Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_arimaforecasting.wasp
Title produced by softwareARIMA Forecasting
Date of computationWed, 14 Dec 2016 13:35:50 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481719137itmf7fq23vfbx7w.htm/, Retrieved Fri, 01 Nov 2024 03:41:38 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299366, Retrieved Fri, 01 Nov 2024 03:41:38 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact71
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [ARIMA Forecasting] [Standard Deviatio...] [2016-12-14 12:35:50] [f916b4255bf1e1993d1067800ff1f972] [Current]
Feedback Forum

Post a new message
Dataseries X:
5033
4509.5
3970
3378
2866
2315.5
1895
8401.5
8040
7534
7135.5
6466.5
5661.5
4896
4064.5
3296
2593.5
2007
1513.5
6645
6221.5
5474
5135.5
4630.5
4164
3600.5
2969
2503.5
2054.5
1608.5
1297.5
8485
8163.5
7814
7453.5
6888.5
6283.5
5712
5030
4488
4058.5
3585
3199.5
8181
8219.5
7865.5
7516.5
7116
6615.5
6216.5
5699.5
5179
4727.5
4224.5
3780.5
7023.5
6558
6257.5
5862.5
5343
4756
4173.5
3451.5
2849
2351
1887.5
1416.5
7399
7013
6644.5
6238.5
5721
5137.5
4357
3750.5
3324
2861
2455.5
2027.5
8388.5
7910
7686
7163
6841.5
6448.5
6060.5
5739
5362.5
5081
4764
4522.5
9056.5
8352
7683
7319.5
6708
6204.5
5576.5
4776.5
4279.5
3918
3288.5
2393.5
8131.5
8121
7790.5
7411.5
6861
6197
5622.5
4855.5
4303.5
3853.5
3283.5
2861.5
9486.5
9061
8877.5
8557.5
8031
7404.5
6852.5
6174.5
5341.5
4975.5
4290




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time1 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299366&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]1 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299366&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299366&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time1 seconds
R ServerBig Analytics Cloud Computing Center







Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[126])
1143283.5-------
1152861.5-------
1169486.5-------
1179061-------
1188877.5-------
1198557.5-------
1208031-------
1217404.5-------
1226852.5-------
1236174.5-------
1245341.5-------
1254975.5-------
1264290-------
127NA3704.36572749.07274659.6587NA0.11480.95810.1148
128NA10002.81448599.606511406.0222NANA0.76461
129NA9728.61867945.292411511.9447NANA0.76851
130NA9490.73627402.217811579.2546NANA0.71751
131NA9150.63076791.081711510.1797NANA0.68891
132NA8615.12616014.483211215.769NANA0.67010.9994
133NA7975.4865153.377210797.5948NANA0.65420.9948
134NA7415.36494388.342310442.3874NANA0.64220.9785
135NA6705.7133486.61289924.8132NANA0.62680.9293
136NA5972.7852572.52319373.0468NANA0.6420.834
137NA5576.87492004.58849149.1613NANA0.62930.7599
138NA4932.5121196.13058668.8936NANA0.6320.632
139NA4405.1699296.00838514.3314NANANA0.5219
140NA10819.94026350.970115288.9103NANANA0.9979
141NA10491.8485672.618315311.0776NANANA0.9942
142NA10273.33725130.68315415.9915NANANA0.9887
143NA9940.39384491.159715389.6278NANANA0.9789
144NA9408.09673669.529315146.6642NANANA0.9598
145NA8773.13742758.692914787.5819NANANA0.928
146NA8215.90911937.899714493.9185NANANA0.8898
147NA7517.5322986.490614048.5737NANANA0.8336
148NA6748.9568-25.628513523.5421NANANA0.7616
149NA6363.7012-645.992113373.3945NANANA0.719
150NA5704.6846-1532.473212941.8424NANANA0.6492

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast \tabularnewline
time & Y[t] & F[t] & 95% LB & 95% UB & p-value(H0: Y[t] = F[t]) & P(F[t]>Y[t-1]) & P(F[t]>Y[t-s]) & P(F[t]>Y[126]) \tabularnewline
