Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 14 Dec 2016 13:24:59 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t14817183670r1hv8azm0j5pv1.htm/, Retrieved Fri, 01 Nov 2024 03:35:02 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299354, Retrieved Fri, 01 Nov 2024 03:35:02 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact108
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [F1-competitie (ko...] [2016-12-14 12:24:59] [55eb8f21ed24cda91766c505eb72bb6f] [Current]
Feedback Forum

Post a new message
Dataseries X:
3949.9
4010.65
4381.8
4238.25
4178.1
4702.25
3944.1
4208.5
4743.45
4948.25
4735.45
4843.15
4757.75
5227.15
5739.65
4981.45
5020.05
5149.15
4513.35
4762.55
4990.45
4963.35
5010
4983.3
4924.7
5175.25
5470.3
4969.4
5020.5
5519.2
4510.75
4934.45
5430.65
5254.7
4897.8
5305.7
5055.7
5409
5683
5125.55
4965.2
5373.3
4556.1
4714.25
5513.85
5258.45
5111.4
5422.25
4753.3
5455.5
5909.15
5524.4
5477.8
5907.75
5072.55
5171
5871.4
5812.45
5692.2
5838.1
5438.2
6041.05
6335.6
5891.8
5909.65
6449.75
5312.25
5828.1
6466.15
6328.35
6131.8
6734.2
6037.25
6412.4
6785.55
6386
6045.25
6597.25
5355.9
5773.35
6539.6
6149.2
6373.45
6504.7
5451.25
6119.9
6954.95
6139.7
6383.25
6643.7
5547.75
5974
6583.6
6571.55
5736.5
6027.2
5302.65
5825.85
5910.6
5733.65
5914.3
6128.25
5680.5
5926.3
6270.5
6263
6064.55
5706.6
5365
5884.2
6504.4
6174.3
6123.65
6698.95
5256.55
5838.2




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299354&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299354&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299354&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13949.9NANA-395.945NA
24010.65NANA86.4892NA
34381.8NANA487.337NA
44238.25NANA-32.0703NA
54178.1NANA-47.8341NA
64702.25NANA319.79NA
73944.13860.74440.65-579.94983.4008
84208.54240.854525-284.146-32.3496
94743.454898.194632.26265.925-154.736
104948.254871.354719.8151.54176.905
114735.454719.854785.85-66.001715.5997
124843.154934.424839.5594.8638-91.2679
134757.754485.954881.89-395.945271.802
145227.155015.194928.786.4892211.963
155739.655449.414962.08487.337290.238
164981.454940.934973-32.070340.5245
175020.054937.234985.06-47.834182.8195
185149.155322.135002.34319.79-172.984
194513.354435.195015.14-579.94978.1592
204762.554735.795019.93-284.14626.7629
214990.455272.475006.55265.925-282.023
224963.355146.364994.82151.541-183.014
2350104928.344994.34-66.001781.6622
244983.35104.645009.7894.8638-121.341
254924.74629.145025.09-395.945295.558
265175.255118.635032.1486.489256.6191
275470.35544.985057.65487.337-74.6828
284969.45056.065088.13-32.0703-86.6568
295020.55047.765095.59-47.8341-27.2576
305519.25424.145104.35319.7995.0599
314510.754543.295123.24-579.949-32.5429
324934.454854.295138.44-284.14680.1566
335430.655422.975157.04265.9257.68299
345254.75323.955172.41151.541-69.2513
354897.85110.615176.61-66.0017-212.811
365305.75263.095168.2394.863842.6071
375055.74768.095164.04-395.945287.606
3854095243.245156.7586.4892165.757
3956835638.385151.05487.33744.6172
405125.555122.65154.67-32.07032.95154
414965.25115.895163.72-47.8341-150.691
425373.35497.275177.48319.79-123.971
434556.14589.795169.74-579.949-33.6888
444714.254874.935159.08-284.146-160.679
455513.855436.365170.44265.92577.4892
465258.455348.025196.48151.541-89.5679
475111.45168.455234.45-66.0017-57.0524
485422.255372.955278.0894.863849.305
494753.34925.925321.87-395.945-172.623
505455.55448.915362.4286.48926.59202
515909.155883.685396.35487.33725.4651
525524.45402.265434.33-32.0703122.141
535477.85433.785481.61-47.834144.0216
545907.755842.935523.14319.7964.8203
