Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationWed, 14 Dec 2016 12:58:03 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t14817169702vojz40a820hiu4.htm/, Retrieved Fri, 01 Nov 2024 03:43:18 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299333, Retrieved Fri, 01 Nov 2024 03:43:18 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact116
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [] [2016-12-14 11:58:03] [d06ec19b175650a2a09ee5879d174acf] [Current]
Feedback Forum

Post a new message
Dataseries X:
3406
3416
3426
3444
3464
3482
3496
3510
3530
3556
3580
3604
3620
3636
3648
3662
3676
3690
3700
3712
3726
3740
3760
3762
3766
3784
3800
3814
3828
3840
3850
3858
3866
3872
3878
3884
3920
3932
3946
3962
3976
3994
4012
4042
4062
4084
4106
4128
4132
4146
4154
4190
4134
4160
4174
4182
4224
4290
4330
4370
4398
4426
4458
4492
4528
4576
4624
4672
4720
4764
4808
4848
4866
4896
4926
4958
4988
5020
5052
5084
5116
5150
5182
5216
5342
5360
5380
5404
5430
5458
5490
5524
5560
5592
5626
5660
5702
5742
5784
5824
5866
5908
5956
6002
6050
6096
6140
6182
6226
6268
6312
6356
6398
6440
6480
6520




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299333&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299333&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299333&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha1
beta0.153196525584375
gammaFALSE

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 1 \tabularnewline
beta & 0.153196525584375 \tabularnewline
gamma & FALSE \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299333&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]1[/C][/ROW]
[ROW][C]beta[/C][C]0.153196525584375[/C][/ROW]
[ROW][C]gamma[/C][C]FALSE[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299333&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299333&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha1
beta0.153196525584375
gammaFALSE







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
3342634260
4344434368
534643455.225572204678.77442779532521
634823476.569784056915.43021594309039
734963495.401674272560.598325727436077
835103509.493335695180.506664304824881
935303523.570954906316.42904509368827
1035563544.5558622774911.4441377225098
1135803572.309064414897.69093558511213
1236043597.487289025026.51271097497965
1336203622.48501371852-2.48501371852217
1436363638.10431825082-2.10431825081514
1536483653.78194400607-5.78194400606662
1636623664.89617027321-2.89617027321356
1736763678.45248704986-2.4524870498567
1836903692.07677455478-2.07677455477778
1937003705.75861990856-5.75861990856401
2037123714.87641934641-2.87641934641078
2137263726.43576189642-0.435761896417262
2237403740.3690046879-0.369004687903725
2337603754.312474451795.6875255482073
2437623775.18378360495-13.1837836049503
2537663775.16407376262-9.16407376261577
2637843777.760169501986.23983049801609
2738003796.716089854523.28391014548424
2838143813.219173479130.780826520865048
2938283827.338793389220.66120661078412
3038403841.44008794468-1.44008794468118
3138503853.21947147502-3.21947147502033
3238583862.72625963083-4.72625963082919
3338663870.00221307638-4.00221307637639
3438723877.38908793843-5.38908793842711
3538783882.56349839019-4.5634983901914
3638843887.8643862923-3.86438629230406
3739203893.2723757388126.7276242611924
3839323933.36695491275-1.36695491274668
3939463945.157542169480.842457830516651
4039623959.286603782072.71339621793004
4139763975.702286655190.297713344809381
4239943989.747895305244.25210469476451
4340124008.399302970893.6006970291055
4440424026.9509172454415.0490827545646
4540624059.256384436672.74361556333361
4640844079.676696808514.3233031914915
4741064102.339011836493.66098816350768
4841284124.899862503353.10013749665268
4941324147.37479279667-15.3747927966688
5041464149.01942795864-3.01942795863943
5141544162.55686208612-8.55686208612315
5241904169.2459805446220.7540194553758
5341344208.4254242171-74.4254242170982
5441604141.023707811918.9762921881038
5541744169.930809843594.06919015641233
5641824184.55419563749-2.55419563749183
5742244192.1629017401731.8370982598344