114 & 3283.5 & - & - & - & - & - & - & - \tabularnewline
115 & 2861.5 & - & - & - & - & - & - & - \tabularnewline
116 & 9486.5 & - & - & - & - & - & - & - \tabularnewline
117 & 9061 & - & - & - & - & - & - & - \tabularnewline
118 & 8877.5 & - & - & - & - & - & - & - \tabularnewline
119 & 8557.5 & - & - & - & - & - & - & - \tabularnewline
120 & 8031 & - & - & - & - & - & - & - \tabularnewline
121 & 7404.5 & - & - & - & - & - & - & - \tabularnewline
122 & 6852.5 & - & - & - & - & - & - & - \tabularnewline
123 & 6174.5 & - & - & - & - & - & - & - \tabularnewline
124 & 5341.5 & - & - & - & - & - & - & - \tabularnewline
125 & 4975.5 & - & - & - & - & - & - & - \tabularnewline
126 & 4290 & - & - & - & - & - & - & - \tabularnewline
127 & NA & 3704.3657 & 2749.0727 & 4659.6587 & NA & 0.1148 & 0.9581 & 0.1148 \tabularnewline
128 & NA & 10002.8144 & 8599.6065 & 11406.0222 & NA & NA & 0.7646 & 1 \tabularnewline
129 & NA & 9728.6186 & 7945.2924 & 11511.9447 & NA & NA & 0.7685 & 1 \tabularnewline
130 & NA & 9490.7362 & 7402.2178 & 11579.2546 & NA & NA & 0.7175 & 1 \tabularnewline
131 & NA & 9150.6307 & 6791.0817 & 11510.1797 & NA & NA & 0.6889 & 1 \tabularnewline
132 & NA & 8615.1261 & 6014.4832 & 11215.769 & NA & NA & 0.6701 & 0.9994 \tabularnewline
133 & NA & 7975.486 & 5153.3772 & 10797.5948 & NA & NA & 0.6542 & 0.9948 \tabularnewline
134 & NA & 7415.3649 & 4388.3423 & 10442.3874 & NA & NA & 0.6422 & 0.9785 \tabularnewline
135 & NA & 6705.713 & 3486.6128 & 9924.8132 & NA & NA & 0.6268 & 0.9293 \tabularnewline
136 & NA & 5972.785 & 2572.5231 & 9373.0468 & NA & NA & 0.642 & 0.834 \tabularnewline
137 & NA & 5576.8749 & 2004.5884 & 9149.1613 & NA & NA & 0.6293 & 0.7599 \tabularnewline
138 & NA & 4932.512 & 1196.1305 & 8668.8936 & NA & NA & 0.632 & 0.632 \tabularnewline
139 & NA & 4405.1699 & 296.0083 & 8514.3314 & NA & NA & NA & 0.5219 \tabularnewline
140 & NA & 10819.9402 & 6350.9701 & 15288.9103 & NA & NA & NA & 0.9979 \tabularnewline
141 & NA & 10491.848 & 5672.6183 & 15311.0776 & NA & NA & NA & 0.9942 \tabularnewline
142 & NA & 10273.3372 & 5130.683 & 15415.9915 & NA & NA & NA & 0.9887 \tabularnewline
143 & NA & 9940.3938 & 4491.1597 & 15389.6278 & NA & NA & NA & 0.9789 \tabularnewline
144 & NA & 9408.0967 & 3669.5293 & 15146.6642 & NA & NA & NA & 0.9598 \tabularnewline
145 & NA & 8773.1374 & 2758.6929 & 14787.5819 & NA & NA & NA & 0.928 \tabularnewline
146 & NA & 8215.9091 & 1937.8997 & 14493.9185 & NA & NA & NA & 0.8898 \tabularnewline
147 & NA & 7517.5322 & 986.4906 & 14048.5737 & NA & NA & NA & 0.8336 \tabularnewline
148 & NA & 6748.9568 & -25.6285 & 13523.5421 & NA & NA & NA & 0.7616 \tabularnewline
149 & NA & 6363.7012 & -645.9921 & 13373.3945 & NA & NA & NA & 0.719 \tabularnewline
150 & NA & 5704.6846 & -1532.4732 & 12941.8424 & NA & NA & NA & 0.6492 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299366&T=1

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast[/C][/ROW]
[ROW][C]time[/C][C]Y[t][/C][C]F[t][/C][C]95% LB[/C][C]95% UB[/C][C]p-value(H0: Y[t] = F[t])[/C][C]P(F[t]>Y[t-1])[/C][C]P(F[t]>Y[t-s])[/C][C]P(F[t]>Y[126])[/C][/ROW]
