Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 14 Dec 2016 13:36:24 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481719061k9w7bi1xbthvyyg.htm/, Retrieved Fri, 01 Nov 2024 03:31:04 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299364, Retrieved Fri, 01 Nov 2024 03:31:04 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact105
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [Decomposition by ...] [2016-12-14 12:36:24] [e3cd721010e920ddac8a34a44b82c047] [Current]
Feedback Forum

Post a new message
Dataseries X:
5570
5555
5555
5560
5570
5565
5580
5540
5575
5585
5585
5570
5610
5585
5580
5605
5600
5585
5655
5605
5575
5590
5570
5590
5590
5570
5590
5565
5580
5605
5585
5615
5595
5580
5555
5605
5600
5630
5625
5620
5645
5660
5640
5640
5660
5660
5690
5715
5675
5685
5710
5720
5710
5710
5755
5755
5735
5720
5770
5775
5790
5800
5780
5775
5780
5785
5720
5740
5725
5785
5835
5810
5815
5815
5840
5840
5845
5865
5900
5900
5915
5940
5950
5940
5955
5945
5945
5975
5960
5930
5950
5970
5980
6000
6000
6020
6015
6040
6035
6010
6025
6030
5955
6075
6055
6040
6025
6015
6025
6015
6020
6050
6050
6040
6090
6030
5990




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299364&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299364&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299364&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11710118
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 1171 & 0 & 118 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299364&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]1171[/C][C]0[/C][C]118[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299364&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299364&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal11710118
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
155705580.26734445463.899434725770695555.8332208196310.2673444546008
255555552.39900008657-0.4971238380248515558.09812375146-2.60099991343395
355555550.03066364662-0.3936903299092815560.36302668329-4.96933635338064
455605557.231118984910.08250592263977865562.68637509245-2.76888101509121
555705573.931566791521.058709706867545565.009723501613.9315667915198
655655564.02918584323-1.411105989888295567.38192014666-0.970814156773486
755805589.626830463010.6190527452794825569.754116791719.62683046300936
855405507.038998679890.7831863964609095572.17781492365-32.96100132011
955755584.95118691516-9.552699970751225574.601513055599.95118691516382
1055855594.11897855153-1.471071626120615577.352093074599.11897855153347
1155855587.362475154732.534851751684155580.102673093592.36247515472951
1255705552.073301416924.347949555548325583.57874902753-17.9266985830809
1356105629.045740312753.899434725770695587.0548249614819.0457403127502
1455855580.17978997182-0.4971238380248515590.3173338662-4.82021002817692
1555805566.81384755898-0.3936903299092815593.57984277092-13.1861524410151
1656055615.00369146190.08250592263977865594.9138026154610.0036914618968
1756005602.693527833131.058709706867545596.247762462.69352783313025
1855855575.35380872724-1.411105989888295596.05729726265-9.64619127276183
1956555713.514115189420.6190527452794825595.866832065358.5141151894231
2056055614.491613044920.7831863964609095594.725200558629.491613044921
2155755565.96913091881-9.552699970751225593.58356905194-9.03086908118803
2255905589.81322069817-1.471071626120615591.65785092795-0.186779301827301
2355705547.733015444362.534851751684155589.73213280396-22.266984555642
2455905587.759463285644.347949555548325587.89258715881-2.24053671436286
2555905590.047523760563.899434725770695586.053041513670.0475237605578513
2655705554.85868456282-0.4971238380248515585.6384392752-15.1413154371758
2755905595.16985329318-0.3936903299092815585.223837036735.16985329317868
2855655544.172790027280.08250592263977865585.74470405008-20.8272099727155
2955805572.675719229711.058709706867545586.26557106342-7.32428077028726
3056055624.16866514125-1.411105989888295587.2424408486419.168665141251
3155855581.161636620870.6190527452794825588.21931063386-3.83836337913453
3256155638.526046347480.7831863964609095590.6907672560623.5260463474779
3355955606.39047609248-9.552699970751225593.1622238782711.3904760924834
3455805564.39627794974-1.471071626120615597.07479367638-15.6037220502558
3555555506.477784773832.534851751684155600.98736347448-48.5222152261686
3656055600.208750634034.347949555548325605.44329981043-4.79124936597418
3756005586.201329127863.899434725770695609.89923614637-13.7986708721373
3856305645.2597508837-0.4971238380248515615.2373729543215.2597508837007
3956255629.81818056763-0.3936903299092815620.575509762284.81818056762768
4056205612.125517287170.08250592263977865627.79197679019-7.87448271282847
4156455653.932846475041.058709706867545635.00844381818.93284647503697
4256605678.66006343825-1.411105989888295642.7510425516318.6600634382548
4356405628.887305969550.6190527452794825650.49364128517-11.1126940304503
4456405622.001839067660.7831863964609095657.21497453588-17.9981609323431
4556605665.61639218416-9.552699970751225663.936307786595.61639218415803
4656605651.06477868861-1.471071626120615670.40629293751-8.93522131138798
4756905700.588870159892.534851751684155676.8762780884310.5888701598906
4857155741.822140012424.347949555548325683.8299104320426.8221400124157
4956755655.317022498583.899434725770695690.78354277565-19.6829775014166
5056855672.41082744352-0.4971238380248515698.08629639451-12.5891725564843
5157105715.00464031654-0.3936903299092815705.389050013375.00464031653792
5257205727.918928312960.08250592263977865711.99856576447.91892831296263
5357105700.333208777711.058709706867545718.60808151542-9.66679122229107
5457105695.89420732956-1.411105989888295725.51689866032-14.1057926704352