5842904239.0402345782650.9597654217396
5943304312.8470935854717.1529064145343
6043704355.4748592518514.5251407481537
6143984397.700060348090.299939651912609
6244264425.746010060650.253989939354142
6344584453.784920436894.21507956311234
6444924486.430655981025.56934401898161
6545284521.283860134516.71613986548982
6645764558.3127494272417.6872505727579
6746244609.0223747621314.9776252378706
6846724659.3168949100812.6831050899245
6947204709.2599025434710.7400974565262
7047644758.905248158255.0947518417488
7148084803.685746439124.31425356087857
7248484848.34667509514-0.34667509513838
7348664888.29356567506-22.293565675056
7448964902.87826887075-6.87826887075062
7549264931.82454197772-5.82454197771676
7649584960.93224238361-2.93224238361017
7749884992.48303303827-4.48303303826924
7850205021.79624795273-1.79624795272684
7950525053.52106900728-1.52106900728086
8050845085.28804652019-1.28804652019153
8151165117.09072226851-1.09072226850731
8251505148.923627406591.07637259340572
8351825183.08852394814-1.08852394813857
8452165214.921765861271.07823413873211
8553425249.0869475850992.9130524149114
8653605389.32090439649-29.3209043964916
8753805402.82904371596-22.8290437159576
8854045419.33171353626-15.3317135362595
8954305440.98294829125-10.9829482912492
9054585465.30039877236-7.30039877235686
9154905492.18200304505-2.18200304505172
9255245523.847727759730.15227224026512
9355605557.871055337892.1289446621131
9455925594.19720226328-2.19720226328354
9556265625.860598510540.139401489457669
9656605659.881954334390.118045665611135
9757025693.900038520228.09996147977927
9857425737.140924476294.85907552371009
9957845777.885317964076.1146820359254
10058245820.822066007033.17793399296806
10158665861.308914453294.69108554670947
10259085904.027572460273.97242753973387
10359565946.636134557499.36386544251127
10460025996.070646209325.92935379067876
10560506042.979002609017.02099739098685
10660966092.054595015453.9454049845499
10761406138.659017351111.34098264889417
10861826182.86445123379-0.864451233785076
10962266224.732020308231.26797969176732
11062686268.92627039152-0.926270391522849
11163126310.784368985791.21563101420998
11263566354.970599433561.02940056644093
11363986399.12830002377-1.12830002377268
11464406440.95544838031-0.95544838031401
11564806482.80907700807-2.80907700807438
11665206522.37873617034-2.37873617033893

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
3 & 3426 & 3426 & 0 \tabularnewline
4 & 3444 & 3436 & 8 \tabularnewline
5 & 3464 & 3455.22557220467 & 8.77442779532521 \tabularnewline
6 & 3482 & 3476.56978405691 & 5.43021594309039 \tabularnewline
7 & 3496 & 3495.40167427256 & 0.598325727436077 \tabularnewline
8 & 3510 & 3509.49333569518 & 0.506664304824881 \tabularnewline
9 & 3530 & 3523.57095490631 & 6.42904509368827 \tabularnewline
10 & 3556 & 3544.55586227749 & 11.4441377225098 \tabularnewline
11 & 3580 & 3572.30906441489 & 7.69093558511213 \tabularnewline
12 & 3604 & 3597.48728902502 & 6.51271097497965 \tabularnewline
13 & 3620 & 3622.48501371852 & -2.48501371852217 \tabularnewline
14 & 3636 & 3638.10431825082 & -2.10431825081514 \tabularnewline
15 & 3648 & 3653.78194400607 & -5.78194400606662 \tabularnewline
16 & 3662 & 3664.89617027321 & -2.89617027321356 \tabularnewline
17 & 3676 & 3678.45248704986 & -2.4524870498567 \tabularnewline
18 & 3690 & 3692.07677455478 & -2.07677455477778 \tabularnewline
19 & 3700 & 3705.75861990856 & -5.75861990856401 \tabularnewline
20 & 3712 & 3714.87641934641 & -2.87641934641078 \tabularnewline
21 & 3726 & 3726.43576189642 & -0.435761896417262 \tabularnewline
22 & 3740 & 3740.3690046879 & -0.369004687903725 \tabularnewline
23 & 3760 & 3754.31247445179 & 5.6875255482073 \tabularnewline
24 & 3762 & 3775.18378360495 & -13.1837836049503 \tabularnewline
25 & 3766 & 3775.16407376262 & -9.16407376261577 \tabularnewline
26 & 3784 & 3777.76016950198 & 6.23983049801609 \tabularnewline
27 & 3800 & 3796.71608985452 & 3.28391014548424 \tabularnewline
28 & 3814 & 3813.21917347913 & 0.780826520865048 \tabularnewline
29 & 3828 & 3827.33879338922 & 0.66120661078412 \tabularnewline
30 & 3840 & 3841.44008794468 & -1.44008794468118 \tabularnewline