555072.554989.065569-579.94983.4946
5651715337.795621.94-284.146-166.793
575871.45930.035664.11265.925-58.6316
585812.455848.725697.18151.541-36.2742
595692.25664.485730.49-66.001727.7163
605838.15865.935771.0694.8638-27.8263
615438.25407.695803.63-395.94530.5119
626041.055927.49584186.4892113.561
636335.66380.55893.16487.337-44.8974
645891.85907.375939.44-32.0703-15.5672
655909.655931.425979.25-47.8341-21.7659
666449.756354.696034.9319.7995.0557
675312.255517.256097.2-579.949-205.003
685828.15853.496137.64-284.146-25.3892
696466.156437.786171.86265.92528.3684
706328.356362.746211.2151.541-34.3867
716131.86171.446237.44-66.0017-39.6358
726734.26344.16249.2394.8638390.103
736037.255861.256257.2-395.945175.997
746412.46343.226256.7486.489269.1754
756785.556744.856257.51487.33740.6984
7663866221.046253.11-32.0703164.96
776045.256207.886255.71-47.8341-162.63
786597.256576.016256.22319.7921.239
795355.95642.296222.24-579.949-286.393
805773.355901.496185.64-284.146-128.141
816539.66446.436180.51265.92593.1663
826149.26328.856177.3151.541-179.645
836373.456115.126181.12-66.0017258.327
846504.76292.016197.1494.8638212.692
855451.255811.136207.07-395.945-359.878
866119.96309.926223.4386.4892-190.016
876954.956720.966233.62487.337233.992
886139.76220.986253.05-32.0703-81.2818
896383.256196.286244.11-47.8341186.974
906643.76517.476197.67319.79126.235
915547.755591.646171.59-579.949-43.8888
92597458696153.14-284.146105.002
936583.66363.36097.38265.925220.298
946571.556188.486036.94151.541383.065
955736.55934.486000.49-66.0017-197.984
966027.26054.335959.4794.8638-27.1325
975302.655547.585943.52-395.945-244.928
985825.856033.565947.0786.4892-207.706
995910.66419.375932.03487.337-508.77
1005733.655874.065906.13-32.0703-140.411
1015914.35859.115906.94-47.834155.1903
1026128.256227.045907.25319.79-98.7943
1035680.55316.555896.49-579.949363.955
1045926.35617.385901.52-284.146308.923
1056270.56194.625928.7265.92575.8788
10662636123.345971.8151.541139.661
1076064.555932.885998.88-66.0017131.67
1085706.66126.256031.3894.8638-419.647
10953655641.556037.5-395.945-276.553
1105884.26102.656016.1686.4892-218.452
1116504.4NANA487.337NA
1126174.3NANA-32.0703NA
1136123.65NANA-47.8341NA
1146698.95NANA319.79NA
1155256.55NANA-579.949NA
1165838.2NANA-284.146NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 3949.9 & NA & NA & -395.945 & NA \tabularnewline
2 & 4010.65 & NA & NA & 86.4892 & NA \tabularnewline
3 & 4381.8 & NA & NA & 487.337 & NA \tabularnewline
4 & 4238.25 & NA & NA & -32.0703 & NA \tabularnewline
5 & 4178.1 & NA & NA & -47.8341 & NA \tabularnewline
6 & 4702.25 & NA & NA & 319.79 & NA \tabularnewline
7 & 3944.1 & 3860.7 & 4440.65 & -579.949 & 83.4008 \tabularnewline
8 & 4208.5 & 4240.85 & 4525 & -284.146 & -32.3496 \tabularnewline
9 & 4743.45 & 4898.19 & 4632.26 & 265.925 & -154.736 \tabularnewline
10 & 4948.25 & 4871.35 & 4719.8 & 151.541 & 76.905 \tabularnewline
11 & 4735.45 & 4719.85 & 4785.85 & -66.0017 & 15.5997 \tabularnewline
12 & 4843.15 & 4934.42 & 4839.55 & 94.8638 & -91.2679 \tabularnewline
13 & 4757.75 & 4485.95 & 4881.89 & -395.945 & 271.802 \tabularnewline
14 & 5227.15 & 5015.19 & 4928.7 & 86.4892 & 211.963 \tabularnewline
15 & 5739.65 & 5449.41 & 4962.08 & 487.337 & 290.238 \tabularnewline
16 & 4981.45 & 4940.93 & 4973 & -32.0703 & 40.5245 \tabularnewline
17 & 5020.05 & 4937.23 & 4985.06 & -47.8341 & 82.8195 \tabularnewline
18 & 5149.15 & 5322.13 & 5002.34 & 319.79 & -172.984 \tabularnewline
19 & 4513.35 & 4435.19 & 5015.14 & -579.949 & 78.1592 \tabularnewline
20 & 4762.55 & 4735.79 & 5019.93 & -284.146 & 26.7629 \tabularnewline