5557555776.95523144950.6190527452794825732.4257158052221.9552314494968
5657555769.304917086660.7831863964609095739.9118965168814.3049170866589
5757355732.15462274221-9.552699970751225747.39807722854-2.84537725778591
5857205687.89349817682-1.471071626120615753.5775734493-32.1065018231757
5957705777.708078578262.534851751684155759.757069670057.70807857826094
6057755782.467507565064.347949555548325763.184542879397.4675075650639
6157905809.488549185513.899434725770695766.6120160887219.4885491855102
6258005833.16154479373-0.4971238380248515767.335579044333.1615447937265
6357805792.33454833003-0.3936903299092815768.0591419998812.3345483300318
6457755780.626275196660.08250592263977865769.29121888075.62627519665966
6557805788.417994531611.058709706867545770.523295761528.4179945316082
6657855798.74780135362-1.411105989888295772.6633046362713.7478013536229
6757205664.577633743710.6190527452794825774.80331351101-55.4223662562863
6857405701.037694690470.7831863964609095778.17911891307-38.9623053095265
6957255677.99777565563-9.552699970751225781.55492431512-47.0022243443736
7057855783.94574532516-1.471071626120615787.52532630096-1.05425467483929
7158355873.969419961522.534851751684155793.495728286838.9694199615205
7258105812.419749550924.347949555548325803.232300893532.41974955092064
7358155813.131691773963.899434725770695812.96887350027-1.8683082260377
7458155804.98531452985-0.4971238380248515825.51180930817-10.0146854701461
7558405842.33894521383-0.3936903299092815838.054745116082.33894521383354
7658405829.337600965390.08250592263977865850.57989311197-10.6623990346061
7758455825.836249185281.058709706867545863.10504110786-19.1637508147232
7858655856.57772456095-1.411105989888295874.83338142894-8.4222754390521
7959005912.81922550470.6190527452794825886.5617217500312.8192255046952
8059005901.470613550260.7831863964609095897.746200053281.4706135502629
8159155930.62202161423-9.552699970751225908.9306783565315.6220216142256
8259405963.01795741803-1.471071626120615918.4531142080923.0179574180302
8359505969.489598188662.534851751684155927.9755500596619.4895981886593
8459405941.037738676064.347949555548325934.614311768391.03773867606014
8559555964.84749179713.899434725770695941.253073477139.84749179710252
8659455944.64747693571-0.4971238380248515945.84964690231-0.352523064288107
8759455939.94747000241-0.3936903299092815950.4462203275-5.05252999758977
8859755994.875403364540.08250592263977865955.0420907128219.8754033645446
8959605959.3033291951.058709706867545959.63796109813-0.696670804998575
9059305896.14500003498-1.411105989888295965.26610595491-33.8549999650213
9159505928.486696443030.6190527452794825970.89425081169-21.5133035569688
9259705961.752418770920.7831863964609095977.46439483262-8.24758122908042
9359805985.5181611172-9.552699970751225984.034538853555.518161117202
9460006010.83510226522-1.471071626120615990.635969360910.8351022652196
9560006000.227748380062.534851751684155997.237399868250.227748380062621
9660206032.832793953154.347949555548326002.819256491312.8327939531509
9760156017.699452159883.899434725770696008.401113114352.69945215988082
9860406067.28434126245-0.4971238380248516013.2127825755827.2843412624452
9960356052.3692382931-0.3936903299092816018.0244520368117.3692382930976
10060105998.587093255570.08250592263977866021.33040082179-11.4129067444346
10160256024.304940686351.058709706867546024.63634960678-0.695059313645288
10260306035.631263262-1.411105989888296025.779842727895.63126326199836
10359555882.457611405720.6190527452794826026.923335849-72.5423885942828
10460756122.407990875180.7831863964609096026.8088227283647.4079908751819
10560556092.85839036304-9.552699970751226026.6943096077137.8583903630406
10660406053.68461312922-1.471071626120616027.786458496913.6846131292195
10760256018.586540862222.534851751684156028.87860738609-6.41345913777513
10860155994.540900241084.347949555548326031.11115020338-20.4590997589248
10960256012.756872253573.899434725770696033.34369302066-12.2431277464329
11060155996.46089774139-0.4971238380248516034.03622609664-18.5391022586127
11160206005.6649311573-0.3936903299092816034.72875917261-14.3350688427045
11260506064.790370872830.08250592263977866035.1271232045314.790370872829
11360506063.415803056691.058709706867546035.5254872364513.415803056685
11460406045.27952751928-1.411105989888296036.131578470615.27952751927569
11560906142.643277549940.6190527452794826036.7376697047852.6432775499434
11660306021.739097951160.7831863964609096037.47771565238-8.26090204883894
11759905951.33493837077-9.552699970751226038.21776159998-38.6650616292263

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 5570 & 5580.2673444546 & 3.89943472577069 & 5555.83322081963 & 10.2673444546008 \tabularnewline
2 & 5555 & 5552.39900008657 & -0.497123838024851 & 5558.09812375146 & -2.60099991343395 \tabularnewline
3 & 5555 & 5550.03066364662 & -0.393690329909281 & 5560.36302668329 & -4.96933635338064 \tabularnewline
4 & 5560 & 5557.23111898491 & 0.0825059226397786 & 5562.68637509245 & -2.76888101509121 \tabularnewline
5 & 5570 & 5573.93156679152 & 1.05870970686754 & 5565.00972350161 & 3.9315667915198 \tabularnewline
6 & 5565 & 5564.02918584323 & -1.41110598988829 & 5567.38192014666 & -0.970814156773486 \tabularnewline
7 & 5580 & 5589.62683046301 & 0.619052745279482 & 5569.75411679171 & 9.62683046300936 \tabularnewline
8 & 5540 & 5507.03899867989 & 0.783186396460909 & 5572.17781492365 & -32.96100132011 \tabularnewline
9 & 5575 & 5584.95118691516 & -9.55269997075122 & 5574.60151305559 & 9.95118691516382 \tabularnewline
10 & 5585 & 5594.11897855153 & -1.47107162612061 & 5577.35209307459 & 9.11897855153347 \tabularnewline
11 & 5585 & 5587.36247515473 & 2.53485175168415 & 5580.10267309359 & 2.36247515472951 \tabularnewline
