mytab / sum(mytab)
n <- length(mytab)
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Frequency Table (Categorical Data)',3,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Category',header=TRUE)
a<-table.element(a,'Abs. Frequency',header=TRUE)
a<-table.element(a,'Rel. Frequency',header=TRUE)
a<-table.row.end(a)
for (i in 1:n) {
a<-table.row.start(a)
a<-table.element(a,labels(mytab)$x[i],header=TRUE)
a<-table.element(a,mytab[i])
a<-table.element(a,round(reltab[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
}