[ROW][C]114[/C][C]3283.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]115[/C][C]2861.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]116[/C][C]9486.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]117[/C][C]9061[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]118[/C][C]8877.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]119[/C][C]8557.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]120[/C][C]8031[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]121[/C][C]7404.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]122[/C][C]6852.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]123[/C][C]6174.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]124[/C][C]5341.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]125[/C][C]4975.5[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]126[/C][C]4290[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][C]-[/C][/ROW]
[ROW][C]127[/C][C]NA[/C][C]3704.3657[/C][C]2749.0727[/C][C]4659.6587[/C][C]NA[/C][C]0.1148[/C][C]0.9581[/C][C]0.1148[/C][/ROW]
[ROW][C]128[/C][C]NA[/C][C]10002.8144[/C][C]8599.6065[/C][C]11406.0222[/C][C]NA[/C][C]NA[/C][C]0.7646[/C][C]1[/C][/ROW]
[ROW][C]129[/C][C]NA[/C][C]9728.6186[/C][C]7945.2924[/C][C]11511.9447[/C][C]NA[/C][C]NA[/C][C]0.7685[/C][C]1[/C][/ROW]
[ROW][C]130[/C][C]NA[/C][C]9490.7362[/C][C]7402.2178[/C][C]11579.2546[/C][C]NA[/C][C]NA[/C][C]0.7175[/C][C]1[/C][/ROW]
[ROW][C]131[/C][C]NA[/C][C]9150.6307[/C][C]6791.0817[/C][C]11510.1797[/C][C]NA[/C][C]NA[/C][C]0.6889[/C][C]1[/C][/ROW]
[ROW][C]132[/C][C]NA[/C][C]8615.1261[/C][C]6014.4832[/C][C]11215.769[/C][C]NA[/C][C]NA[/C][C]0.6701[/C][C]0.9994[/C][/ROW]
[ROW][C]133[/C][C]NA[/C][C]7975.486[/C][C]5153.3772[/C][C]10797.5948[/C][C]NA[/C][C]NA[/C][C]0.6542[/C][C]0.9948[/C][/ROW]
[ROW][C]134[/C][C]NA[/C][C]7415.3649[/C][C]4388.3423[/C][C]10442.3874[/C][C]NA[/C][C]NA[/C][C]0.6422[/C][C]0.9785[/C][/ROW]
[ROW][C]135[/C][C]NA[/C][C]6705.713[/C][C]3486.6128[/C][C]9924.8132[/C][C]NA[/C][C]NA[/C][C]0.6268[/C][C]0.9293[/C][/ROW]
[ROW][C]136[/C][C]NA[/C][C]5972.785[/C][C]2572.5231[/C][C]9373.0468[/C][C]NA[/C][C]NA[/C][C]0.642[/C][C]0.834[/C][/ROW]
[ROW][C]137[/C][C]NA[/C][C]5576.8749[/C][C]2004.5884[/C][C]9149.1613[/C][C]NA[/C][C]NA[/C][C]0.6293[/C][C]0.7599[/C][/ROW]
[ROW][C]138[/C][C]NA[/C][C]4932.512[/C][C]1196.1305[/C][C]8668.8936[/C][C]NA[/C][C]NA[/C][C]0.632[/C][C]0.632[/C][/ROW]
[ROW][C]139[/C][C]NA[/C][C]4405.1699[/C][C]296.0083[/C][C]8514.3314[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.5219[/C][/ROW]
[ROW][C]140[/C][C]NA[/C][C]10819.9402[/C][C]6350.9701[/C][C]15288.9103[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9979[/C][/ROW]
[ROW][C]141[/C][C]NA[/C][C]10491.848[/C][C]5672.6183[/C][C]15311.0776[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9942[/C][/ROW]
[ROW][C]142[/C][C]NA[/C][C]10273.3372[/C][C]5130.683[/C][C]15415.9915[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9887[/C][/ROW]
[ROW][C]143[/C][C]NA[/C][C]9940.3938[/C][C]4491.1597[/C][C]15389.6278[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9789[/C][/ROW]
[ROW][C]144[/C][C]NA[/C][C]9408.0967[/C][C]3669.5293[/C][C]15146.6642[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.9598[/C][/ROW]
[ROW][C]145[/C][C]NA[/C][C]8773.1374[/C][C]2758.6929[/C][C]14787.5819[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.928[/C][/ROW]
[ROW][C]146[/C][C]NA[/C][C]8215.9091[/C][C]1937.8997[/C][C]14493.9185[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8898[/C][/ROW]
[ROW][C]147[/C][C]NA[/C][C]7517.5322[/C][C]986.4906[/C][C]14048.5737[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.8336[/C][/ROW]