31 & 3850 & 3853.21947147502 & -3.21947147502033 \tabularnewline
32 & 3858 & 3862.72625963083 & -4.72625963082919 \tabularnewline
33 & 3866 & 3870.00221307638 & -4.00221307637639 \tabularnewline
34 & 3872 & 3877.38908793843 & -5.38908793842711 \tabularnewline
35 & 3878 & 3882.56349839019 & -4.5634983901914 \tabularnewline
36 & 3884 & 3887.8643862923 & -3.86438629230406 \tabularnewline
37 & 3920 & 3893.27237573881 & 26.7276242611924 \tabularnewline
38 & 3932 & 3933.36695491275 & -1.36695491274668 \tabularnewline
39 & 3946 & 3945.15754216948 & 0.842457830516651 \tabularnewline
40 & 3962 & 3959.28660378207 & 2.71339621793004 \tabularnewline
41 & 3976 & 3975.70228665519 & 0.297713344809381 \tabularnewline
42 & 3994 & 3989.74789530524 & 4.25210469476451 \tabularnewline
43 & 4012 & 4008.39930297089 & 3.6006970291055 \tabularnewline
44 & 4042 & 4026.95091724544 & 15.0490827545646 \tabularnewline
45 & 4062 & 4059.25638443667 & 2.74361556333361 \tabularnewline
46 & 4084 & 4079.67669680851 & 4.3233031914915 \tabularnewline
47 & 4106 & 4102.33901183649 & 3.66098816350768 \tabularnewline
48 & 4128 & 4124.89986250335 & 3.10013749665268 \tabularnewline
49 & 4132 & 4147.37479279667 & -15.3747927966688 \tabularnewline
50 & 4146 & 4149.01942795864 & -3.01942795863943 \tabularnewline
51 & 4154 & 4162.55686208612 & -8.55686208612315 \tabularnewline
52 & 4190 & 4169.24598054462 & 20.7540194553758 \tabularnewline
53 & 4134 & 4208.4254242171 & -74.4254242170982 \tabularnewline
54 & 4160 & 4141.0237078119 & 18.9762921881038 \tabularnewline
55 & 4174 & 4169.93080984359 & 4.06919015641233 \tabularnewline
56 & 4182 & 4184.55419563749 & -2.55419563749183 \tabularnewline
57 & 4224 & 4192.16290174017 & 31.8370982598344 \tabularnewline
58 & 4290 & 4239.04023457826 & 50.9597654217396 \tabularnewline
59 & 4330 & 4312.84709358547 & 17.1529064145343 \tabularnewline
60 & 4370 & 4355.47485925185 & 14.5251407481537 \tabularnewline
61 & 4398 & 4397.70006034809 & 0.299939651912609 \tabularnewline
62 & 4426 & 4425.74601006065 & 0.253989939354142 \tabularnewline
63 & 4458 & 4453.78492043689 & 4.21507956311234 \tabularnewline
64 & 4492 & 4486.43065598102 & 5.56934401898161 \tabularnewline
65 & 4528 & 4521.28386013451 & 6.71613986548982 \tabularnewline
66 & 4576 & 4558.31274942724 & 17.6872505727579 \tabularnewline
67 & 4624 & 4609.02237476213 & 14.9776252378706 \tabularnewline
68 & 4672 & 4659.31689491008 & 12.6831050899245 \tabularnewline
69 & 4720 & 4709.25990254347 & 10.7400974565262 \tabularnewline
70 & 4764 & 4758.90524815825 & 5.0947518417488 \tabularnewline
71 & 4808 & 4803.68574643912 & 4.31425356087857 \tabularnewline
72 & 4848 & 4848.34667509514 & -0.34667509513838 \tabularnewline
73 & 4866 & 4888.29356567506 & -22.293565675056 \tabularnewline
74 & 4896 & 4902.87826887075 & -6.87826887075062 \tabularnewline
75 & 4926 & 4931.82454197772 & -5.82454197771676 \tabularnewline
76 & 4958 & 4960.93224238361 & -2.93224238361017 \tabularnewline
77 & 4988 & 4992.48303303827 & -4.48303303826924 \tabularnewline
78 & 5020 & 5021.79624795273 & -1.79624795272684 \tabularnewline
79 & 5052 & 5053.52106900728 & -1.52106900728086 \tabularnewline
80 & 5084 & 5085.28804652019 & -1.28804652019153 \tabularnewline
81 & 5116 & 5117.09072226851 & -1.09072226850731 \tabularnewline
82 & 5150 & 5148.92362740659 & 1.07637259340572 \tabularnewline
83 & 5182 & 5183.08852394814 & -1.08852394813857 \tabularnewline
84 & 5216 & 5214.92176586127 & 1.07823413873211 \tabularnewline
85 & 5342 & 5249.08694758509 & 92.9130524149114 \tabularnewline
86 & 5360 & 5389.32090439649 & -29.3209043964916 \tabularnewline
87 & 5380 & 5402.82904371596 & -22.8290437159576 \tabularnewline
88 & 5404 & 5419.33171353626 & -15.3317135362595 \tabularnewline
89 & 5430 & 5440.98294829125 & -10.9829482912492 \tabularnewline
90 & 5458 & 5465.30039877236 & -7.30039877235686 \tabularnewline
91 & 5490 & 5492.18200304505 & -2.18200304505172 \tabularnewline
92 & 5524 & 5523.84772775973 & 0.15227224026512 \tabularnewline
93 & 5560 & 5557.87105533789 & 2.1289446621131 \tabularnewline