21 & 4990.45 & 5272.47 & 5006.55 & 265.925 & -282.023 \tabularnewline
22 & 4963.35 & 5146.36 & 4994.82 & 151.541 & -183.014 \tabularnewline
23 & 5010 & 4928.34 & 4994.34 & -66.0017 & 81.6622 \tabularnewline
24 & 4983.3 & 5104.64 & 5009.78 & 94.8638 & -121.341 \tabularnewline
25 & 4924.7 & 4629.14 & 5025.09 & -395.945 & 295.558 \tabularnewline
26 & 5175.25 & 5118.63 & 5032.14 & 86.4892 & 56.6191 \tabularnewline
27 & 5470.3 & 5544.98 & 5057.65 & 487.337 & -74.6828 \tabularnewline
28 & 4969.4 & 5056.06 & 5088.13 & -32.0703 & -86.6568 \tabularnewline
29 & 5020.5 & 5047.76 & 5095.59 & -47.8341 & -27.2576 \tabularnewline
30 & 5519.2 & 5424.14 & 5104.35 & 319.79 & 95.0599 \tabularnewline
31 & 4510.75 & 4543.29 & 5123.24 & -579.949 & -32.5429 \tabularnewline
32 & 4934.45 & 4854.29 & 5138.44 & -284.146 & 80.1566 \tabularnewline
33 & 5430.65 & 5422.97 & 5157.04 & 265.925 & 7.68299 \tabularnewline
34 & 5254.7 & 5323.95 & 5172.41 & 151.541 & -69.2513 \tabularnewline
35 & 4897.8 & 5110.61 & 5176.61 & -66.0017 & -212.811 \tabularnewline
36 & 5305.7 & 5263.09 & 5168.23 & 94.8638 & 42.6071 \tabularnewline
37 & 5055.7 & 4768.09 & 5164.04 & -395.945 & 287.606 \tabularnewline
38 & 5409 & 5243.24 & 5156.75 & 86.4892 & 165.757 \tabularnewline
39 & 5683 & 5638.38 & 5151.05 & 487.337 & 44.6172 \tabularnewline
40 & 5125.55 & 5122.6 & 5154.67 & -32.0703 & 2.95154 \tabularnewline
41 & 4965.2 & 5115.89 & 5163.72 & -47.8341 & -150.691 \tabularnewline
42 & 5373.3 & 5497.27 & 5177.48 & 319.79 & -123.971 \tabularnewline
43 & 4556.1 & 4589.79 & 5169.74 & -579.949 & -33.6888 \tabularnewline
44 & 4714.25 & 4874.93 & 5159.08 & -284.146 & -160.679 \tabularnewline
45 & 5513.85 & 5436.36 & 5170.44 & 265.925 & 77.4892 \tabularnewline
46 & 5258.45 & 5348.02 & 5196.48 & 151.541 & -89.5679 \tabularnewline
47 & 5111.4 & 5168.45 & 5234.45 & -66.0017 & -57.0524 \tabularnewline
48 & 5422.25 & 5372.95 & 5278.08 & 94.8638 & 49.305 \tabularnewline
49 & 4753.3 & 4925.92 & 5321.87 & -395.945 & -172.623 \tabularnewline
50 & 5455.5 & 5448.91 & 5362.42 & 86.4892 & 6.59202 \tabularnewline
51 & 5909.15 & 5883.68 & 5396.35 & 487.337 & 25.4651 \tabularnewline
52 & 5524.4 & 5402.26 & 5434.33 & -32.0703 & 122.141 \tabularnewline
53 & 5477.8 & 5433.78 & 5481.61 & -47.8341 & 44.0216 \tabularnewline
54 & 5907.75 & 5842.93 & 5523.14 & 319.79 & 64.8203 \tabularnewline
55 & 5072.55 & 4989.06 & 5569 & -579.949 & 83.4946 \tabularnewline
56 & 5171 & 5337.79 & 5621.94 & -284.146 & -166.793 \tabularnewline
57 & 5871.4 & 5930.03 & 5664.11 & 265.925 & -58.6316 \tabularnewline
58 & 5812.45 & 5848.72 & 5697.18 & 151.541 & -36.2742 \tabularnewline
59 & 5692.2 & 5664.48 & 5730.49 & -66.0017 & 27.7163 \tabularnewline
60 & 5838.1 & 5865.93 & 5771.06 & 94.8638 & -27.8263 \tabularnewline
61 & 5438.2 & 5407.69 & 5803.63 & -395.945 & 30.5119 \tabularnewline
62 & 6041.05 & 5927.49 & 5841 & 86.4892 & 113.561 \tabularnewline
63 & 6335.6 & 6380.5 & 5893.16 & 487.337 & -44.8974 \tabularnewline
64 & 5891.8 & 5907.37 & 5939.44 & -32.0703 & -15.5672 \tabularnewline
65 & 5909.65 & 5931.42 & 5979.25 & -47.8341 & -21.7659 \tabularnewline
66 & 6449.75 & 6354.69 & 6034.9 & 319.79 & 95.0557 \tabularnewline
67 & 5312.25 & 5517.25 & 6097.2 & -579.949 & -205.003 \tabularnewline
68 & 5828.1 & 5853.49 & 6137.64 & -284.146 & -25.3892 \tabularnewline
69 & 6466.15 & 6437.78 & 6171.86 & 265.925 & 28.3684 \tabularnewline
70 & 6328.35 & 6362.74 & 6211.2 & 151.541 & -34.3867 \tabularnewline
71 & 6131.8 & 6171.44 & 6237.44 & -66.0017 & -39.6358 \tabularnewline
72 & 6734.2 & 6344.1 & 6249.23 & 94.8638 & 390.103 \tabularnewline