[ROW][C]148[/C][C]NA[/C][C]6748.9568[/C][C]-25.6285[/C][C]13523.5421[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.7616[/C][/ROW]
[ROW][C]149[/C][C]NA[/C][C]6363.7012[/C][C]-645.9921[/C][C]13373.3945[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.719[/C][/ROW]
[ROW][C]150[/C][C]NA[/C][C]5704.6846[/C][C]-1532.4732[/C][C]12941.8424[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0.6492[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299366&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299366&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast
timeY[t]F[t]95% LB95% UBp-value(H0: Y[t] = F[t])P(F[t]>Y[t-1])P(F[t]>Y[t-s])P(F[t]>Y[126])
1143283.5-------
1152861.5-------
1169486.5-------
1179061-------
1188877.5-------
1198557.5-------
1208031-------
1217404.5-------
1226852.5-------
1236174.5-------
1245341.5-------
1254975.5-------
1264290-------
127NA3704.36572749.07274659.6587NA0.11480.95810.1148
128NA10002.81448599.606511406.0222NANA0.76461
129NA9728.61867945.292411511.9447NANA0.76851
130NA9490.73627402.217811579.2546NANA0.71751
131NA9150.63076791.081711510.1797NANA0.68891
132NA8615.12616014.483211215.769NANA0.67010.9994
133NA7975.4865153.377210797.5948NANA0.65420.9948
134NA7415.36494388.342310442.3874NANA0.64220.9785
135NA6705.7133486.61289924.8132NANA0.62680.9293
136NA5972.7852572.52319373.0468NANA0.6420.834
137NA5576.87492004.58849149.1613NANA0.62930.7599
138NA4932.5121196.13058668.8936NANA0.6320.632
139NA4405.1699296.00838514.3314NANANA0.5219
140NA10819.94026350.970115288.9103NANANA0.9979
141NA10491.8485672.618315311.0776NANANA0.9942
142NA10273.33725130.68315415.9915NANANA0.9887
143NA9940.39384491.159715389.6278NANANA0.9789
144NA9408.09673669.529315146.6642NANANA0.9598
145NA8773.13742758.692914787.5819NANANA0.928
146NA8215.90911937.899714493.9185NANANA0.8898
147NA7517.5322986.490614048.5737NANANA0.8336
148NA6748.9568-25.628513523.5421NANANA0.7616
149NA6363.7012-645.992113373.3945NANANA0.719
150NA5704.6846-1532.473212941.8424NANANA0.6492







Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1270.1316NANANANA00NANA
1280.0716NANANANANANANANA
1290.0935NANANANANANANANA
1300.1123NANANANANANANANA
1310.1316NANANANANANANANA
1320.154NANANANANANANANA
1330.1805NANANANANANANANA
1340.2083NANANANANANANANA
1350.2449NANANANANANANANA
1360.2905NANANANANANANANA
1370.3268NANANANANANANANA
1380.3865NANANANANANANANA
1390.4759NANANANANANANANA
1400.2107NANANANANANANANA
1410.2344NANANANANANANANA
1420.2554NANANANANANANANA
1430.2797NANANANANANANANA
1440.3112NANANANANANANANA
1450.3498NANANANANANANANA
1460.3899NANANANANANANANA
1470.4433NANANANANANANANA
1480.5121NANANANANANANANA
1490.562NANANANANANANANA
1500.6473NANANANANANANANA

\begin{tabular}{lllllllll}
\hline
Univariate ARIMA Extrapolation Forecast Performance \tabularnewline
time & % S.E. & PE & MAPE & sMAPE & Sq.E & MSE & RMSE & ScaledE & MASE \tabularnewline
127 & 0.1316 & NA & NA & NA & NA & 0 & 0 & NA & NA \tabularnewline
128 & 0.0716 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
129 & 0.0935 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
130 & 0.1123 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
131 & 0.1316 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
132 & 0.154 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
133 & 0.1805 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
134 & 0.2083 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