94 & 5592 & 5594.19720226328 & -2.19720226328354 \tabularnewline
95 & 5626 & 5625.86059851054 & 0.139401489457669 \tabularnewline
96 & 5660 & 5659.88195433439 & 0.118045665611135 \tabularnewline
97 & 5702 & 5693.90003852022 & 8.09996147977927 \tabularnewline
98 & 5742 & 5737.14092447629 & 4.85907552371009 \tabularnewline
99 & 5784 & 5777.88531796407 & 6.1146820359254 \tabularnewline
100 & 5824 & 5820.82206600703 & 3.17793399296806 \tabularnewline
101 & 5866 & 5861.30891445329 & 4.69108554670947 \tabularnewline
102 & 5908 & 5904.02757246027 & 3.97242753973387 \tabularnewline
103 & 5956 & 5946.63613455749 & 9.36386544251127 \tabularnewline
104 & 6002 & 5996.07064620932 & 5.92935379067876 \tabularnewline
105 & 6050 & 6042.97900260901 & 7.02099739098685 \tabularnewline
106 & 6096 & 6092.05459501545 & 3.9454049845499 \tabularnewline
107 & 6140 & 6138.65901735111 & 1.34098264889417 \tabularnewline
108 & 6182 & 6182.86445123379 & -0.864451233785076 \tabularnewline
109 & 6226 & 6224.73202030823 & 1.26797969176732 \tabularnewline
110 & 6268 & 6268.92627039152 & -0.926270391522849 \tabularnewline
111 & 6312 & 6310.78436898579 & 1.21563101420998 \tabularnewline
112 & 6356 & 6354.97059943356 & 1.02940056644093 \tabularnewline
113 & 6398 & 6399.12830002377 & -1.12830002377268 \tabularnewline
114 & 6440 & 6440.95544838031 & -0.95544838031401 \tabularnewline
115 & 6480 & 6482.80907700807 & -2.80907700807438 \tabularnewline
116 & 6520 & 6522.37873617034 & -2.37873617033893 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299333&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]3[/C][C]3426[/C][C]3426[/C][C]0[/C][/ROW]
[ROW][C]4[/C][C]3444[/C][C]3436[/C][C]8[/C][/ROW]
[ROW][C]5[/C][C]3464[/C][C]3455.22557220467[/C][C]8.77442779532521[/C][/ROW]
[ROW][C]6[/C][C]3482[/C][C]3476.56978405691[/C][C]5.43021594309039[/C][/ROW]
[ROW][C]7[/C][C]3496[/C][C]3495.40167427256[/C][C]0.598325727436077[/C][/ROW]
[ROW][C]8[/C][C]3510[/C][C]3509.49333569518[/C][C]0.506664304824881[/C][/ROW]
[ROW][C]9[/C][C]3530[/C][C]3523.57095490631[/C][C]6.42904509368827[/C][/ROW]
[ROW][C]10[/C][C]3556[/C][C]3544.55586227749[/C][C]11.4441377225098[/C][/ROW]
[ROW][C]11[/C][C]3580[/C][C]3572.30906441489[/C][C]7.69093558511213[/C][/ROW]
[ROW][C]12[/C][C]3604[/C][C]3597.48728902502[/C][C]6.51271097497965[/C][/ROW]
[ROW][C]13[/C][C]3620[/C][C]3622.48501371852[/C][C]-2.48501371852217[/C][/ROW]
[ROW][C]14[/C][C]3636[/C][C]3638.10431825082[/C][C]-2.10431825081514[/C][/ROW]
[ROW][C]15[/C][C]3648[/C][C]3653.78194400607[/C][C]-5.78194400606662[/C][/ROW]
[ROW][C]16[/C][C]3662[/C][C]3664.89617027321[/C][C]-2.89617027321356[/C][/ROW]
[ROW][C]17[/C][C]3676[/C][C]3678.45248704986[/C][C]-2.4524870498567[/C][/ROW]
[ROW][C]18[/C][C]3690[/C][C]3692.07677455478[/C][C]-2.07677455477778[/C][/ROW]
[ROW][C]19[/C][C]3700[/C][C]3705.75861990856[/C][C]-5.75861990856401[/C][/ROW]
[ROW][C]20[/C][C]3712[/C][C]3714.87641934641[/C][C]-2.87641934641078[/C][/ROW]
[ROW][C]21[/C][C]3726[/C][C]3726.43576189642[/C][C]-0.435761896417262[/C][/ROW]
[ROW][C]22[/C][C]3740[/C][C]3740.3690046879[/C][C]-0.369004687903725[/C][/ROW]
[ROW][C]23[/C][C]3760[/C][C]3754.31247445179[/C][C]5.6875255482073[/C][/ROW]
[ROW][C]24[/C][C]3762[/C][C]3775.18378360495[/C][C]-13.1837836049503[/C][/ROW]
[ROW][C]25[/C][C]3766[/C][C]3775.16407376262[/C][C]-9.16407376261577[/C][/ROW]
[ROW][C]26[/C][C]3784[/C][C]3777.76016950198[/C][C]6.23983049801609[/C][/ROW]
[ROW][C]27[/C][C]3800[/C][C]3796.71608985452[/C][C]3.28391014548424[/C][/ROW]
[ROW][C]28[/C][C]3814[/C][C]3813.21917347913[/C][C]0.780826520865048[/C][/ROW]
[ROW][C]29[/C][C]3828[/C][C]3827.33879338922[/C][C]0.66120661078412[/C][/ROW]
[ROW][C]30[/C][C]3840[/C][C]3841.44008794468[/C][C]-1.44008794468118[/C][/ROW]
[ROW][C]31[/C][C]3850[/C][C]3853.21947147502[/C][C]-3.21947147502033[/C][/ROW]
[ROW][C]32[/C][C]3858[/C][C]3862.72625963083[/C][C]-4.72625963082919[/C][/ROW]
[ROW][C]33[/C][C]3866[/C][C]3870.00221307638[/C][C]-4.00221307637639[/C][/ROW]
[ROW][C]34[/C][C]3872[/C][C]3877.38908793843[/C][C]-5.38908793842711[/C][/ROW]
[ROW][C]35[/C][C]3878[/C][C]3882.56349839019[/C][C]-4.5634983901914[/C][/ROW]