73 & 6037.25 & 5861.25 & 6257.2 & -395.945 & 175.997 \tabularnewline
74 & 6412.4 & 6343.22 & 6256.74 & 86.4892 & 69.1754 \tabularnewline
75 & 6785.55 & 6744.85 & 6257.51 & 487.337 & 40.6984 \tabularnewline
76 & 6386 & 6221.04 & 6253.11 & -32.0703 & 164.96 \tabularnewline
77 & 6045.25 & 6207.88 & 6255.71 & -47.8341 & -162.63 \tabularnewline
78 & 6597.25 & 6576.01 & 6256.22 & 319.79 & 21.239 \tabularnewline
79 & 5355.9 & 5642.29 & 6222.24 & -579.949 & -286.393 \tabularnewline
80 & 5773.35 & 5901.49 & 6185.64 & -284.146 & -128.141 \tabularnewline
81 & 6539.6 & 6446.43 & 6180.51 & 265.925 & 93.1663 \tabularnewline
82 & 6149.2 & 6328.85 & 6177.3 & 151.541 & -179.645 \tabularnewline
83 & 6373.45 & 6115.12 & 6181.12 & -66.0017 & 258.327 \tabularnewline
84 & 6504.7 & 6292.01 & 6197.14 & 94.8638 & 212.692 \tabularnewline
85 & 5451.25 & 5811.13 & 6207.07 & -395.945 & -359.878 \tabularnewline
86 & 6119.9 & 6309.92 & 6223.43 & 86.4892 & -190.016 \tabularnewline
87 & 6954.95 & 6720.96 & 6233.62 & 487.337 & 233.992 \tabularnewline
88 & 6139.7 & 6220.98 & 6253.05 & -32.0703 & -81.2818 \tabularnewline
89 & 6383.25 & 6196.28 & 6244.11 & -47.8341 & 186.974 \tabularnewline
90 & 6643.7 & 6517.47 & 6197.67 & 319.79 & 126.235 \tabularnewline
91 & 5547.75 & 5591.64 & 6171.59 & -579.949 & -43.8888 \tabularnewline
92 & 5974 & 5869 & 6153.14 & -284.146 & 105.002 \tabularnewline
93 & 6583.6 & 6363.3 & 6097.38 & 265.925 & 220.298 \tabularnewline
94 & 6571.55 & 6188.48 & 6036.94 & 151.541 & 383.065 \tabularnewline
95 & 5736.5 & 5934.48 & 6000.49 & -66.0017 & -197.984 \tabularnewline
96 & 6027.2 & 6054.33 & 5959.47 & 94.8638 & -27.1325 \tabularnewline
97 & 5302.65 & 5547.58 & 5943.52 & -395.945 & -244.928 \tabularnewline
98 & 5825.85 & 6033.56 & 5947.07 & 86.4892 & -207.706 \tabularnewline
99 & 5910.6 & 6419.37 & 5932.03 & 487.337 & -508.77 \tabularnewline
100 & 5733.65 & 5874.06 & 5906.13 & -32.0703 & -140.411 \tabularnewline
101 & 5914.3 & 5859.11 & 5906.94 & -47.8341 & 55.1903 \tabularnewline
102 & 6128.25 & 6227.04 & 5907.25 & 319.79 & -98.7943 \tabularnewline
103 & 5680.5 & 5316.55 & 5896.49 & -579.949 & 363.955 \tabularnewline
104 & 5926.3 & 5617.38 & 5901.52 & -284.146 & 308.923 \tabularnewline
105 & 6270.5 & 6194.62 & 5928.7 & 265.925 & 75.8788 \tabularnewline
106 & 6263 & 6123.34 & 5971.8 & 151.541 & 139.661 \tabularnewline
107 & 6064.55 & 5932.88 & 5998.88 & -66.0017 & 131.67 \tabularnewline
108 & 5706.6 & 6126.25 & 6031.38 & 94.8638 & -419.647 \tabularnewline
109 & 5365 & 5641.55 & 6037.5 & -395.945 & -276.553 \tabularnewline
110 & 5884.2 & 6102.65 & 6016.16 & 86.4892 & -218.452 \tabularnewline
111 & 6504.4 & NA & NA & 487.337 & NA \tabularnewline
112 & 6174.3 & NA & NA & -32.0703 & NA \tabularnewline
113 & 6123.65 & NA & NA & -47.8341 & NA \tabularnewline
114 & 6698.95 & NA & NA & 319.79 & NA \tabularnewline
115 & 5256.55 & NA & NA & -579.949 & NA \tabularnewline
116 & 5838.2 & NA & NA & -284.146 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299354&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]3949.9[/C][C]NA[/C][C]NA[/C][C]-395.945[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]4010.65[/C][C]NA[/C][C]NA[/C][C]86.4892[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]4381.8[/C][C]NA[/C][C]NA[/C][C]487.337[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]4238.25[/C][C]NA[/C][C]NA[/C][C]-32.0703[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]4178.1[/C][C]NA[/C][C]NA[/C][C]-47.8341[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]4702.25[/C][C]NA[/C][C]NA[/C][C]319.79[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]3944.1[/C][C]3860.7[/C][C]4440.65[/C][C]-579.949[/C][C]83.4008[/C][/ROW]