135 & 0.2449 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
136 & 0.2905 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
137 & 0.3268 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
138 & 0.3865 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
139 & 0.4759 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
140 & 0.2107 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
141 & 0.2344 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
142 & 0.2554 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
143 & 0.2797 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
144 & 0.3112 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
145 & 0.3498 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
146 & 0.3899 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
147 & 0.4433 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
148 & 0.5121 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
149 & 0.562 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
150 & 0.6473 & NA & NA & NA & NA & NA & NA & NA & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299366&T=2

[TABLE]
[ROW][C]Univariate ARIMA Extrapolation Forecast Performance[/C][/ROW]
[ROW][C]time[/C][C]% S.E.[/C][C]PE[/C][C]MAPE[/C][C]sMAPE[/C][C]Sq.E[/C][C]MSE[/C][C]RMSE[/C][C]ScaledE[/C][C]MASE[/C][/ROW]
[ROW][C]127[/C][C]0.1316[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]0[/C][C]0[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]128[/C][C]0.0716[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]129[/C][C]0.0935[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]130[/C][C]0.1123[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]131[/C][C]0.1316[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]132[/C][C]0.154[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]133[/C][C]0.1805[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]134[/C][C]0.2083[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]135[/C][C]0.2449[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]136[/C][C]0.2905[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]137[/C][C]0.3268[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]138[/C][C]0.3865[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]139[/C][C]0.4759[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]140[/C][C]0.2107[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]141[/C][C]0.2344[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]142[/C][C]0.2554[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]143[/C][C]0.2797[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]144[/C][C]0.3112[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]145[/C][C]0.3498[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]146[/C][C]0.3899[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]147[/C][C]0.4433[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]148[/C][C]0.5121[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]149[/C][C]0.562[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[ROW][C]150[/C][C]0.6473[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299366&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299366&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Univariate ARIMA Extrapolation Forecast Performance
time% S.E.PEMAPEsMAPESq.EMSERMSEScaledEMASE
1270.1316NANANANA00NANA
1280.0716NANANANANANANANA
1290.0935NANANANANANANANA
1300.1123NANANANANANANANA