12 & 5570 & 5552.07330141692 & 4.34794955554832 & 5583.57874902753 & -17.9266985830809 \tabularnewline
13 & 5610 & 5629.04574031275 & 3.89943472577069 & 5587.05482496148 & 19.0457403127502 \tabularnewline
14 & 5585 & 5580.17978997182 & -0.497123838024851 & 5590.3173338662 & -4.82021002817692 \tabularnewline
15 & 5580 & 5566.81384755898 & -0.393690329909281 & 5593.57984277092 & -13.1861524410151 \tabularnewline
16 & 5605 & 5615.0036914619 & 0.0825059226397786 & 5594.91380261546 & 10.0036914618968 \tabularnewline
17 & 5600 & 5602.69352783313 & 1.05870970686754 & 5596.24776246 & 2.69352783313025 \tabularnewline
18 & 5585 & 5575.35380872724 & -1.41110598988829 & 5596.05729726265 & -9.64619127276183 \tabularnewline
19 & 5655 & 5713.51411518942 & 0.619052745279482 & 5595.8668320653 & 58.5141151894231 \tabularnewline
20 & 5605 & 5614.49161304492 & 0.783186396460909 & 5594.72520055862 & 9.491613044921 \tabularnewline
21 & 5575 & 5565.96913091881 & -9.55269997075122 & 5593.58356905194 & -9.03086908118803 \tabularnewline
22 & 5590 & 5589.81322069817 & -1.47107162612061 & 5591.65785092795 & -0.186779301827301 \tabularnewline
23 & 5570 & 5547.73301544436 & 2.53485175168415 & 5589.73213280396 & -22.266984555642 \tabularnewline
24 & 5590 & 5587.75946328564 & 4.34794955554832 & 5587.89258715881 & -2.24053671436286 \tabularnewline
25 & 5590 & 5590.04752376056 & 3.89943472577069 & 5586.05304151367 & 0.0475237605578513 \tabularnewline
26 & 5570 & 5554.85868456282 & -0.497123838024851 & 5585.6384392752 & -15.1413154371758 \tabularnewline
27 & 5590 & 5595.16985329318 & -0.393690329909281 & 5585.22383703673 & 5.16985329317868 \tabularnewline
28 & 5565 & 5544.17279002728 & 0.0825059226397786 & 5585.74470405008 & -20.8272099727155 \tabularnewline
29 & 5580 & 5572.67571922971 & 1.05870970686754 & 5586.26557106342 & -7.32428077028726 \tabularnewline
30 & 5605 & 5624.16866514125 & -1.41110598988829 & 5587.24244084864 & 19.168665141251 \tabularnewline
31 & 5585 & 5581.16163662087 & 0.619052745279482 & 5588.21931063386 & -3.83836337913453 \tabularnewline
32 & 5615 & 5638.52604634748 & 0.783186396460909 & 5590.69076725606 & 23.5260463474779 \tabularnewline
33 & 5595 & 5606.39047609248 & -9.55269997075122 & 5593.16222387827 & 11.3904760924834 \tabularnewline
34 & 5580 & 5564.39627794974 & -1.47107162612061 & 5597.07479367638 & -15.6037220502558 \tabularnewline
35 & 5555 & 5506.47778477383 & 2.53485175168415 & 5600.98736347448 & -48.5222152261686 \tabularnewline
36 & 5605 & 5600.20875063403 & 4.34794955554832 & 5605.44329981043 & -4.79124936597418 \tabularnewline
37 & 5600 & 5586.20132912786 & 3.89943472577069 & 5609.89923614637 & -13.7986708721373 \tabularnewline
38 & 5630 & 5645.2597508837 & -0.497123838024851 & 5615.23737295432 & 15.2597508837007 \tabularnewline
39 & 5625 & 5629.81818056763 & -0.393690329909281 & 5620.57550976228 & 4.81818056762768 \tabularnewline
40 & 5620 & 5612.12551728717 & 0.0825059226397786 & 5627.79197679019 & -7.87448271282847 \tabularnewline
41 & 5645 & 5653.93284647504 & 1.05870970686754 & 5635.0084438181 & 8.93284647503697 \tabularnewline
42 & 5660 & 5678.66006343825 & -1.41110598988829 & 5642.75104255163 & 18.6600634382548 \tabularnewline
43 & 5640 & 5628.88730596955 & 0.619052745279482 & 5650.49364128517 & -11.1126940304503 \tabularnewline
44 & 5640 & 5622.00183906766 & 0.783186396460909 & 5657.21497453588 & -17.9981609323431 \tabularnewline
45 & 5660 & 5665.61639218416 & -9.55269997075122 & 5663.93630778659 & 5.61639218415803 \tabularnewline
46 & 5660 & 5651.06477868861 & -1.47107162612061 & 5670.40629293751 & -8.93522131138798 \tabularnewline
47 & 5690 & 5700.58887015989 & 2.53485175168415 & 5676.87627808843 & 10.5888701598906 \tabularnewline
48 & 5715 & 5741.82214001242 & 4.34794955554832 & 5683.82991043204 & 26.8221400124157 \tabularnewline
49 & 5675 & 5655.31702249858 & 3.89943472577069 & 5690.78354277565 & -19.6829775014166 \tabularnewline
50 & 5685 & 5672.41082744352 & -0.497123838024851 & 5698.08629639451 & -12.5891725564843 \tabularnewline
51 & 5710 & 5715.00464031654 & -0.393690329909281 & 5705.38905001337 & 5.00464031653792 \tabularnewline
52 & 5720 & 5727.91892831296 & 0.0825059226397786 & 5711.9985657644 & 7.91892831296263 \tabularnewline
53 & 5710 & 5700.33320877771 & 1.05870970686754 & 5718.60808151542 & -9.66679122229107 \tabularnewline
54 & 5710 & 5695.89420732956 & -1.41110598988829 & 5725.51689866032 & -14.1057926704352 \tabularnewline
55 & 5755 & 5776.9552314495 & 0.619052745279482 & 5732.42571580522 & 21.9552314494968 \tabularnewline
56 & 5755 & 5769.30491708666 & 0.783186396460909 & 5739.91189651688 & 14.3049170866589 \tabularnewline
57 & 5735 & 5732.15462274221 & -9.55269997075122 & 5747.39807722854 & -2.84537725778591 \tabularnewline
58 & 5720 & 5687.89349817682 & -1.47107162612061 & 5753.5775734493 & -32.1065018231757 \tabularnewline
59 & 5770 & 5777.70807857826 & 2.53485175168415 & 5759.75706967005 & 7.70807857826094 \tabularnewline
60 & 5775 & 5782.46750756506 & 4.34794955554832 & 5763.18454287939 & 7.4675075650639 \tabularnewline
61 & 5790 & 5809.48854918551 & 3.89943472577069 & 5766.61201608872 & 19.4885491855102 \tabularnewline
62 & 5800 & 5833.16154479373 & -0.497123838024851 & 5767.3355790443 & 33.1615447937265 \tabularnewline
63 & 5780 & 5792.33454833003 & -0.393690329909281 & 5768.05914199988 & 12.3345483300318 \tabularnewline
64 & 5775 & 5780.62627519666 & 0.0825059226397786 & 5769.2912188807 & 5.62627519665966 \tabularnewline
65 & 5780 & 5788.41799453161 & 1.05870970686754 & 5770.52329576152 & 8.4179945316082 \tabularnewline
66 & 5785 & 5798.74780135362 & -1.41110598988829 & 5772.66330463627 & 13.7478013536229 \tabularnewline
67 & 5720 & 5664.57763374371 & 0.619052745279482 & 5774.80331351101 & -55.4223662562863 \tabularnewline