[ROW][C]8[/C][C]4208.5[/C][C]4240.85[/C][C]4525[/C][C]-284.146[/C][C]-32.3496[/C][/ROW]
[ROW][C]9[/C][C]4743.45[/C][C]4898.19[/C][C]4632.26[/C][C]265.925[/C][C]-154.736[/C][/ROW]
[ROW][C]10[/C][C]4948.25[/C][C]4871.35[/C][C]4719.8[/C][C]151.541[/C][C]76.905[/C][/ROW]
[ROW][C]11[/C][C]4735.45[/C][C]4719.85[/C][C]4785.85[/C][C]-66.0017[/C][C]15.5997[/C][/ROW]
[ROW][C]12[/C][C]4843.15[/C][C]4934.42[/C][C]4839.55[/C][C]94.8638[/C][C]-91.2679[/C][/ROW]
[ROW][C]13[/C][C]4757.75[/C][C]4485.95[/C][C]4881.89[/C][C]-395.945[/C][C]271.802[/C][/ROW]
[ROW][C]14[/C][C]5227.15[/C][C]5015.19[/C][C]4928.7[/C][C]86.4892[/C][C]211.963[/C][/ROW]
[ROW][C]15[/C][C]5739.65[/C][C]5449.41[/C][C]4962.08[/C][C]487.337[/C][C]290.238[/C][/ROW]
[ROW][C]16[/C][C]4981.45[/C][C]4940.93[/C][C]4973[/C][C]-32.0703[/C][C]40.5245[/C][/ROW]
[ROW][C]17[/C][C]5020.05[/C][C]4937.23[/C][C]4985.06[/C][C]-47.8341[/C][C]82.8195[/C][/ROW]
[ROW][C]18[/C][C]5149.15[/C][C]5322.13[/C][C]5002.34[/C][C]319.79[/C][C]-172.984[/C][/ROW]
[ROW][C]19[/C][C]4513.35[/C][C]4435.19[/C][C]5015.14[/C][C]-579.949[/C][C]78.1592[/C][/ROW]
[ROW][C]20[/C][C]4762.55[/C][C]4735.79[/C][C]5019.93[/C][C]-284.146[/C][C]26.7629[/C][/ROW]
[ROW][C]21[/C][C]4990.45[/C][C]5272.47[/C][C]5006.55[/C][C]265.925[/C][C]-282.023[/C][/ROW]
[ROW][C]22[/C][C]4963.35[/C][C]5146.36[/C][C]4994.82[/C][C]151.541[/C][C]-183.014[/C][/ROW]
[ROW][C]23[/C][C]5010[/C][C]4928.34[/C][C]4994.34[/C][C]-66.0017[/C][C]81.6622[/C][/ROW]
[ROW][C]24[/C][C]4983.3[/C][C]5104.64[/C][C]5009.78[/C][C]94.8638[/C][C]-121.341[/C][/ROW]
[ROW][C]25[/C][C]4924.7[/C][C]4629.14[/C][C]5025.09[/C][C]-395.945[/C][C]295.558[/C][/ROW]
[ROW][C]26[/C][C]5175.25[/C][C]5118.63[/C][C]5032.14[/C][C]86.4892[/C][C]56.6191[/C][/ROW]
[ROW][C]27[/C][C]5470.3[/C][C]5544.98[/C][C]5057.65[/C][C]487.337[/C][C]-74.6828[/C][/ROW]
[ROW][C]28[/C][C]4969.4[/C][C]5056.06[/C][C]5088.13[/C][C]-32.0703[/C][C]-86.6568[/C][/ROW]
[ROW][C]29[/C][C]5020.5[/C][C]5047.76[/C][C]5095.59[/C][C]-47.8341[/C][C]-27.2576[/C][/ROW]
[ROW][C]30[/C][C]5519.2[/C][C]5424.14[/C][C]5104.35[/C][C]319.79[/C][C]95.0599[/C][/ROW]
[ROW][C]31[/C][C]4510.75[/C][C]4543.29[/C][C]5123.24[/C][C]-579.949[/C][C]-32.5429[/C][/ROW]
[ROW][C]32[/C][C]4934.45[/C][C]4854.29[/C][C]5138.44[/C][C]-284.146[/C][C]80.1566[/C][/ROW]
[ROW][C]33[/C][C]5430.65[/C][C]5422.97[/C][C]5157.04[/C][C]265.925[/C][C]7.68299[/C][/ROW]
[ROW][C]34[/C][C]5254.7[/C][C]5323.95[/C][C]5172.41[/C][C]151.541[/C][C]-69.2513[/C][/ROW]
[ROW][C]35[/C][C]4897.8[/C][C]5110.61[/C][C]5176.61[/C][C]-66.0017[/C][C]-212.811[/C][/ROW]
[ROW][C]36[/C][C]5305.7[/C][C]5263.09[/C][C]5168.23[/C][C]94.8638[/C][C]42.6071[/C][/ROW]
[ROW][C]37[/C][C]5055.7[/C][C]4768.09[/C][C]5164.04[/C][C]-395.945[/C][C]287.606[/C][/ROW]
[ROW][C]38[/C][C]5409[/C][C]5243.24[/C][C]5156.75[/C][C]86.4892[/C][C]165.757[/C][/ROW]
[ROW][C]39[/C][C]5683[/C][C]5638.38[/C][C]5151.05[/C][C]487.337[/C][C]44.6172[/C][/ROW]
[ROW][C]40[/C][C]5125.55[/C][C]5122.6[/C][C]5154.67[/C][C]-32.0703[/C][C]2.95154[/C][/ROW]
[ROW][C]41[/C][C]4965.2[/C][C]5115.89[/C][C]5163.72[/C][C]-47.8341[/C][C]-150.691[/C][/ROW]
[ROW][C]42[/C][C]5373.3[/C][C]5497.27[/C][C]5177.48[/C][C]319.79[/C][C]-123.971[/C][/ROW]
[ROW][C]43[/C][C]4556.1[/C][C]4589.79[/C][C]5169.74[/C][C]-579.949[/C][C]-33.6888[/C][/ROW]
[ROW][C]44[/C][C]4714.25[/C][C]4874.93[/C][C]5159.08[/C][C]-284.146[/C][C]-160.679[/C][/ROW]
[ROW][C]45[/C][C]5513.85[/C][C]5436.36[/C][C]5170.44[/C][C]265.925[/C][C]77.4892[/C][/ROW]