1310.1316NANANANANANANANA
1320.154NANANANANANANANA
1330.1805NANANANANANANANA
1340.2083NANANANANANANANA
1350.2449NANANANANANANANA
1360.2905NANANANANANANANA
1370.3268NANANANANANANANA
1380.3865NANANANANANANANA
1390.4759NANANANANANANANA
1400.2107NANANANANANANANA
1410.2344NANANANANANANANA
1420.2554NANANANANANANANA
1430.2797NANANANANANANANA
1440.3112NANANANANANANANA
1450.3498NANANANANANANANA
1460.3899NANANANANANANANA
1470.4433NANANANANANANANA
1480.5121NANANANANANANANA
1490.562NANANANANANANANA
1500.6473NANANANANANANANA



Parameters (Session):
par1 = FALSE ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 2 ; par7 = 1 ; par8 = 1 ; par9 = 0 ;
Parameters (R input):
par1 = 0 ; par2 = 1 ; par3 = 1 ; par4 = 1 ; par5 = 12 ; par6 = 2 ; par7 = 1 ; par8 = 1 ; par9 = 0 ; par10 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #cut off periods
par2 <- as.numeric(par2) #lambda
par3 <- as.numeric(par3) #degree of non-seasonal differencing
par4 <- as.numeric(par4) #degree of seasonal differencing
par5 <- as.numeric(par5) #seasonal period
par6 <- as.numeric(par6) #p
par7 <- as.numeric(par7) #q
par8 <- as.numeric(par8) #P
par9 <- as.numeric(par9) #Q
if (par10 == 'TRUE') par10 <- TRUE
if (par10 == 'FALSE') par10 <- FALSE
if (par2 == 0) x <- log(x)
if (par2 != 0) x <- x^par2
lx <- length(x)
first <- lx - 2*par1
nx <- lx - par1
nx1 <- nx + 1
fx <- lx - nx
if (fx < 1) {
fx <- par5*2
nx1 <- lx + fx - 1
first <- lx - 2*fx
}
first <- 1
if (fx < 3) fx <- round(lx/10,0)
(arima.out <- arima(x[1:nx], order=c(par6,par3,par7), seasonal=list(order=c(par8,par4,par9), period=par5), include.mean=par10, method='ML'))
(forecast <- predict(arima.out,fx))
(lb <- forecast$pred - 1.96 * forecast$se)
(ub <- forecast$pred + 1.96 * forecast$se)
if (par2 == 0) {
x <- exp(x)
forecast$pred <- exp(forecast$pred)
lb <- exp(lb)
ub <- exp(ub)
}
if (par2 != 0) {
x <- x^(1/par2)
forecast$pred <- forecast$pred^(1/par2)
lb <- lb^(1/par2)
ub <- ub^(1/par2)
}
if (par2 < 0) {
olb <- lb
lb <- ub
ub <- olb
}
(actandfor <- c(x[1:nx], forecast$pred))
(perc.se <- (ub-forecast$pred)/1.96/forecast$pred)
bitmap(file='test1.png')
opar <- par(mar=c(4,4,2,2),las=1)
ylim <- c( min(x[first:nx],lb), max(x[first:nx],ub))
plot(x,ylim=ylim,type='n',xlim=c(first,lx))
usr <- par('usr')
rect(usr[1],usr[3],nx+1,usr[4],border=NA,col='lemonchiffon')
rect(nx1,usr[3],usr[2],usr[4],border=NA,col='lavender')
abline(h= (-3:3)*2 , col ='gray', lty =3)
polygon( c(nx1:lx,lx:nx1), c(lb,rev(ub)), col = 'orange', lty=2,border=NA)
lines(nx1:lx, lb , lty=2)
lines(nx1:lx, ub , lty=2)
lines(x, lwd=2)
lines(nx1:lx, forecast$pred , lwd=2 , col ='white')
box()
par(opar)
dev.off()
prob.dec <- array(NA, dim=fx)
prob.sdec <- array(NA, dim=fx)
prob.ldec <- array(NA, dim=fx)
prob.pval <- array(NA, dim=fx)
perf.pe <- array(0, dim=fx)
perf.spe <- array(0, dim=fx)
perf.scalederr <- array(0, dim=fx)
perf.mase <- array(0, dim=fx)
perf.mase1 <- array(0, dim=fx)
perf.mape <- array(0, dim=fx)
perf.smape <- array(0, dim=fx)
perf.mape1 <- array(0, dim=fx)
perf.smape1 <- array(0,dim=fx)
perf.se <- array(0, dim=fx)
perf.mse <- array(0, dim=fx)
perf.mse1 <- array(0, dim=fx)
perf.rmse <- array(0, dim=fx)
perf.scaleddenom <- 0
for (i in 2:fx) {
perf.scaleddenom = perf.scaleddenom + abs(x[nx+i] - x[nx+i-1])
}
perf.scaleddenom = perf.scaleddenom / (fx-1)
for (i in 1:fx) {
locSD <- (ub[i] - forecast$pred[i]) / 1.96
perf.scalederr[i] = (x[nx+i] - forecast$pred[i]) / perf.scaleddenom