68 & 5740 & 5701.03769469047 & 0.783186396460909 & 5778.17911891307 & -38.9623053095265 \tabularnewline
69 & 5725 & 5677.99777565563 & -9.55269997075122 & 5781.55492431512 & -47.0022243443736 \tabularnewline
70 & 5785 & 5783.94574532516 & -1.47107162612061 & 5787.52532630096 & -1.05425467483929 \tabularnewline
71 & 5835 & 5873.96941996152 & 2.53485175168415 & 5793.4957282868 & 38.9694199615205 \tabularnewline
72 & 5810 & 5812.41974955092 & 4.34794955554832 & 5803.23230089353 & 2.41974955092064 \tabularnewline
73 & 5815 & 5813.13169177396 & 3.89943472577069 & 5812.96887350027 & -1.8683082260377 \tabularnewline
74 & 5815 & 5804.98531452985 & -0.497123838024851 & 5825.51180930817 & -10.0146854701461 \tabularnewline
75 & 5840 & 5842.33894521383 & -0.393690329909281 & 5838.05474511608 & 2.33894521383354 \tabularnewline
76 & 5840 & 5829.33760096539 & 0.0825059226397786 & 5850.57989311197 & -10.6623990346061 \tabularnewline
77 & 5845 & 5825.83624918528 & 1.05870970686754 & 5863.10504110786 & -19.1637508147232 \tabularnewline
78 & 5865 & 5856.57772456095 & -1.41110598988829 & 5874.83338142894 & -8.4222754390521 \tabularnewline
79 & 5900 & 5912.8192255047 & 0.619052745279482 & 5886.56172175003 & 12.8192255046952 \tabularnewline
80 & 5900 & 5901.47061355026 & 0.783186396460909 & 5897.74620005328 & 1.4706135502629 \tabularnewline
81 & 5915 & 5930.62202161423 & -9.55269997075122 & 5908.93067835653 & 15.6220216142256 \tabularnewline
82 & 5940 & 5963.01795741803 & -1.47107162612061 & 5918.45311420809 & 23.0179574180302 \tabularnewline
83 & 5950 & 5969.48959818866 & 2.53485175168415 & 5927.97555005966 & 19.4895981886593 \tabularnewline
84 & 5940 & 5941.03773867606 & 4.34794955554832 & 5934.61431176839 & 1.03773867606014 \tabularnewline
85 & 5955 & 5964.8474917971 & 3.89943472577069 & 5941.25307347713 & 9.84749179710252 \tabularnewline
86 & 5945 & 5944.64747693571 & -0.497123838024851 & 5945.84964690231 & -0.352523064288107 \tabularnewline
87 & 5945 & 5939.94747000241 & -0.393690329909281 & 5950.4462203275 & -5.05252999758977 \tabularnewline
88 & 5975 & 5994.87540336454 & 0.0825059226397786 & 5955.04209071282 & 19.8754033645446 \tabularnewline
89 & 5960 & 5959.303329195 & 1.05870970686754 & 5959.63796109813 & -0.696670804998575 \tabularnewline
90 & 5930 & 5896.14500003498 & -1.41110598988829 & 5965.26610595491 & -33.8549999650213 \tabularnewline
91 & 5950 & 5928.48669644303 & 0.619052745279482 & 5970.89425081169 & -21.5133035569688 \tabularnewline
92 & 5970 & 5961.75241877092 & 0.783186396460909 & 5977.46439483262 & -8.24758122908042 \tabularnewline
93 & 5980 & 5985.5181611172 & -9.55269997075122 & 5984.03453885355 & 5.518161117202 \tabularnewline
94 & 6000 & 6010.83510226522 & -1.47107162612061 & 5990.6359693609 & 10.8351022652196 \tabularnewline
95 & 6000 & 6000.22774838006 & 2.53485175168415 & 5997.23739986825 & 0.227748380062621 \tabularnewline
96 & 6020 & 6032.83279395315 & 4.34794955554832 & 6002.8192564913 & 12.8327939531509 \tabularnewline
97 & 6015 & 6017.69945215988 & 3.89943472577069 & 6008.40111311435 & 2.69945215988082 \tabularnewline
98 & 6040 & 6067.28434126245 & -0.497123838024851 & 6013.21278257558 & 27.2843412624452 \tabularnewline
99 & 6035 & 6052.3692382931 & -0.393690329909281 & 6018.02445203681 & 17.3692382930976 \tabularnewline
100 & 6010 & 5998.58709325557 & 0.0825059226397786 & 6021.33040082179 & -11.4129067444346 \tabularnewline
101 & 6025 & 6024.30494068635 & 1.05870970686754 & 6024.63634960678 & -0.695059313645288 \tabularnewline
102 & 6030 & 6035.631263262 & -1.41110598988829 & 6025.77984272789 & 5.63126326199836 \tabularnewline
103 & 5955 & 5882.45761140572 & 0.619052745279482 & 6026.923335849 & -72.5423885942828 \tabularnewline
104 & 6075 & 6122.40799087518 & 0.783186396460909 & 6026.80882272836 & 47.4079908751819 \tabularnewline
105 & 6055 & 6092.85839036304 & -9.55269997075122 & 6026.69430960771 & 37.8583903630406 \tabularnewline
106 & 6040 & 6053.68461312922 & -1.47107162612061 & 6027.7864584969 & 13.6846131292195 \tabularnewline
107 & 6025 & 6018.58654086222 & 2.53485175168415 & 6028.87860738609 & -6.41345913777513 \tabularnewline
108 & 6015 & 5994.54090024108 & 4.34794955554832 & 6031.11115020338 & -20.4590997589248 \tabularnewline
109 & 6025 & 6012.75687225357 & 3.89943472577069 & 6033.34369302066 & -12.2431277464329 \tabularnewline
110 & 6015 & 5996.46089774139 & -0.497123838024851 & 6034.03622609664 & -18.5391022586127 \tabularnewline
111 & 6020 & 6005.6649311573 & -0.393690329909281 & 6034.72875917261 & -14.3350688427045 \tabularnewline
112 & 6050 & 6064.79037087283 & 0.0825059226397786 & 6035.12712320453 & 14.790370872829 \tabularnewline
113 & 6050 & 6063.41580305669 & 1.05870970686754 & 6035.52548723645 & 13.415803056685 \tabularnewline
114 & 6040 & 6045.27952751928 & -1.41110598988829 & 6036.13157847061 & 5.27952751927569 \tabularnewline
115 & 6090 & 6142.64327754994 & 0.619052745279482 & 6036.73766970478 & 52.6432775499434 \tabularnewline
116 & 6030 & 6021.73909795116 & 0.783186396460909 & 6037.47771565238 & -8.26090204883894 \tabularnewline
117 & 5990 & 5951.33493837077 & -9.55269997075122 & 6038.21776159998 & -38.6650616292263 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299364&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]5570[/C][C]5580.2673444546[/C][C]3.89943472577069[/C][C]5555.83322081963[/C][C]10.2673444546008[/C][/ROW]
[ROW][C]2[/C][C]5555[/C][C]5552.39900008657[/C][C]-0.497123838024851[/C][C]5558.09812375146[/C][C]-2.60099991343395[/C][/ROW]
[ROW][C]3[/C][C]5555[/C][C]5550.03066364662[/C][C]-0.393690329909281[/C][C]5560.36302668329[/C][C]-4.96933635338064[/C][/ROW]