[ROW][C]36[/C][C]3884[/C][C]3887.8643862923[/C][C]-3.86438629230406[/C][/ROW]
[ROW][C]37[/C][C]3920[/C][C]3893.27237573881[/C][C]26.7276242611924[/C][/ROW]
[ROW][C]38[/C][C]3932[/C][C]3933.36695491275[/C][C]-1.36695491274668[/C][/ROW]
[ROW][C]39[/C][C]3946[/C][C]3945.15754216948[/C][C]0.842457830516651[/C][/ROW]
[ROW][C]40[/C][C]3962[/C][C]3959.28660378207[/C][C]2.71339621793004[/C][/ROW]
[ROW][C]41[/C][C]3976[/C][C]3975.70228665519[/C][C]0.297713344809381[/C][/ROW]
[ROW][C]42[/C][C]3994[/C][C]3989.74789530524[/C][C]4.25210469476451[/C][/ROW]
[ROW][C]43[/C][C]4012[/C][C]4008.39930297089[/C][C]3.6006970291055[/C][/ROW]
[ROW][C]44[/C][C]4042[/C][C]4026.95091724544[/C][C]15.0490827545646[/C][/ROW]
[ROW][C]45[/C][C]4062[/C][C]4059.25638443667[/C][C]2.74361556333361[/C][/ROW]
[ROW][C]46[/C][C]4084[/C][C]4079.67669680851[/C][C]4.3233031914915[/C][/ROW]
[ROW][C]47[/C][C]4106[/C][C]4102.33901183649[/C][C]3.66098816350768[/C][/ROW]
[ROW][C]48[/C][C]4128[/C][C]4124.89986250335[/C][C]3.10013749665268[/C][/ROW]
[ROW][C]49[/C][C]4132[/C][C]4147.37479279667[/C][C]-15.3747927966688[/C][/ROW]
[ROW][C]50[/C][C]4146[/C][C]4149.01942795864[/C][C]-3.01942795863943[/C][/ROW]
[ROW][C]51[/C][C]4154[/C][C]4162.55686208612[/C][C]-8.55686208612315[/C][/ROW]
[ROW][C]52[/C][C]4190[/C][C]4169.24598054462[/C][C]20.7540194553758[/C][/ROW]
[ROW][C]53[/C][C]4134[/C][C]4208.4254242171[/C][C]-74.4254242170982[/C][/ROW]
[ROW][C]54[/C][C]4160[/C][C]4141.0237078119[/C][C]18.9762921881038[/C][/ROW]
[ROW][C]55[/C][C]4174[/C][C]4169.93080984359[/C][C]4.06919015641233[/C][/ROW]
[ROW][C]56[/C][C]4182[/C][C]4184.55419563749[/C][C]-2.55419563749183[/C][/ROW]
[ROW][C]57[/C][C]4224[/C][C]4192.16290174017[/C][C]31.8370982598344[/C][/ROW]
[ROW][C]58[/C][C]4290[/C][C]4239.04023457826[/C][C]50.9597654217396[/C][/ROW]
[ROW][C]59[/C][C]4330[/C][C]4312.84709358547[/C][C]17.1529064145343[/C][/ROW]
[ROW][C]60[/C][C]4370[/C][C]4355.47485925185[/C][C]14.5251407481537[/C][/ROW]
[ROW][C]61[/C][C]4398[/C][C]4397.70006034809[/C][C]0.299939651912609[/C][/ROW]
[ROW][C]62[/C][C]4426[/C][C]4425.74601006065[/C][C]0.253989939354142[/C][/ROW]
[ROW][C]63[/C][C]4458[/C][C]4453.78492043689[/C][C]4.21507956311234[/C][/ROW]
[ROW][C]64[/C][C]4492[/C][C]4486.43065598102[/C][C]5.56934401898161[/C][/ROW]
[ROW][C]65[/C][C]4528[/C][C]4521.28386013451[/C][C]6.71613986548982[/C][/ROW]
[ROW][C]66[/C][C]4576[/C][C]4558.31274942724[/C][C]17.6872505727579[/C][/ROW]
[ROW][C]67[/C][C]4624[/C][C]4609.02237476213[/C][C]14.9776252378706[/C][/ROW]
[ROW][C]68[/C][C]4672[/C][C]4659.31689491008[/C][C]12.6831050899245[/C][/ROW]
[ROW][C]69[/C][C]4720[/C][C]4709.25990254347[/C][C]10.7400974565262[/C][/ROW]
[ROW][C]70[/C][C]4764[/C][C]4758.90524815825[/C][C]5.0947518417488[/C][/ROW]
[ROW][C]71[/C][C]4808[/C][C]4803.68574643912[/C][C]4.31425356087857[/C][/ROW]
[ROW][C]72[/C][C]4848[/C][C]4848.34667509514[/C][C]-0.34667509513838[/C][/ROW]
[ROW][C]73[/C][C]4866[/C][C]4888.29356567506[/C][C]-22.293565675056[/C][/ROW]
[ROW][C]74[/C][C]4896[/C][C]4902.87826887075[/C][C]-6.87826887075062[/C][/ROW]
[ROW][C]75[/C][C]4926[/C][C]4931.82454197772[/C][C]-5.82454197771676[/C][/ROW]
[ROW][C]76[/C][C]4958[/C][C]4960.93224238361[/C][C]-2.93224238361017[/C][/ROW]
[ROW][C]77[/C][C]4988[/C][C]4992.48303303827[/C][C]-4.48303303826924[/C][/ROW]
[ROW][C]78[/C][C]5020[/C][C]5021.79624795273[/C][C]-1.79624795272684[/C][/ROW]
[ROW][C]79[/C][C]5052[/C][C]5053.52106900728[/C][C]-1.52106900728086[/C][/ROW]
[ROW][C]80[/C][C]5084[/C][C]5085.28804652019[/C][C]-1.28804652019153[/C][/ROW]
[ROW][C]81[/C][C]5116[/C][C]5117.09072226851[/C][C]-1.09072226850731[/C][/ROW]
[ROW][C]82[/C][C]5150[/C][C]5148.92362740659[/C][C]1.07637259340572[/C][/ROW]
[ROW][C]83[/C][C]5182[/C][C]5183.08852394814[/C][C]-1.08852394813857[/C][/ROW]
[ROW][C]84[/C][C]5216[/C][C]5214.92176586127[/C][C]1.07823413873211[/C][/ROW]
[ROW][C]85[/C][C]5342[/C][C]5249.08694758509[/C][C]92.9130524149114[/C][/ROW]
[ROW][C]86[/C][C]5360[/C][C]5389.32090439649[/C][C]-29.3209043964916[/C][/ROW]
[ROW][C]87[/C][C]5380[/C][C]5402.82904371596[/C][C]-22.8290437159576[/C][/ROW]
[ROW][C]88[/C][C]5404[/C][C]5419.33171353626[/C][C]-15.3317135362595[/C][/ROW]