[ROW][C]46[/C][C]5258.45[/C][C]5348.02[/C][C]5196.48[/C][C]151.541[/C][C]-89.5679[/C][/ROW]
[ROW][C]47[/C][C]5111.4[/C][C]5168.45[/C][C]5234.45[/C][C]-66.0017[/C][C]-57.0524[/C][/ROW]
[ROW][C]48[/C][C]5422.25[/C][C]5372.95[/C][C]5278.08[/C][C]94.8638[/C][C]49.305[/C][/ROW]
[ROW][C]49[/C][C]4753.3[/C][C]4925.92[/C][C]5321.87[/C][C]-395.945[/C][C]-172.623[/C][/ROW]
[ROW][C]50[/C][C]5455.5[/C][C]5448.91[/C][C]5362.42[/C][C]86.4892[/C][C]6.59202[/C][/ROW]
[ROW][C]51[/C][C]5909.15[/C][C]5883.68[/C][C]5396.35[/C][C]487.337[/C][C]25.4651[/C][/ROW]
[ROW][C]52[/C][C]5524.4[/C][C]5402.26[/C][C]5434.33[/C][C]-32.0703[/C][C]122.141[/C][/ROW]
[ROW][C]53[/C][C]5477.8[/C][C]5433.78[/C][C]5481.61[/C][C]-47.8341[/C][C]44.0216[/C][/ROW]
[ROW][C]54[/C][C]5907.75[/C][C]5842.93[/C][C]5523.14[/C][C]319.79[/C][C]64.8203[/C][/ROW]
[ROW][C]55[/C][C]5072.55[/C][C]4989.06[/C][C]5569[/C][C]-579.949[/C][C]83.4946[/C][/ROW]
[ROW][C]56[/C][C]5171[/C][C]5337.79[/C][C]5621.94[/C][C]-284.146[/C][C]-166.793[/C][/ROW]
[ROW][C]57[/C][C]5871.4[/C][C]5930.03[/C][C]5664.11[/C][C]265.925[/C][C]-58.6316[/C][/ROW]
[ROW][C]58[/C][C]5812.45[/C][C]5848.72[/C][C]5697.18[/C][C]151.541[/C][C]-36.2742[/C][/ROW]
[ROW][C]59[/C][C]5692.2[/C][C]5664.48[/C][C]5730.49[/C][C]-66.0017[/C][C]27.7163[/C][/ROW]
[ROW][C]60[/C][C]5838.1[/C][C]5865.93[/C][C]5771.06[/C][C]94.8638[/C][C]-27.8263[/C][/ROW]
[ROW][C]61[/C][C]5438.2[/C][C]5407.69[/C][C]5803.63[/C][C]-395.945[/C][C]30.5119[/C][/ROW]
[ROW][C]62[/C][C]6041.05[/C][C]5927.49[/C][C]5841[/C][C]86.4892[/C][C]113.561[/C][/ROW]
[ROW][C]63[/C][C]6335.6[/C][C]6380.5[/C][C]5893.16[/C][C]487.337[/C][C]-44.8974[/C][/ROW]
[ROW][C]64[/C][C]5891.8[/C][C]5907.37[/C][C]5939.44[/C][C]-32.0703[/C][C]-15.5672[/C][/ROW]
[ROW][C]65[/C][C]5909.65[/C][C]5931.42[/C][C]5979.25[/C][C]-47.8341[/C][C]-21.7659[/C][/ROW]
[ROW][C]66[/C][C]6449.75[/C][C]6354.69[/C][C]6034.9[/C][C]319.79[/C][C]95.0557[/C][/ROW]
[ROW][C]67[/C][C]5312.25[/C][C]5517.25[/C][C]6097.2[/C][C]-579.949[/C][C]-205.003[/C][/ROW]
[ROW][C]68[/C][C]5828.1[/C][C]5853.49[/C][C]6137.64[/C][C]-284.146[/C][C]-25.3892[/C][/ROW]
[ROW][C]69[/C][C]6466.15[/C][C]6437.78[/C][C]6171.86[/C][C]265.925[/C][C]28.3684[/C][/ROW]
[ROW][C]70[/C][C]6328.35[/C][C]6362.74[/C][C]6211.2[/C][C]151.541[/C][C]-34.3867[/C][/ROW]
[ROW][C]71[/C][C]6131.8[/C][C]6171.44[/C][C]6237.44[/C][C]-66.0017[/C][C]-39.6358[/C][/ROW]
[ROW][C]72[/C][C]6734.2[/C][C]6344.1[/C][C]6249.23[/C][C]94.8638[/C][C]390.103[/C][/ROW]
[ROW][C]73[/C][C]6037.25[/C][C]5861.25[/C][C]6257.2[/C][C]-395.945[/C][C]175.997[/C][/ROW]
[ROW][C]74[/C][C]6412.4[/C][C]6343.22[/C][C]6256.74[/C][C]86.4892[/C][C]69.1754[/C][/ROW]
[ROW][C]75[/C][C]6785.55[/C][C]6744.85[/C][C]6257.51[/C][C]487.337[/C][C]40.6984[/C][/ROW]
[ROW][C]76[/C][C]6386[/C][C]6221.04[/C][C]6253.11[/C][C]-32.0703[/C][C]164.96[/C][/ROW]
[ROW][C]77[/C][C]6045.25[/C][C]6207.88[/C][C]6255.71[/C][C]-47.8341[/C][C]-162.63[/C][/ROW]
[ROW][C]78[/C][C]6597.25[/C][C]6576.01[/C][C]6256.22[/C][C]319.79[/C][C]21.239[/C][/ROW]
[ROW][C]79[/C][C]5355.9[/C][C]5642.29[/C][C]6222.24[/C][C]-579.949[/C][C]-286.393[/C][/ROW]
[ROW][C]80[/C][C]5773.35[/C][C]5901.49[/C][C]6185.64[/C][C]-284.146[/C][C]-128.141[/C][/ROW]
[ROW][C]81[/C][C]6539.6[/C][C]6446.43[/C][C]6180.51[/C][C]265.925[/C][C]93.1663[/C][/ROW]
[ROW][C]82[/C][C]6149.2[/C][C]6328.85[/C][C]6177.3[/C][C]151.541[/C][C]-179.645[/C][/ROW]
[ROW][C]83[/C][C]6373.45[/C][C]6115.12[/C][C]6181.12[/C][C]-66.0017[/C][C]258.327[/C][/ROW]
[ROW][C]84[/C][C]6504.7[/C][C]6292.01[/C][C]6197.14[/C][C]94.8638[/C][C]212.692[/C][/ROW]
[ROW][C]85[/C][C]5451.25[/C][C]5811.13[/C][C]6207.07[/C][C]-395.945[/C][C]-359.878[/C][/ROW]