[ROW][C]4[/C][C]5560[/C][C]5557.23111898491[/C][C]0.0825059226397786[/C][C]5562.68637509245[/C][C]-2.76888101509121[/C][/ROW]
[ROW][C]5[/C][C]5570[/C][C]5573.93156679152[/C][C]1.05870970686754[/C][C]5565.00972350161[/C][C]3.9315667915198[/C][/ROW]
[ROW][C]6[/C][C]5565[/C][C]5564.02918584323[/C][C]-1.41110598988829[/C][C]5567.38192014666[/C][C]-0.970814156773486[/C][/ROW]
[ROW][C]7[/C][C]5580[/C][C]5589.62683046301[/C][C]0.619052745279482[/C][C]5569.75411679171[/C][C]9.62683046300936[/C][/ROW]
[ROW][C]8[/C][C]5540[/C][C]5507.03899867989[/C][C]0.783186396460909[/C][C]5572.17781492365[/C][C]-32.96100132011[/C][/ROW]
[ROW][C]9[/C][C]5575[/C][C]5584.95118691516[/C][C]-9.55269997075122[/C][C]5574.60151305559[/C][C]9.95118691516382[/C][/ROW]
[ROW][C]10[/C][C]5585[/C][C]5594.11897855153[/C][C]-1.47107162612061[/C][C]5577.35209307459[/C][C]9.11897855153347[/C][/ROW]
[ROW][C]11[/C][C]5585[/C][C]5587.36247515473[/C][C]2.53485175168415[/C][C]5580.10267309359[/C][C]2.36247515472951[/C][/ROW]
[ROW][C]12[/C][C]5570[/C][C]5552.07330141692[/C][C]4.34794955554832[/C][C]5583.57874902753[/C][C]-17.9266985830809[/C][/ROW]
[ROW][C]13[/C][C]5610[/C][C]5629.04574031275[/C][C]3.89943472577069[/C][C]5587.05482496148[/C][C]19.0457403127502[/C][/ROW]
[ROW][C]14[/C][C]5585[/C][C]5580.17978997182[/C][C]-0.497123838024851[/C][C]5590.3173338662[/C][C]-4.82021002817692[/C][/ROW]
[ROW][C]15[/C][C]5580[/C][C]5566.81384755898[/C][C]-0.393690329909281[/C][C]5593.57984277092[/C][C]-13.1861524410151[/C][/ROW]
[ROW][C]16[/C][C]5605[/C][C]5615.0036914619[/C][C]0.0825059226397786[/C][C]5594.91380261546[/C][C]10.0036914618968[/C][/ROW]
[ROW][C]17[/C][C]5600[/C][C]5602.69352783313[/C][C]1.05870970686754[/C][C]5596.24776246[/C][C]2.69352783313025[/C][/ROW]
[ROW][C]18[/C][C]5585[/C][C]5575.35380872724[/C][C]-1.41110598988829[/C][C]5596.05729726265[/C][C]-9.64619127276183[/C][/ROW]
[ROW][C]19[/C][C]5655[/C][C]5713.51411518942[/C][C]0.619052745279482[/C][C]5595.8668320653[/C][C]58.5141151894231[/C][/ROW]
[ROW][C]20[/C][C]5605[/C][C]5614.49161304492[/C][C]0.783186396460909[/C][C]5594.72520055862[/C][C]9.491613044921[/C][/ROW]
[ROW][C]21[/C][C]5575[/C][C]5565.96913091881[/C][C]-9.55269997075122[/C][C]5593.58356905194[/C][C]-9.03086908118803[/C][/ROW]
[ROW][C]22[/C][C]5590[/C][C]5589.81322069817[/C][C]-1.47107162612061[/C][C]5591.65785092795[/C][C]-0.186779301827301[/C][/ROW]
[ROW][C]23[/C][C]5570[/C][C]5547.73301544436[/C][C]2.53485175168415[/C][C]5589.73213280396[/C][C]-22.266984555642[/C][/ROW]
[ROW][C]24[/C][C]5590[/C][C]5587.75946328564[/C][C]4.34794955554832[/C][C]5587.89258715881[/C][C]-2.24053671436286[/C][/ROW]
[ROW][C]25[/C][C]5590[/C][C]5590.04752376056[/C][C]3.89943472577069[/C][C]5586.05304151367[/C][C]0.0475237605578513[/C][/ROW]
[ROW][C]26[/C][C]5570[/C][C]5554.85868456282[/C][C]-0.497123838024851[/C][C]5585.6384392752[/C][C]-15.1413154371758[/C][/ROW]
[ROW][C]27[/C][C]5590[/C][C]5595.16985329318[/C][C]-0.393690329909281[/C][C]5585.22383703673[/C][C]5.16985329317868[/C][/ROW]
[ROW][C]28[/C][C]5565[/C][C]5544.17279002728[/C][C]0.0825059226397786[/C][C]5585.74470405008[/C][C]-20.8272099727155[/C][/ROW]
[ROW][C]29[/C][C]5580[/C][C]5572.67571922971[/C][C]1.05870970686754[/C][C]5586.26557106342[/C][C]-7.32428077028726[/C][/ROW]
[ROW][C]30[/C][C]5605[/C][C]5624.16866514125[/C][C]-1.41110598988829[/C][C]5587.24244084864[/C][C]19.168665141251[/C][/ROW]
[ROW][C]31[/C][C]5585[/C][C]5581.16163662087[/C][C]0.619052745279482[/C][C]5588.21931063386[/C][C]-3.83836337913453[/C][/ROW]
[ROW][C]32[/C][C]5615[/C][C]5638.52604634748[/C][C]0.783186396460909[/C][C]5590.69076725606[/C][C]23.5260463474779[/C][/ROW]
[ROW][C]33[/C][C]5595[/C][C]5606.39047609248[/C][C]-9.55269997075122[/C][C]5593.16222387827[/C][C]11.3904760924834[/C][/ROW]
[ROW][C]34[/C][C]5580[/C][C]5564.39627794974[/C][C]-1.47107162612061[/C][C]5597.07479367638[/C][C]-15.6037220502558[/C][/ROW]
[ROW][C]35[/C][C]5555[/C][C]5506.47778477383[/C][C]2.53485175168415[/C][C]5600.98736347448[/C][C]-48.5222152261686[/C][/ROW]
[ROW][C]36[/C][C]5605[/C][C]5600.20875063403[/C][C]4.34794955554832[/C][C]5605.44329981043[/C][C]-4.79124936597418[/C][/ROW]
[ROW][C]37[/C][C]5600[/C][C]5586.20132912786[/C][C]3.89943472577069[/C][C]5609.89923614637[/C][C]-13.7986708721373[/C][/ROW]
[ROW][C]38[/C][C]5630[/C][C]5645.2597508837[/C][C]-0.497123838024851[/C][C]5615.23737295432[/C][C]15.2597508837007[/C][/ROW]
[ROW][C]39[/C][C]5625[/C][C]5629.81818056763[/C][C]-0.393690329909281[/C][C]5620.57550976228[/C][C]4.81818056762768[/C][/ROW]
[ROW][C]40[/C][C]5620[/C][C]5612.12551728717[/C][C]0.0825059226397786[/C][C]5627.79197679019[/C][C]-7.87448271282847[/C][/ROW]
[ROW][C]41[/C][C]5645[/C][C]5653.93284647504[/C][C]1.05870970686754[/C][C]5635.0084438181[/C][C]8.93284647503697[/C][/ROW]
[ROW][C]42[/C][C]5660[/C][C]5678.66006343825[/C][C]-1.41110598988829[/C][C]5642.75104255163[/C][C]18.6600634382548[/C][/ROW]
[ROW][C]43[/C][C]5640[/C][C]5628.88730596955[/C][C]0.619052745279482[/C][C]5650.49364128517[/C][C]-11.1126940304503[/C][/ROW]
[ROW][C]44[/C][C]5640[/C][C]5622.00183906766[/C][C]0.783186396460909[/C][C]5657.21497453588[/C][C]-17.9981609323431[/C][/ROW]
[ROW][C]45[/C][C]5660[/C][C]5665.61639218416[/C][C]-9.55269997075122[/C][C]5663.93630778659[/C][C]5.61639218415803[/C][/ROW]
[ROW][C]46[/C][C]5660[/C][C]5651.06477868861[/C][C]-1.47107162612061[/C][C]5670.40629293751[/C][C]-8.93522131138798[/C][/ROW]
[ROW][C]47[/C][C]5690[/C][C]5700.58887015989[/C][C]2.53485175168415[/C][C]5676.87627808843[/C][C]10.5888701598906[/C][/ROW]
[ROW][C]48[/C][C]5715[/C][C]5741.82214001242[/C][C]4.34794955554832[/C][C]5683.82991043204[/C][C]26.8221400124157[/C][/ROW]
[ROW][C]49[/C][C]5675[/C][C]5655.31702249858[/C][C]3.89943472577069[/C][C]5690.78354277565[/C][C]-19.6829775014166[/C][/ROW]