[ROW][C]89[/C][C]5430[/C][C]5440.98294829125[/C][C]-10.9829482912492[/C][/ROW]
[ROW][C]90[/C][C]5458[/C][C]5465.30039877236[/C][C]-7.30039877235686[/C][/ROW]
[ROW][C]91[/C][C]5490[/C][C]5492.18200304505[/C][C]-2.18200304505172[/C][/ROW]
[ROW][C]92[/C][C]5524[/C][C]5523.84772775973[/C][C]0.15227224026512[/C][/ROW]
[ROW][C]93[/C][C]5560[/C][C]5557.87105533789[/C][C]2.1289446621131[/C][/ROW]
[ROW][C]94[/C][C]5592[/C][C]5594.19720226328[/C][C]-2.19720226328354[/C][/ROW]
[ROW][C]95[/C][C]5626[/C][C]5625.86059851054[/C][C]0.139401489457669[/C][/ROW]
[ROW][C]96[/C][C]5660[/C][C]5659.88195433439[/C][C]0.118045665611135[/C][/ROW]
[ROW][C]97[/C][C]5702[/C][C]5693.90003852022[/C][C]8.09996147977927[/C][/ROW]
[ROW][C]98[/C][C]5742[/C][C]5737.14092447629[/C][C]4.85907552371009[/C][/ROW]
[ROW][C]99[/C][C]5784[/C][C]5777.88531796407[/C][C]6.1146820359254[/C][/ROW]
[ROW][C]100[/C][C]5824[/C][C]5820.82206600703[/C][C]3.17793399296806[/C][/ROW]
[ROW][C]101[/C][C]5866[/C][C]5861.30891445329[/C][C]4.69108554670947[/C][/ROW]
[ROW][C]102[/C][C]5908[/C][C]5904.02757246027[/C][C]3.97242753973387[/C][/ROW]
[ROW][C]103[/C][C]5956[/C][C]5946.63613455749[/C][C]9.36386544251127[/C][/ROW]
[ROW][C]104[/C][C]6002[/C][C]5996.07064620932[/C][C]5.92935379067876[/C][/ROW]
[ROW][C]105[/C][C]6050[/C][C]6042.97900260901[/C][C]7.02099739098685[/C][/ROW]
[ROW][C]106[/C][C]6096[/C][C]6092.05459501545[/C][C]3.9454049845499[/C][/ROW]
[ROW][C]107[/C][C]6140[/C][C]6138.65901735111[/C][C]1.34098264889417[/C][/ROW]
[ROW][C]108[/C][C]6182[/C][C]6182.86445123379[/C][C]-0.864451233785076[/C][/ROW]
[ROW][C]109[/C][C]6226[/C][C]6224.73202030823[/C][C]1.26797969176732[/C][/ROW]
[ROW][C]110[/C][C]6268[/C][C]6268.92627039152[/C][C]-0.926270391522849[/C][/ROW]
[ROW][C]111[/C][C]6312[/C][C]6310.78436898579[/C][C]1.21563101420998[/C][/ROW]
[ROW][C]112[/C][C]6356[/C][C]6354.97059943356[/C][C]1.02940056644093[/C][/ROW]
[ROW][C]113[/C][C]6398[/C][C]6399.12830002377[/C][C]-1.12830002377268[/C][/ROW]
[ROW][C]114[/C][C]6440[/C][C]6440.95544838031[/C][C]-0.95544838031401[/C][/ROW]
[ROW][C]115[/C][C]6480[/C][C]6482.80907700807[/C][C]-2.80907700807438[/C][/ROW]
[ROW][C]116[/C][C]6520[/C][C]6522.37873617034[/C][C]-2.37873617033893[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299333&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299333&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
3342634260
4344434368
534643455.225572204678.77442779532521
634823476.569784056915.43021594309039
734963495.401674272560.598325727436077
835103509.493335695180.506664304824881
935303523.570954906316.42904509368827
1035563544.5558622774911.4441377225098
1135803572.309064414897.69093558511213
1236043597.487289025026.51271097497965
1336203622.48501371852-2.48501371852217
1436363638.10431825082-2.10431825081514
1536483653.78194400607-5.78194400606662
1636623664.89617027321-2.89617027321356
1736763678.45248704986-2.4524870498567
1836903692.07677455478-2.07677455477778
1937003705.75861990856-5.75861990856401
2037123714.87641934641-2.87641934641078
2137263726.43576189642-0.435761896417262
2237403740.3690046879-0.369004687903725
2337603754.312474451795.6875255482073
2437623775.18378360495-13.1837836049503
2537663775.16407376262-9.16407376261577
2637843777.760169501986.23983049801609
2738003796.716089854523.28391014548424
2838143813.219173479130.780826520865048
2938283827.338793389220.66120661078412
3038403841.44008794468-1.44008794468118
3138503853.21947147502-3.21947147502033
3238583862.72625963083-4.72625963082919
3338663870.00221307638-4.00221307637639
3438723877.38908793843-5.38908793842711
3538783882.56349839019-4.5634983901914
3638843887.8643862923-3.86438629230406
3739203893.2723757388126.7276242611924
3839323933.36695491275-1.36695491274668
3939463945.157542169480.842457830516651
4039623959.286603782072.71339621793004
4139763975.702286655190.297713344809381
4239943989.747895305244.25210469476451
4340124008.399302970893.6006970291055
4440424026.9509172454415.0490827545646
4540624059.256384436672.74361556333361
4640844079.676696808514.3233031914915
4741064102.339011836493.66098816350768
