Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decomposeloess.wasp
Title produced by softwareDecomposition by Loess
Date of computationWed, 14 Dec 2016 12:42:26 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481715771wqb2x76ebp47i11.htm/, Retrieved Fri, 01 Nov 2024 03:32:56 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299316, Retrieved Fri, 01 Nov 2024 03:32:56 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact100
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Decomposition by Loess] [] [2016-12-14 11:42:26] [349958aef20b862f8399a5ba04d6f6e3] [Current]
Feedback Forum

Post a new message
Dataseries X:
6830
6827
6841
6754
6869
6809
6836
6766
6759
6719
6702
6627
6630
6606
6512
6550
6578
6499
6371
6332
6291
6307
6252
6250
6164
6213
6174
6154
6091
6096
6046
6001
5979
5921
5863
5818
5758
5786
5734
5678
5610
5578
5589
5553
5533
5521
5464
5419
5346
5296
5255
5235
5164
5164
5172
5093
5070
5108
5051
5021
5001
4918
4886




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299316&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299316&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299316&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal631064
Trend1912
Low-pass1312

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Parameters \tabularnewline
Component & Window & Degree & Jump \tabularnewline
Seasonal & 631 & 0 & 64 \tabularnewline
Trend & 19 & 1 & 2 \tabularnewline
Low-pass & 13 & 1 & 2 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299316&T=1

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Parameters[/C][/ROW]
[ROW][C]Component[/C][C]Window[/C][C]Degree[/C][C]Jump[/C][/ROW]
[ROW][C]Seasonal[/C][C]631[/C][C]0[/C][C]64[/C][/ROW]
[ROW][C]Trend[/C][C]19[/C][C]1[/C][C]2[/C][/ROW]
[ROW][C]Low-pass[/C][C]13[/C][C]1[/C][C]2[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299316&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299316&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Parameters
ComponentWindowDegreeJump
Seasonal631064
Trend1912
Low-pass1312







Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
168306810.56374285388-22.7969756658086872.23323281193-19.4362571461188
268276804.2026215961-5.585263517847576855.38264192175-22.7973784039004
368416858.67491788118-15.20696891274556838.5320510315717.6749178811779
467546684.559768923622.593043387009426820.84718768937-69.4402310763753
568696912.4680242232322.36965142960776803.1623243471643.4680242232298
668096815.871656118417.34404316656116784.784300715036.87165611840373
768366886.4753225952319.11840032185746766.4062770829150.4753225952336
867666792.21699855376-8.020005531258966747.803006977526.2169985537575
967596792.75869462841-3.958431500498496729.1997368720933.7586946284055
1067196716.9845414044913.60172209558366707.41373649993-2.01545859551334
1167026724.81038501623-6.438121143994336685.6277361277722.810385016227
1266276610.52749911207-13.02107166783346656.49357255576-16.4725008879268
1366306655.43756668206-22.7969756658086627.3594089837525.4375666820551
1466066625.11799743875-5.585263517847576592.467266079119.1179974387451
1565126481.63184573829-15.20696891274556557.57512317445-30.368154261706
1665506576.814282029392.593043387009426520.592674583626.8142820293897
1765786650.0201225776422.36965142960776483.6102259927572.0201225776418
1864996533.3079384277917.34404316656116447.3480184056534.3079384277853
1963716311.7957888595919.11840032185746411.08581081856-59.2042111404144
2063326295.45413019108-8.020005531258966376.56587534018-36.5458698089242
2162916243.91249163869-3.958431500498496342.04593986181-47.0875083613109
2263076291.4313058299713.60172209558366308.96697207445-15.5686941700342
2362526234.5501168569-6.438121143994336275.88800428709-17.4498831430974
2462506268.02607158029-13.02107166783346244.9950000875418.0260715802915
2561646136.69497977782-22.7969756658086214.10199588799-27.3050202221839
2662136245.90186365134-5.585263517847576185.6833998665132.901863651342
2761746205.94216506773-15.20696891274556157.2648038450231.9421650677268
2861546178.725022019792.593043387009426126.681934593224.7250220197939
2960916063.5312832290222.36965142960776096.09906534137-27.4687167709826
3060966112.8586279481217.34404316656116061.7973288853216.8586279481196
3160466045.3860072488819.11840032185746027.49559242926-0.61399275112035
3260016018.8892458975-8.020005531258965991.1307596337617.8892458975006
3359796007.19250466224-3.958431500498495954.7659268382528.1925046622446
3459215912.2931642174113.60172209558365916.10511368701-8.70683578259468
3558635854.99382060823-6.438121143994335877.44430053577-8.00617939177391
3658185811.67525897485-13.02107166783345837.34581269298-6.3247410251488
3757585741.54965081561-22.7969756658085797.24732485019-16.4503491843871
3857865818.95930767211-5.585263517847575758.6259558457432.9593076721058
3957345763.20238207146-15.20696891274555720.0045868412929.2023820714576
4056785668.604440268692.593043387009425684.8025163443-9.39555973131337
4156105548.0299027230722.36965142960775649.60044584732-61.9700972769269
4255785523.3255883188917.34404316656115615.33036851455-54.6744116811087
4355895577.8213084963719.11840032185745581.06029118178-11.1786915036346
4455535568.70420135677-8.020005531258965545.3158041744815.7042013567743
4555335560.38711433331-3.958431500498495509.5713171671927.3871143333063
4655215555.5949508458613.60172209558365472.8033270585534.5949508458643
4754645498.40278419408-6.438121143994335436.0353369499134.4027841940824
4854195452.4116465801-13.02107166783345398.6094250877433.4116465800953
4953465353.61346244024-22.7969756658085361.183513225567.61346244024298
5052965274.96220007111-5.585263517847575322.62306344673-21.0377999288867
5152555241.14435524484-15.20696891274555284.0626136679-13.8556447551573
5252355219.634115937132.593043387009425247.77284067586-15.3658840628668
5351645094.1472808865822.36965142960775211.48306768381-69.852719113419
5451645129.4729258282517.34404316656115181.18303100519-34.5270741717522
5551725173.9986053515719.11840032185745150.882994326571.99860535157131
5650935071.88676196088-8.020005531258965122.13324357037-21.1132380391155
5750705050.57493868632-3.958431500498495093.38349281418-19.4250613136792
5851085137.3834321070313.60172209558365065.0148457973929.3834321070262
5950515071.79192236339-6.438121143994335036.646198780620.7919223633926
6050215046.08148078816-13.02107166783345008.9395908796825.081480788157
6150015043.56399268706-22.7969756658084981.2329829787542.5639926870572
6249184887.74318395999-5.585263517847574953.84207955785-30.256816040006
6348864860.75579277579-15.20696891274554926.45117613696-25.2442072242102