[ROW][C]50[/C][C]5685[/C][C]5672.41082744352[/C][C]-0.497123838024851[/C][C]5698.08629639451[/C][C]-12.5891725564843[/C][/ROW]
[ROW][C]51[/C][C]5710[/C][C]5715.00464031654[/C][C]-0.393690329909281[/C][C]5705.38905001337[/C][C]5.00464031653792[/C][/ROW]
[ROW][C]52[/C][C]5720[/C][C]5727.91892831296[/C][C]0.0825059226397786[/C][C]5711.9985657644[/C][C]7.91892831296263[/C][/ROW]
[ROW][C]53[/C][C]5710[/C][C]5700.33320877771[/C][C]1.05870970686754[/C][C]5718.60808151542[/C][C]-9.66679122229107[/C][/ROW]
[ROW][C]54[/C][C]5710[/C][C]5695.89420732956[/C][C]-1.41110598988829[/C][C]5725.51689866032[/C][C]-14.1057926704352[/C][/ROW]
[ROW][C]55[/C][C]5755[/C][C]5776.9552314495[/C][C]0.619052745279482[/C][C]5732.42571580522[/C][C]21.9552314494968[/C][/ROW]
[ROW][C]56[/C][C]5755[/C][C]5769.30491708666[/C][C]0.783186396460909[/C][C]5739.91189651688[/C][C]14.3049170866589[/C][/ROW]
[ROW][C]57[/C][C]5735[/C][C]5732.15462274221[/C][C]-9.55269997075122[/C][C]5747.39807722854[/C][C]-2.84537725778591[/C][/ROW]
[ROW][C]58[/C][C]5720[/C][C]5687.89349817682[/C][C]-1.47107162612061[/C][C]5753.5775734493[/C][C]-32.1065018231757[/C][/ROW]
[ROW][C]59[/C][C]5770[/C][C]5777.70807857826[/C][C]2.53485175168415[/C][C]5759.75706967005[/C][C]7.70807857826094[/C][/ROW]
[ROW][C]60[/C][C]5775[/C][C]5782.46750756506[/C][C]4.34794955554832[/C][C]5763.18454287939[/C][C]7.4675075650639[/C][/ROW]
[ROW][C]61[/C][C]5790[/C][C]5809.48854918551[/C][C]3.89943472577069[/C][C]5766.61201608872[/C][C]19.4885491855102[/C][/ROW]
[ROW][C]62[/C][C]5800[/C][C]5833.16154479373[/C][C]-0.497123838024851[/C][C]5767.3355790443[/C][C]33.1615447937265[/C][/ROW]
[ROW][C]63[/C][C]5780[/C][C]5792.33454833003[/C][C]-0.393690329909281[/C][C]5768.05914199988[/C][C]12.3345483300318[/C][/ROW]
[ROW][C]64[/C][C]5775[/C][C]5780.62627519666[/C][C]0.0825059226397786[/C][C]5769.2912188807[/C][C]5.62627519665966[/C][/ROW]
[ROW][C]65[/C][C]5780[/C][C]5788.41799453161[/C][C]1.05870970686754[/C][C]5770.52329576152[/C][C]8.4179945316082[/C][/ROW]
[ROW][C]66[/C][C]5785[/C][C]5798.74780135362[/C][C]-1.41110598988829[/C][C]5772.66330463627[/C][C]13.7478013536229[/C][/ROW]
[ROW][C]67[/C][C]5720[/C][C]5664.57763374371[/C][C]0.619052745279482[/C][C]5774.80331351101[/C][C]-55.4223662562863[/C][/ROW]
[ROW][C]68[/C][C]5740[/C][C]5701.03769469047[/C][C]0.783186396460909[/C][C]5778.17911891307[/C][C]-38.9623053095265[/C][/ROW]
[ROW][C]69[/C][C]5725[/C][C]5677.99777565563[/C][C]-9.55269997075122[/C][C]5781.55492431512[/C][C]-47.0022243443736[/C][/ROW]
[ROW][C]70[/C][C]5785[/C][C]5783.94574532516[/C][C]-1.47107162612061[/C][C]5787.52532630096[/C][C]-1.05425467483929[/C][/ROW]
[ROW][C]71[/C][C]5835[/C][C]5873.96941996152[/C][C]2.53485175168415[/C][C]5793.4957282868[/C][C]38.9694199615205[/C][/ROW]
[ROW][C]72[/C][C]5810[/C][C]5812.41974955092[/C][C]4.34794955554832[/C][C]5803.23230089353[/C][C]2.41974955092064[/C][/ROW]
[ROW][C]73[/C][C]5815[/C][C]5813.13169177396[/C][C]3.89943472577069[/C][C]5812.96887350027[/C][C]-1.8683082260377[/C][/ROW]
[ROW][C]74[/C][C]5815[/C][C]5804.98531452985[/C][C]-0.497123838024851[/C][C]5825.51180930817[/C][C]-10.0146854701461[/C][/ROW]
[ROW][C]75[/C][C]5840[/C][C]5842.33894521383[/C][C]-0.393690329909281[/C][C]5838.05474511608[/C][C]2.33894521383354[/C][/ROW]
[ROW][C]76[/C][C]5840[/C][C]5829.33760096539[/C][C]0.0825059226397786[/C][C]5850.57989311197[/C][C]-10.6623990346061[/C][/ROW]
[ROW][C]77[/C][C]5845[/C][C]5825.83624918528[/C][C]1.05870970686754[/C][C]5863.10504110786[/C][C]-19.1637508147232[/C][/ROW]
[ROW][C]78[/C][C]5865[/C][C]5856.57772456095[/C][C]-1.41110598988829[/C][C]5874.83338142894[/C][C]-8.4222754390521[/C][/ROW]
[ROW][C]79[/C][C]5900[/C][C]5912.8192255047[/C][C]0.619052745279482[/C][C]5886.56172175003[/C][C]12.8192255046952[/C][/ROW]
[ROW][C]80[/C][C]5900[/C][C]5901.47061355026[/C][C]0.783186396460909[/C][C]5897.74620005328[/C][C]1.4706135502629[/C][/ROW]
[ROW][C]81[/C][C]5915[/C][C]5930.62202161423[/C][C]-9.55269997075122[/C][C]5908.93067835653[/C][C]15.6220216142256[/C][/ROW]
[ROW][C]82[/C][C]5940[/C][C]5963.01795741803[/C][C]-1.47107162612061[/C][C]5918.45311420809[/C][C]23.0179574180302[/C][/ROW]
[ROW][C]83[/C][C]5950[/C][C]5969.48959818866[/C][C]2.53485175168415[/C][C]5927.97555005966[/C][C]19.4895981886593[/C][/ROW]
[ROW][C]84[/C][C]5940[/C][C]5941.03773867606[/C][C]4.34794955554832[/C][C]5934.61431176839[/C][C]1.03773867606014[/C][/ROW]
[ROW][C]85[/C][C]5955[/C][C]5964.8474917971[/C][C]3.89943472577069[/C][C]5941.25307347713[/C][C]9.84749179710252[/C][/ROW]
[ROW][C]86[/C][C]5945[/C][C]5944.64747693571[/C][C]-0.497123838024851[/C][C]5945.84964690231[/C][C]-0.352523064288107[/C][/ROW]
[ROW][C]87[/C][C]5945[/C][C]5939.94747000241[/C][C]-0.393690329909281[/C][C]5950.4462203275[/C][C]-5.05252999758977[/C][/ROW]
[ROW][C]88[/C][C]5975[/C][C]5994.87540336454[/C][C]0.0825059226397786[/C][C]5955.04209071282[/C][C]19.8754033645446[/C][/ROW]
[ROW][C]89[/C][C]5960[/C][C]5959.303329195[/C][C]1.05870970686754[/C][C]5959.63796109813[/C][C]-0.696670804998575[/C][/ROW]
[ROW][C]90[/C][C]5930[/C][C]5896.14500003498[/C][C]-1.41110598988829[/C][C]5965.26610595491[/C][C]-33.8549999650213[/C][/ROW]
[ROW][C]91[/C][C]5950[/C][C]5928.48669644303[/C][C]0.619052745279482[/C][C]5970.89425081169[/C][C]-21.5133035569688[/C][/ROW]
[ROW][C]92[/C][C]5970[/C][C]5961.75241877092[/C][C]0.783186396460909[/C][C]5977.46439483262[/C][C]-8.24758122908042[/C][/ROW]
[ROW][C]93[/C][C]5980[/C][C]5985.5181611172[/C][C]-9.55269997075122[/C][C]5984.03453885355[/C][C]5.518161117202[/C][/ROW]
[ROW][C]94[/C][C]6000[/C][C]6010.83510226522[/C][C]-1.47107162612061[/C][C]5990.6359693609[/C][C]10.8351022652196[/C][/ROW]
[ROW][C]95[/C][C]6000[/C][C]6000.22774838006[/C][C]2.53485175168415[/C][C]5997.23739986825[/C][C]0.227748380062621[/C][/ROW]