4841284124.899862503353.10013749665268
4941324147.37479279667-15.3747927966688
5041464149.01942795864-3.01942795863943
5141544162.55686208612-8.55686208612315
5241904169.2459805446220.7540194553758
5341344208.4254242171-74.4254242170982
5441604141.023707811918.9762921881038
5541744169.930809843594.06919015641233
5641824184.55419563749-2.55419563749183
5742244192.1629017401731.8370982598344
5842904239.0402345782650.9597654217396
5943304312.8470935854717.1529064145343
6043704355.4748592518514.5251407481537
6143984397.700060348090.299939651912609
6244264425.746010060650.253989939354142
6344584453.784920436894.21507956311234
6444924486.430655981025.56934401898161
6545284521.283860134516.71613986548982
6645764558.3127494272417.6872505727579
6746244609.0223747621314.9776252378706
6846724659.3168949100812.6831050899245
6947204709.2599025434710.7400974565262
7047644758.905248158255.0947518417488
7148084803.685746439124.31425356087857
7248484848.34667509514-0.34667509513838
7348664888.29356567506-22.293565675056
7448964902.87826887075-6.87826887075062
7549264931.82454197772-5.82454197771676
7649584960.93224238361-2.93224238361017
7749884992.48303303827-4.48303303826924
7850205021.79624795273-1.79624795272684
7950525053.52106900728-1.52106900728086
8050845085.28804652019-1.28804652019153
8151165117.09072226851-1.09072226850731
8251505148.923627406591.07637259340572
8351825183.08852394814-1.08852394813857
8452165214.921765861271.07823413873211
8553425249.0869475850992.9130524149114
8653605389.32090439649-29.3209043964916
8753805402.82904371596-22.8290437159576
8854045419.33171353626-15.3317135362595
8954305440.98294829125-10.9829482912492
9054585465.30039877236-7.30039877235686
9154905492.18200304505-2.18200304505172
9255245523.847727759730.15227224026512
9355605557.871055337892.1289446621131
9455925594.19720226328-2.19720226328354
9556265625.860598510540.139401489457669
9656605659.881954334390.118045665611135
9757025693.900038520228.09996147977927
9857425737.140924476294.85907552371009
9957845777.885317964076.1146820359254
10058245820.822066007033.17793399296806
10158665861.308914453294.69108554670947
10259085904.027572460273.97242753973387
10359565946.636134557499.36386544251127
10460025996.070646209325.92935379067876
10560506042.979002609017.02099739098685
10660966092.054595015453.9454049845499
10761406138.659017351111.34098264889417
10861826182.86445123379-0.864451233785076
10962266224.732020308231.26797969176732
11062686268.92627039152-0.926270391522849
11163126310.784368985791.21563101420998
11263566354.970599433561.02940056644093
11363986399.12830002377-1.12830002377268
11464406440.95544838031-0.95544838031401
11564806482.80907700807-2.80907700807438
11665206522.37873617034-2.37873617033893







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1176562.014322053766532.958085310066591.07055879746
1186604.028644107526559.677534931926648.37975328312
1196646.042966161286587.665775615346704.42015670722
1206688.057288215046615.90107040726760.21350602288
1216730.07161026886644.033714758586816.10950577903
1226772.085932322566671.908470464326872.26339418081
1236814.100254376336699.447904327316928.75260442534
1246856.114576430096726.611447557196985.61770530299
1256898.128898483856753.37790776357042.87988920419
1266940.143220537616779.736996987697100.54944408753
1276982.157542591376805.684852050357158.63023313239
1287024.171864645136831.221509434087217.12221985618
1297066.186186698896856.349411649247276.02296174854
1307108.200508752656881.072490511577335.32852699373
1317150.214830806416905.395588305837395.03407330699
1327192.229152860176929.324084346127455.13422137423
1337234.243474913946952.863650250857515.62329957702
1347276.25779696776976.020087924457576.49550601094

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
117 & 6562.01432205376 & 6532.95808531006 & 6591.07055879746 \tabularnewline
118 & 6604.02864410752 & 6559.67753493192 & 6648.37975328312 \tabularnewline
119 & 6646.04296616128 & 6587.66577561534 & 6704.42015670722 \tabularnewline
120 & 6688.05728821504 & 6615.9010704072 & 6760.21350602288 \tabularnewline