\begin{tabular}{lllllllll}
\hline
Seasonal Decomposition by Loess - Time Series Components \tabularnewline
t & Observed & Fitted & Seasonal & Trend & Remainder \tabularnewline
1 & 6830 & 6810.56374285388 & -22.796975665808 & 6872.23323281193 & -19.4362571461188 \tabularnewline
2 & 6827 & 6804.2026215961 & -5.58526351784757 & 6855.38264192175 & -22.7973784039004 \tabularnewline
3 & 6841 & 6858.67491788118 & -15.2069689127455 & 6838.53205103157 & 17.6749178811779 \tabularnewline
4 & 6754 & 6684.55976892362 & 2.59304338700942 & 6820.84718768937 & -69.4402310763753 \tabularnewline
5 & 6869 & 6912.46802422323 & 22.3696514296077 & 6803.16232434716 & 43.4680242232298 \tabularnewline
6 & 6809 & 6815.8716561184 & 17.3440431665611 & 6784.78430071503 & 6.87165611840373 \tabularnewline
7 & 6836 & 6886.47532259523 & 19.1184003218574 & 6766.40627708291 & 50.4753225952336 \tabularnewline
8 & 6766 & 6792.21699855376 & -8.02000553125896 & 6747.8030069775 & 26.2169985537575 \tabularnewline
9 & 6759 & 6792.75869462841 & -3.95843150049849 & 6729.19973687209 & 33.7586946284055 \tabularnewline
10 & 6719 & 6716.98454140449 & 13.6017220955836 & 6707.41373649993 & -2.01545859551334 \tabularnewline
11 & 6702 & 6724.81038501623 & -6.43812114399433 & 6685.62773612777 & 22.810385016227 \tabularnewline
12 & 6627 & 6610.52749911207 & -13.0210716678334 & 6656.49357255576 & -16.4725008879268 \tabularnewline
13 & 6630 & 6655.43756668206 & -22.796975665808 & 6627.35940898375 & 25.4375666820551 \tabularnewline
14 & 6606 & 6625.11799743875 & -5.58526351784757 & 6592.4672660791 & 19.1179974387451 \tabularnewline
15 & 6512 & 6481.63184573829 & -15.2069689127455 & 6557.57512317445 & -30.368154261706 \tabularnewline
16 & 6550 & 6576.81428202939 & 2.59304338700942 & 6520.5926745836 & 26.8142820293897 \tabularnewline
17 & 6578 & 6650.02012257764 & 22.3696514296077 & 6483.61022599275 & 72.0201225776418 \tabularnewline
18 & 6499 & 6533.30793842779 & 17.3440431665611 & 6447.34801840565 & 34.3079384277853 \tabularnewline
19 & 6371 & 6311.79578885959 & 19.1184003218574 & 6411.08581081856 & -59.2042111404144 \tabularnewline
20 & 6332 & 6295.45413019108 & -8.02000553125896 & 6376.56587534018 & -36.5458698089242 \tabularnewline
21 & 6291 & 6243.91249163869 & -3.95843150049849 & 6342.04593986181 & -47.0875083613109 \tabularnewline
22 & 6307 & 6291.43130582997 & 13.6017220955836 & 6308.96697207445 & -15.5686941700342 \tabularnewline
23 & 6252 & 6234.5501168569 & -6.43812114399433 & 6275.88800428709 & -17.4498831430974 \tabularnewline
24 & 6250 & 6268.02607158029 & -13.0210716678334 & 6244.99500008754 & 18.0260715802915 \tabularnewline
25 & 6164 & 6136.69497977782 & -22.796975665808 & 6214.10199588799 & -27.3050202221839 \tabularnewline
26 & 6213 & 6245.90186365134 & -5.58526351784757 & 6185.68339986651 & 32.901863651342 \tabularnewline
27 & 6174 & 6205.94216506773 & -15.2069689127455 & 6157.26480384502 & 31.9421650677268 \tabularnewline
28 & 6154 & 6178.72502201979 & 2.59304338700942 & 6126.6819345932 & 24.7250220197939 \tabularnewline
29 & 6091 & 6063.53128322902 & 22.3696514296077 & 6096.09906534137 & -27.4687167709826 \tabularnewline
30 & 6096 & 6112.85862794812 & 17.3440431665611 & 6061.79732888532 & 16.8586279481196 \tabularnewline
31 & 6046 & 6045.38600724888 & 19.1184003218574 & 6027.49559242926 & -0.61399275112035 \tabularnewline
32 & 6001 & 6018.8892458975 & -8.02000553125896 & 5991.13075963376 & 17.8892458975006 \tabularnewline
33 & 5979 & 6007.19250466224 & -3.95843150049849 & 5954.76592683825 & 28.1925046622446 \tabularnewline
34 & 5921 & 5912.29316421741 & 13.6017220955836 & 5916.10511368701 & -8.70683578259468 \tabularnewline
35 & 5863 & 5854.99382060823 & -6.43812114399433 & 5877.44430053577 & -8.00617939177391 \tabularnewline
36 & 5818 & 5811.67525897485 & -13.0210716678334 & 5837.34581269298 & -6.3247410251488 \tabularnewline
37 & 5758 & 5741.54965081561 & -22.796975665808 & 5797.24732485019 & -16.4503491843871 \tabularnewline
38 & 5786 & 5818.95930767211 & -5.58526351784757 & 5758.62595584574 & 32.9593076721058 \tabularnewline
39 & 5734 & 5763.20238207146 & -15.2069689127455 & 5720.00458684129 & 29.2023820714576 \tabularnewline
40 & 5678 & 5668.60444026869 & 2.59304338700942 & 5684.8025163443 & -9.39555973131337 \tabularnewline
41 & 5610 & 5548.02990272307 & 22.3696514296077 & 5649.60044584732 & -61.9700972769269 \tabularnewline
42 & 5578 & 5523.32558831889 & 17.3440431665611 & 5615.33036851455 & -54.6744116811087 \tabularnewline
43 & 5589 & 5577.82130849637 & 19.1184003218574 & 5581.06029118178 & -11.1786915036346 \tabularnewline
44 & 5553 & 5568.70420135677 & -8.02000553125896 & 5545.31580417448 & 15.7042013567743 \tabularnewline
45 & 5533 & 5560.38711433331 & -3.95843150049849 & 5509.57131716719 & 27.3871143333063 \tabularnewline
46 & 5521 & 5555.59495084586 & 13.6017220955836 & 5472.80332705855 & 34.5949508458643 \tabularnewline
47 & 5464 & 5498.40278419408 & -6.43812114399433 & 5436.03533694991 & 34.4027841940824 \tabularnewline
48 & 5419 & 5452.4116465801 & -13.0210716678334 & 5398.60942508774 & 33.4116465800953 \tabularnewline
49 & 5346 & 5353.61346244024 & -22.796975665808 & 5361.18351322556 & 7.61346244024298 \tabularnewline
50 & 5296 & 5274.96220007111 & -5.58526351784757 & 5322.62306344673 & -21.0377999288867 \tabularnewline
51 & 5255 & 5241.14435524484 & -15.2069689127455 & 5284.0626136679 & -13.8556447551573 \tabularnewline
52 & 5235 & 5219.63411593713 & 2.59304338700942 & 5247.77284067586 & -15.3658840628668 \tabularnewline
53 & 5164 & 5094.14728088658 & 22.3696514296077 & 5211.48306768381 & -69.852719113419 \tabularnewline
54 & 5164 & 5129.47292582825 & 17.3440431665611 & 5181.18303100519 & -34.5270741717522 \tabularnewline
55 & 5172 & 5173.99860535157 & 19.1184003218574 & 5150.88299432657 & 1.99860535157131 \tabularnewline
56 & 5093 & 5071.88676196088 & -8.02000553125896 & 5122.13324357037 & -21.1132380391155 \tabularnewline
57 & 5070 & 5050.57493868632 & -3.95843150049849 & 5093.38349281418 & -19.4250613136792 \tabularnewline
58 & 5108 & 5137.38343210703 & 13.6017220955836 & 5065.01484579739 & 29.3834321070262 \tabularnewline
59 & 5051 & 5071.79192236339 & -6.43812114399433 & 5036.6461987806 & 20.7919223633926 \tabularnewline
60 & 5021 & 5046.08148078816 & -13.0210716678334 & 5008.93959087968 & 25.081480788157 \tabularnewline
61 & 5001 & 5043.56399268706 & -22.796975665808 & 4981.23298297875 & 42.5639926870572 \tabularnewline
62 & 4918 & 4887.74318395999 & -5.58526351784757 & 4953.84207955785 & -30.256816040006 \tabularnewline
63 & 4886 & 4860.75579277579 & -15.2069689127455 & 4926.45117613696 & -25.2442072242102 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299316&T=2