[ROW][C]96[/C][C]6020[/C][C]6032.83279395315[/C][C]4.34794955554832[/C][C]6002.8192564913[/C][C]12.8327939531509[/C][/ROW]
[ROW][C]97[/C][C]6015[/C][C]6017.69945215988[/C][C]3.89943472577069[/C][C]6008.40111311435[/C][C]2.69945215988082[/C][/ROW]
[ROW][C]98[/C][C]6040[/C][C]6067.28434126245[/C][C]-0.497123838024851[/C][C]6013.21278257558[/C][C]27.2843412624452[/C][/ROW]
[ROW][C]99[/C][C]6035[/C][C]6052.3692382931[/C][C]-0.393690329909281[/C][C]6018.02445203681[/C][C]17.3692382930976[/C][/ROW]
[ROW][C]100[/C][C]6010[/C][C]5998.58709325557[/C][C]0.0825059226397786[/C][C]6021.33040082179[/C][C]-11.4129067444346[/C][/ROW]
[ROW][C]101[/C][C]6025[/C][C]6024.30494068635[/C][C]1.05870970686754[/C][C]6024.63634960678[/C][C]-0.695059313645288[/C][/ROW]
[ROW][C]102[/C][C]6030[/C][C]6035.631263262[/C][C]-1.41110598988829[/C][C]6025.77984272789[/C][C]5.63126326199836[/C][/ROW]
[ROW][C]103[/C][C]5955[/C][C]5882.45761140572[/C][C]0.619052745279482[/C][C]6026.923335849[/C][C]-72.5423885942828[/C][/ROW]
[ROW][C]104[/C][C]6075[/C][C]6122.40799087518[/C][C]0.783186396460909[/C][C]6026.80882272836[/C][C]47.4079908751819[/C][/ROW]
[ROW][C]105[/C][C]6055[/C][C]6092.85839036304[/C][C]-9.55269997075122[/C][C]6026.69430960771[/C][C]37.8583903630406[/C][/ROW]
[ROW][C]106[/C][C]6040[/C][C]6053.68461312922[/C][C]-1.47107162612061[/C][C]6027.7864584969[/C][C]13.6846131292195[/C][/ROW]
[ROW][C]107[/C][C]6025[/C][C]6018.58654086222[/C][C]2.53485175168415[/C][C]6028.87860738609[/C][C]-6.41345913777513[/C][/ROW]
[ROW][C]108[/C][C]6015[/C][C]5994.54090024108[/C][C]4.34794955554832[/C][C]6031.11115020338[/C][C]-20.4590997589248[/C][/ROW]
[ROW][C]109[/C][C]6025[/C][C]6012.75687225357[/C][C]3.89943472577069[/C][C]6033.34369302066[/C][C]-12.2431277464329[/C][/ROW]
[ROW][C]110[/C][C]6015[/C][C]5996.46089774139[/C][C]-0.497123838024851[/C][C]6034.03622609664[/C][C]-18.5391022586127[/C][/ROW]
[ROW][C]111[/C][C]6020[/C][C]6005.6649311573[/C][C]-0.393690329909281[/C][C]6034.72875917261[/C][C]-14.3350688427045[/C][/ROW]
[ROW][C]112[/C][C]6050[/C][C]6064.79037087283[/C][C]0.0825059226397786[/C][C]6035.12712320453[/C][C]14.790370872829[/C][/ROW]
[ROW][C]113[/C][C]6050[/C][C]6063.41580305669[/C][C]1.05870970686754[/C][C]6035.52548723645[/C][C]13.415803056685[/C][/ROW]
[ROW][C]114[/C][C]6040[/C][C]6045.27952751928[/C][C]-1.41110598988829[/C][C]6036.13157847061[/C][C]5.27952751927569[/C][/ROW]
[ROW][C]115[/C][C]6090[/C][C]6142.64327754994[/C][C]0.619052745279482[/C][C]6036.73766970478[/C][C]52.6432775499434[/C][/ROW]
[ROW][C]116[/C][C]6030[/C][C]6021.73909795116[/C][C]0.783186396460909[/C][C]6037.47771565238[/C][C]-8.26090204883894[/C][/ROW]
[ROW][C]117[/C][C]5990[/C][C]5951.33493837077[/C][C]-9.55269997075122[/C][C]6038.21776159998[/C][C]-38.6650616292263[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299364&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299364&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
155705580.26734445463.899434725770695555.8332208196310.2673444546008
255555552.39900008657-0.4971238380248515558.09812375146-2.60099991343395
355555550.03066364662-0.3936903299092815560.36302668329-4.96933635338064
455605557.231118984910.08250592263977865562.68637509245-2.76888101509121
555705573.931566791521.058709706867545565.009723501613.9315667915198
655655564.02918584323-1.411105989888295567.38192014666-0.970814156773486
755805589.626830463010.6190527452794825569.754116791719.62683046300936
855405507.038998679890.7831863964609095572.17781492365-32.96100132011
955755584.95118691516-9.552699970751225574.601513055599.95118691516382
1055855594.11897855153-1.471071626120615577.352093074599.11897855153347
1155855587.362475154732.534851751684155580.102673093592.36247515472951
1255705552.073301416924.347949555548325583.57874902753-17.9266985830809
1356105629.045740312753.899434725770695587.0548249614819.0457403127502
1455855580.17978997182-0.4971238380248515590.3173338662-4.82021002817692
1555805566.81384755898-0.3936903299092815593.57984277092-13.1861524410151
1656055615.00369146190.08250592263977865594.9138026154610.0036914618968
1756005602.693527833131.058709706867545596.247762462.69352783313025
1855855575.35380872724-1.411105989888295596.05729726265-9.64619127276183
1956555713.514115189420.6190527452794825595.866832065358.5141151894231
2056055614.491613044920.7831863964609095594.725200558629.491613044921
2155755565.96913091881-9.552699970751225593.58356905194-9.03086908118803
2255905589.81322069817-1.471071626120615591.65785092795-0.186779301827301
2355705547.733015444362.534851751684155589.73213280396-22.266984555642
2455905587.759463285644.347949555548325587.89258715881-2.24053671436286
2555905590.047523760563.899434725770695586.053041513670.0475237605578513
2655705554.85868456282-0.4971238380248515585.6384392752-15.1413154371758
2755905595.16985329318-0.3936903299092815585.223837036735.16985329317868
2855655544.172790027280.08250592263977865585.74470405008-20.8272099727155
2955805572.675719229711.058709706867545586.26557106342-7.32428077028726
3056055624.16866514125-1.411105989888295587.2424408486419.168665141251
3155855581.161636620870.6190527452794825588.21931063386-3.83836337913453
3256155638.526046347480.7831863964609095590.6907672560623.5260463474779
3355955606.39047609248-9.552699970751225593.1622238782711.3904760924834
3455805564.39627794974-1.471071626120615597.07479367638-15.6037220502558
3555555506.477784773832.534851751684155600.98736347448-48.5222152261686
3656055600.208750634034.347949555548325605.44329981043-4.79124936597418
3756005586.201329127863.899434725770695609.89923614637-13.7986708721373
3856305645.2597508837-0.4971238380248515615.2373729543215.2597508837007
3956255629.81818056763-0.3936903299092815620.575509762284.81818056762768