[ROW][C]86[/C][C]6119.9[/C][C]6309.92[/C][C]6223.43[/C][C]86.4892[/C][C]-190.016[/C][/ROW]
[ROW][C]87[/C][C]6954.95[/C][C]6720.96[/C][C]6233.62[/C][C]487.337[/C][C]233.992[/C][/ROW]
[ROW][C]88[/C][C]6139.7[/C][C]6220.98[/C][C]6253.05[/C][C]-32.0703[/C][C]-81.2818[/C][/ROW]
[ROW][C]89[/C][C]6383.25[/C][C]6196.28[/C][C]6244.11[/C][C]-47.8341[/C][C]186.974[/C][/ROW]
[ROW][C]90[/C][C]6643.7[/C][C]6517.47[/C][C]6197.67[/C][C]319.79[/C][C]126.235[/C][/ROW]
[ROW][C]91[/C][C]5547.75[/C][C]5591.64[/C][C]6171.59[/C][C]-579.949[/C][C]-43.8888[/C][/ROW]
[ROW][C]92[/C][C]5974[/C][C]5869[/C][C]6153.14[/C][C]-284.146[/C][C]105.002[/C][/ROW]
[ROW][C]93[/C][C]6583.6[/C][C]6363.3[/C][C]6097.38[/C][C]265.925[/C][C]220.298[/C][/ROW]
[ROW][C]94[/C][C]6571.55[/C][C]6188.48[/C][C]6036.94[/C][C]151.541[/C][C]383.065[/C][/ROW]
[ROW][C]95[/C][C]5736.5[/C][C]5934.48[/C][C]6000.49[/C][C]-66.0017[/C][C]-197.984[/C][/ROW]
[ROW][C]96[/C][C]6027.2[/C][C]6054.33[/C][C]5959.47[/C][C]94.8638[/C][C]-27.1325[/C][/ROW]
[ROW][C]97[/C][C]5302.65[/C][C]5547.58[/C][C]5943.52[/C][C]-395.945[/C][C]-244.928[/C][/ROW]
[ROW][C]98[/C][C]5825.85[/C][C]6033.56[/C][C]5947.07[/C][C]86.4892[/C][C]-207.706[/C][/ROW]
[ROW][C]99[/C][C]5910.6[/C][C]6419.37[/C][C]5932.03[/C][C]487.337[/C][C]-508.77[/C][/ROW]
[ROW][C]100[/C][C]5733.65[/C][C]5874.06[/C][C]5906.13[/C][C]-32.0703[/C][C]-140.411[/C][/ROW]
[ROW][C]101[/C][C]5914.3[/C][C]5859.11[/C][C]5906.94[/C][C]-47.8341[/C][C]55.1903[/C][/ROW]
[ROW][C]102[/C][C]6128.25[/C][C]6227.04[/C][C]5907.25[/C][C]319.79[/C][C]-98.7943[/C][/ROW]
[ROW][C]103[/C][C]5680.5[/C][C]5316.55[/C][C]5896.49[/C][C]-579.949[/C][C]363.955[/C][/ROW]
[ROW][C]104[/C][C]5926.3[/C][C]5617.38[/C][C]5901.52[/C][C]-284.146[/C][C]308.923[/C][/ROW]
[ROW][C]105[/C][C]6270.5[/C][C]6194.62[/C][C]5928.7[/C][C]265.925[/C][C]75.8788[/C][/ROW]
[ROW][C]106[/C][C]6263[/C][C]6123.34[/C][C]5971.8[/C][C]151.541[/C][C]139.661[/C][/ROW]
[ROW][C]107[/C][C]6064.55[/C][C]5932.88[/C][C]5998.88[/C][C]-66.0017[/C][C]131.67[/C][/ROW]
[ROW][C]108[/C][C]5706.6[/C][C]6126.25[/C][C]6031.38[/C][C]94.8638[/C][C]-419.647[/C][/ROW]
[ROW][C]109[/C][C]5365[/C][C]5641.55[/C][C]6037.5[/C][C]-395.945[/C][C]-276.553[/C][/ROW]
[ROW][C]110[/C][C]5884.2[/C][C]6102.65[/C][C]6016.16[/C][C]86.4892[/C][C]-218.452[/C][/ROW]
[ROW][C]111[/C][C]6504.4[/C][C]NA[/C][C]NA[/C][C]487.337[/C][C]NA[/C][/ROW]
[ROW][C]112[/C][C]6174.3[/C][C]NA[/C][C]NA[/C][C]-32.0703[/C][C]NA[/C][/ROW]
[ROW][C]113[/C][C]6123.65[/C][C]NA[/C][C]NA[/C][C]-47.8341[/C][C]NA[/C][/ROW]
[ROW][C]114[/C][C]6698.95[/C][C]NA[/C][C]NA[/C][C]319.79[/C][C]NA[/C][/ROW]
[ROW][C]115[/C][C]5256.55[/C][C]NA[/C][C]NA[/C][C]-579.949[/C][C]NA[/C][/ROW]
[ROW][C]116[/C][C]5838.2[/C][C]NA[/C][C]NA[/C][C]-284.146[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299354&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299354&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13949.9NANA-395.945NA
24010.65NANA86.4892NA
34381.8NANA487.337NA
44238.25NANA-32.0703NA
54178.1NANA-47.8341NA
64702.25NANA319.79NA
73944.13860.74440.65-579.94983.4008
84208.54240.854525-284.146-32.3496
94743.454898.194632.26265.925-154.736
104948.254871.354719.8151.54176.905
114735.454719.854785.85-66.001715.5997
124843.154934.424839.5594.8638-91.2679
134757.754485.954881.89-395.945271.802
145227.155015.194928.786.4892211.963
155739.655449.414962.08487.337290.238
164981.454940.934973-32.070340.5245
175020.054937.234985.06-47.834182.8195
185149.155322.135002.34319.79-172.984
194513.354435.195015.14-579.94978.1592
204762.554735.795019.93-284.14626.7629
214990.455272.475006.55265.925-282.023