perf.pe[i] = (x[nx+i] - forecast$pred[i]) / x[nx+i]
perf.spe[i] = 2*(x[nx+i] - forecast$pred[i]) / (x[nx+i] + forecast$pred[i])
perf.se[i] = (x[nx+i] - forecast$pred[i])^2
prob.dec[i] = pnorm((x[nx+i-1] - forecast$pred[i]) / locSD)
prob.sdec[i] = pnorm((x[nx+i-par5] - forecast$pred[i]) / locSD)
prob.ldec[i] = pnorm((x[nx] - forecast$pred[i]) / locSD)
prob.pval[i] = pnorm(abs(x[nx+i] - forecast$pred[i]) / locSD)
}
perf.mape[1] = abs(perf.pe[1])
perf.smape[1] = abs(perf.spe[1])
perf.mape1[1] = perf.mape[1]
perf.smape1[1] = perf.smape[1]
perf.mse[1] = perf.se[1]
perf.mase[1] = abs(perf.scalederr[1])
perf.mase1[1] = perf.mase[1]
for (i in 2:fx) {
perf.mape[i] = perf.mape[i-1] + abs(perf.pe[i])
perf.mape1[i] = perf.mape[i] / i
perf.smape[i] = perf.smape[i-1] + abs(perf.spe[i])
perf.smape1[i] = perf.smape[i] / i
perf.mse[i] = perf.mse[i-1] + perf.se[i]
perf.mse1[i] = perf.mse[i] / i
perf.mase[i] = perf.mase[i-1] + abs(perf.scalederr[i])
perf.mase1[i] = perf.mase[i] / i
}
perf.rmse = sqrt(perf.mse1)
bitmap(file='test2.png')
plot(forecast$pred, pch=19, type='b',main='ARIMA Extrapolation Forecast', ylab='Forecast and 95% CI', xlab='time',ylim=c(min(lb),max(ub)))
dum <- forecast$pred
dum[1:par1] <- x[(nx+1):lx]
lines(dum, lty=1)
lines(ub,lty=3)
lines(lb,lty=3)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast',9,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'Y[t]',1,header=TRUE)
a<-table.element(a,'F[t]',1,header=TRUE)
a<-table.element(a,'95% LB',1,header=TRUE)
a<-table.element(a,'95% UB',1,header=TRUE)
a<-table.element(a,'p-value
(H0: Y[t] = F[t])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-1])',1,header=TRUE)
a<-table.element(a,'P(F[t]>Y[t-s])',1,header=TRUE)
mylab <- paste('P(F[t]>Y[',nx,sep='')
mylab <- paste(mylab,'])',sep='')
a<-table.element(a,mylab,1,header=TRUE)
a<-table.row.end(a)
for (i in (nx-par5):nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.element(a,'-')
a<-table.row.end(a)
}
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(x[nx+i],4))
a<-table.element(a,round(forecast$pred[i],4))
a<-table.element(a,round(lb[i],4))
a<-table.element(a,round(ub[i],4))
a<-table.element(a,round((1-prob.pval[i]),4))
a<-table.element(a,round((1-prob.dec[i]),4))
a<-table.element(a,round((1-prob.sdec[i]),4))
a<-table.element(a,round((1-prob.ldec[i]),4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Univariate ARIMA Extrapolation Forecast Performance',10,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'time',1,header=TRUE)
a<-table.element(a,'% S.E.',1,header=TRUE)
a<-table.element(a,'PE',1,header=TRUE)
a<-table.element(a,'MAPE',1,header=TRUE)
a<-table.element(a,'sMAPE',1,header=TRUE)
a<-table.element(a,'Sq.E',1,header=TRUE)
a<-table.element(a,'MSE',1,header=TRUE)
a<-table.element(a,'RMSE',1,header=TRUE)
a<-table.element(a,'ScaledE',1,header=TRUE)
a<-table.element(a,'MASE',1,header=TRUE)
a<-table.row.end(a)
for (i in 1:fx) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,round(perc.se[i],4))
a<-table.element(a,round(perf.pe[i],4))
a<-table.element(a,round(perf.mape1[i],4))
a<-table.element(a,round(perf.smape1[i],4))
a<-table.element(a,round(perf.se[i],4))
a<-table.element(a,round(perf.mse1[i],4))
a<-table.element(a,round(perf.rmse[i],4))
a<-table.element(a,round(perf.scalederr[i],4))
a<-table.element(a,round(perf.mase1[i],4))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')