4056205612.125517287170.08250592263977865627.79197679019-7.87448271282847
4156455653.932846475041.058709706867545635.00844381818.93284647503697
4256605678.66006343825-1.411105989888295642.7510425516318.6600634382548
4356405628.887305969550.6190527452794825650.49364128517-11.1126940304503
4456405622.001839067660.7831863964609095657.21497453588-17.9981609323431
4556605665.61639218416-9.552699970751225663.936307786595.61639218415803
4656605651.06477868861-1.471071626120615670.40629293751-8.93522131138798
4756905700.588870159892.534851751684155676.8762780884310.5888701598906
4857155741.822140012424.347949555548325683.8299104320426.8221400124157
4956755655.317022498583.899434725770695690.78354277565-19.6829775014166
5056855672.41082744352-0.4971238380248515698.08629639451-12.5891725564843
5157105715.00464031654-0.3936903299092815705.389050013375.00464031653792
5257205727.918928312960.08250592263977865711.99856576447.91892831296263
5357105700.333208777711.058709706867545718.60808151542-9.66679122229107
5457105695.89420732956-1.411105989888295725.51689866032-14.1057926704352
5557555776.95523144950.6190527452794825732.4257158052221.9552314494968
5657555769.304917086660.7831863964609095739.9118965168814.3049170866589
5757355732.15462274221-9.552699970751225747.39807722854-2.84537725778591
5857205687.89349817682-1.471071626120615753.5775734493-32.1065018231757
5957705777.708078578262.534851751684155759.757069670057.70807857826094
6057755782.467507565064.347949555548325763.184542879397.4675075650639
6157905809.488549185513.899434725770695766.6120160887219.4885491855102
6258005833.16154479373-0.4971238380248515767.335579044333.1615447937265
6357805792.33454833003-0.3936903299092815768.0591419998812.3345483300318
6457755780.626275196660.08250592263977865769.29121888075.62627519665966
6557805788.417994531611.058709706867545770.523295761528.4179945316082
6657855798.74780135362-1.411105989888295772.6633046362713.7478013536229
6757205664.577633743710.6190527452794825774.80331351101-55.4223662562863
6857405701.037694690470.7831863964609095778.17911891307-38.9623053095265
6957255677.99777565563-9.552699970751225781.55492431512-47.0022243443736
7057855783.94574532516-1.471071626120615787.52532630096-1.05425467483929
7158355873.969419961522.534851751684155793.495728286838.9694199615205
7258105812.419749550924.347949555548325803.232300893532.41974955092064
7358155813.131691773963.899434725770695812.96887350027-1.8683082260377
7458155804.98531452985-0.4971238380248515825.51180930817-10.0146854701461
7558405842.33894521383-0.3936903299092815838.054745116082.33894521383354
7658405829.337600965390.08250592263977865850.57989311197-10.6623990346061
7758455825.836249185281.058709706867545863.10504110786-19.1637508147232
7858655856.57772456095-1.411105989888295874.83338142894-8.4222754390521
7959005912.81922550470.6190527452794825886.5617217500312.8192255046952
8059005901.470613550260.7831863964609095897.746200053281.4706135502629
8159155930.62202161423-9.552699970751225908.9306783565315.6220216142256
8259405963.01795741803-1.471071626120615918.4531142080923.0179574180302
8359505969.489598188662.534851751684155927.9755500596619.4895981886593
8459405941.037738676064.347949555548325934.614311768391.03773867606014
8559555964.84749179713.899434725770695941.253073477139.84749179710252
8659455944.64747693571-0.4971238380248515945.84964690231-0.352523064288107
8759455939.94747000241-0.3936903299092815950.4462203275-5.05252999758977
8859755994.875403364540.08250592263977865955.0420907128219.8754033645446
8959605959.3033291951.058709706867545959.63796109813-0.696670804998575
9059305896.14500003498-1.411105989888295965.26610595491-33.8549999650213
9159505928.486696443030.6190527452794825970.89425081169-21.5133035569688
9259705961.752418770920.7831863964609095977.46439483262-8.24758122908042
9359805985.5181611172-9.552699970751225984.034538853555.518161117202
9460006010.83510226522-1.471071626120615990.635969360910.8351022652196
9560006000.227748380062.534851751684155997.237399868250.227748380062621
9660206032.832793953154.347949555548326002.819256491312.8327939531509
9760156017.699452159883.899434725770696008.401113114352.69945215988082
9860406067.28434126245-0.4971238380248516013.2127825755827.2843412624452
9960356052.3692382931-0.3936903299092816018.0244520368117.3692382930976
10060105998.587093255570.08250592263977866021.33040082179-11.4129067444346
10160256024.304940686351.058709706867546024.63634960678-0.695059313645288
10260306035.631263262-1.411105989888296025.779842727895.63126326199836
10359555882.457611405720.6190527452794826026.923335849-72.5423885942828
10460756122.407990875180.7831863964609096026.8088227283647.4079908751819
10560556092.85839036304-9.552699970751226026.6943096077137.8583903630406
10660406053.68461312922-1.471071626120616027.786458496913.6846131292195
10760256018.586540862222.534851751684156028.87860738609-6.41345913777513
10860155994.540900241084.347949555548326031.11115020338-20.4590997589248
10960256012.756872253573.899434725770696033.34369302066-12.2431277464329
11060155996.46089774139-0.4971238380248516034.03622609664-18.5391022586127
11160206005.6649311573-0.3936903299092816034.72875917261-14.3350688427045
11260506064.790370872830.08250592263977866035.1271232045314.790370872829
11360506063.415803056691.058709706867546035.5254872364513.415803056685
11460406045.27952751928-1.411105989888296036.131578470615.27952751927569
11560906142.643277549940.6190527452794826036.7376697047852.6432775499434
11660306021.739097951160.7831863964609096037.47771565238-8.26090204883894
11759905951.33493837077-9.552699970751226038.21776159998-38.6650616292263



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')