121 & 6730.0716102688 & 6644.03371475858 & 6816.10950577903 \tabularnewline
122 & 6772.08593232256 & 6671.90847046432 & 6872.26339418081 \tabularnewline
123 & 6814.10025437633 & 6699.44790432731 & 6928.75260442534 \tabularnewline
124 & 6856.11457643009 & 6726.61144755719 & 6985.61770530299 \tabularnewline
125 & 6898.12889848385 & 6753.3779077635 & 7042.87988920419 \tabularnewline
126 & 6940.14322053761 & 6779.73699698769 & 7100.54944408753 \tabularnewline
127 & 6982.15754259137 & 6805.68485205035 & 7158.63023313239 \tabularnewline
128 & 7024.17186464513 & 6831.22150943408 & 7217.12221985618 \tabularnewline
129 & 7066.18618669889 & 6856.34941164924 & 7276.02296174854 \tabularnewline
130 & 7108.20050875265 & 6881.07249051157 & 7335.32852699373 \tabularnewline
131 & 7150.21483080641 & 6905.39558830583 & 7395.03407330699 \tabularnewline
132 & 7192.22915286017 & 6929.32408434612 & 7455.13422137423 \tabularnewline
133 & 7234.24347491394 & 6952.86365025085 & 7515.62329957702 \tabularnewline
134 & 7276.2577969677 & 6976.02008792445 & 7576.49550601094 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299333&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]117[/C][C]6562.01432205376[/C][C]6532.95808531006[/C][C]6591.07055879746[/C][/ROW]
[ROW][C]118[/C][C]6604.02864410752[/C][C]6559.67753493192[/C][C]6648.37975328312[/C][/ROW]
[ROW][C]119[/C][C]6646.04296616128[/C][C]6587.66577561534[/C][C]6704.42015670722[/C][/ROW]
[ROW][C]120[/C][C]6688.05728821504[/C][C]6615.9010704072[/C][C]6760.21350602288[/C][/ROW]
[ROW][C]121[/C][C]6730.0716102688[/C][C]6644.03371475858[/C][C]6816.10950577903[/C][/ROW]
[ROW][C]122[/C][C]6772.08593232256[/C][C]6671.90847046432[/C][C]6872.26339418081[/C][/ROW]
[ROW][C]123[/C][C]6814.10025437633[/C][C]6699.44790432731[/C][C]6928.75260442534[/C][/ROW]
[ROW][C]124[/C][C]6856.11457643009[/C][C]6726.61144755719[/C][C]6985.61770530299[/C][/ROW]
[ROW][C]125[/C][C]6898.12889848385[/C][C]6753.3779077635[/C][C]7042.87988920419[/C][/ROW]
[ROW][C]126[/C][C]6940.14322053761[/C][C]6779.73699698769[/C][C]7100.54944408753[/C][/ROW]
[ROW][C]127[/C][C]6982.15754259137[/C][C]6805.68485205035[/C][C]7158.63023313239[/C][/ROW]
[ROW][C]128[/C][C]7024.17186464513[/C][C]6831.22150943408[/C][C]7217.12221985618[/C][/ROW]
[ROW][C]129[/C][C]7066.18618669889[/C][C]6856.34941164924[/C][C]7276.02296174854[/C][/ROW]
[ROW][C]130[/C][C]7108.20050875265[/C][C]6881.07249051157[/C][C]7335.32852699373[/C][/ROW]
[ROW][C]131[/C][C]7150.21483080641[/C][C]6905.39558830583[/C][C]7395.03407330699[/C][/ROW]
[ROW][C]132[/C][C]7192.22915286017[/C][C]6929.32408434612[/C][C]7455.13422137423[/C][/ROW]
[ROW][C]133[/C][C]7234.24347491394[/C][C]6952.86365025085[/C][C]7515.62329957702[/C][/ROW]
[ROW][C]134[/C][C]7276.2577969677[/C][C]6976.02008792445[/C][C]7576.49550601094[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299333&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299333&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1176562.014322053766532.958085310066591.07055879746
1186604.028644107526559.677534931926648.37975328312
1196646.042966161286587.665775615346704.42015670722
1206688.057288215046615.90107040726760.21350602288
1216730.07161026886644.033714758586816.10950577903
1226772.085932322566671.908470464326872.26339418081
1236814.100254376336699.447904327316928.75260442534
1246856.114576430096726.611447557196985.61770530299
1256898.128898483856753.37790776357042.87988920419
1266940.143220537616779.736996987697100.54944408753
1276982.157542591376805.684852050357158.63023313239
1287024.171864645136831.221509434087217.12221985618
1297066.186186698896856.349411649247276.02296174854
1307108.200508752656881.072490511577335.32852699373
1317150.214830806416905.395588305837395.03407330699
1327192.229152860176929.324084346127455.13422137423
1337234.243474913946952.863650250857515.62329957702
1347276.25779696776976.020087924457576.49550601094



Parameters (Session):
par1 = 12 ; par2 = Double ; par3 = additive ; par4 = 18 ;
Parameters (R input):
par1 = 12 ; par2 = Double ; par3 = additive ; par4 = 18 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')