224963.355146.364994.82151.541-183.014
2350104928.344994.34-66.001781.6622
244983.35104.645009.7894.8638-121.341
254924.74629.145025.09-395.945295.558
265175.255118.635032.1486.489256.6191
275470.35544.985057.65487.337-74.6828
284969.45056.065088.13-32.0703-86.6568
295020.55047.765095.59-47.8341-27.2576
305519.25424.145104.35319.7995.0599
314510.754543.295123.24-579.949-32.5429
324934.454854.295138.44-284.14680.1566
335430.655422.975157.04265.9257.68299
345254.75323.955172.41151.541-69.2513
354897.85110.615176.61-66.0017-212.811
365305.75263.095168.2394.863842.6071
375055.74768.095164.04-395.945287.606
3854095243.245156.7586.4892165.757
3956835638.385151.05487.33744.6172
405125.555122.65154.67-32.07032.95154
414965.25115.895163.72-47.8341-150.691
425373.35497.275177.48319.79-123.971
434556.14589.795169.74-579.949-33.6888
444714.254874.935159.08-284.146-160.679
455513.855436.365170.44265.92577.4892
465258.455348.025196.48151.541-89.5679
475111.45168.455234.45-66.0017-57.0524
485422.255372.955278.0894.863849.305
494753.34925.925321.87-395.945-172.623
505455.55448.915362.4286.48926.59202
515909.155883.685396.35487.33725.4651
525524.45402.265434.33-32.0703122.141
535477.85433.785481.61-47.834144.0216
545907.755842.935523.14319.7964.8203
555072.554989.065569-579.94983.4946
5651715337.795621.94-284.146-166.793
575871.45930.035664.11265.925-58.6316
585812.455848.725697.18151.541-36.2742
595692.25664.485730.49-66.001727.7163
605838.15865.935771.0694.8638-27.8263
615438.25407.695803.63-395.94530.5119
626041.055927.49584186.4892113.561
636335.66380.55893.16487.337-44.8974
645891.85907.375939.44-32.0703-15.5672
655909.655931.425979.25-47.8341-21.7659
666449.756354.696034.9319.7995.0557
675312.255517.256097.2-579.949-205.003
685828.15853.496137.64-284.146-25.3892
696466.156437.786171.86265.92528.3684
706328.356362.746211.2151.541-34.3867
716131.86171.446237.44-66.0017-39.6358
726734.26344.16249.2394.8638390.103
736037.255861.256257.2-395.945175.997
746412.46343.226256.7486.489269.1754
756785.556744.856257.51487.33740.6984
7663866221.046253.11-32.0703164.96
776045.256207.886255.71-47.8341-162.63
786597.256576.016256.22319.7921.239
795355.95642.296222.24-579.949-286.393
805773.355901.496185.64-284.146-128.141
816539.66446.436180.51265.92593.1663
826149.26328.856177.3151.541-179.645
836373.456115.126181.12-66.0017258.327
846504.76292.016197.1494.8638212.692
855451.255811.136207.07-395.945-359.878
866119.96309.926223.4386.4892-190.016
876954.956720.966233.62487.337233.992
886139.76220.986253.05-32.0703-81.2818
896383.256196.286244.11-47.8341186.974
906643.76517.476197.67319.79126.235
915547.755591.646171.59-579.949-43.8888
92597458696153.14-284.146105.002
936583.66363.36097.38265.925220.298
946571.556188.486036.94151.541383.065
955736.55934.486000.49-66.0017-197.984
966027.26054.335959.4794.8638-27.1325
975302.655547.585943.52-395.945-244.928
985825.856033.565947.0786.4892-207.706
995910.66419.375932.03487.337-508.77
1005733.655874.065906.13-32.0703-140.411
1015914.35859.115906.94-47.834155.1903
1026128.256227.045907.25319.79-98.7943
1035680.55316.555896.49-579.949363.955
1045926.35617.385901.52-284.146308.923
1056270.56194.625928.7265.92575.8788
10662636123.345971.8151.541139.661
1076064.555932.885998.88-66.0017131.67
1085706.66126.256031.3894.8638-419.647
10953655641.556037.5-395.945-276.553
1105884.26102.656016.1686.4892-218.452
1116504.4NANA487.337NA
1126174.3NANA-32.0703NA
1136123.65NANA-47.8341NA
1146698.95NANA319.79NA
1155256.55NANA-579.949NA
1165838.2NANA-284.146NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')