[TABLE]
[ROW][C]Seasonal Decomposition by Loess - Time Series Components[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Seasonal[/C][C]Trend[/C][C]Remainder[/C][/ROW]
[ROW][C]1[/C][C]6830[/C][C]6810.56374285388[/C][C]-22.796975665808[/C][C]6872.23323281193[/C][C]-19.4362571461188[/C][/ROW]
[ROW][C]2[/C][C]6827[/C][C]6804.2026215961[/C][C]-5.58526351784757[/C][C]6855.38264192175[/C][C]-22.7973784039004[/C][/ROW]
[ROW][C]3[/C][C]6841[/C][C]6858.67491788118[/C][C]-15.2069689127455[/C][C]6838.53205103157[/C][C]17.6749178811779[/C][/ROW]
[ROW][C]4[/C][C]6754[/C][C]6684.55976892362[/C][C]2.59304338700942[/C][C]6820.84718768937[/C][C]-69.4402310763753[/C][/ROW]
[ROW][C]5[/C][C]6869[/C][C]6912.46802422323[/C][C]22.3696514296077[/C][C]6803.16232434716[/C][C]43.4680242232298[/C][/ROW]
[ROW][C]6[/C][C]6809[/C][C]6815.8716561184[/C][C]17.3440431665611[/C][C]6784.78430071503[/C][C]6.87165611840373[/C][/ROW]
[ROW][C]7[/C][C]6836[/C][C]6886.47532259523[/C][C]19.1184003218574[/C][C]6766.40627708291[/C][C]50.4753225952336[/C][/ROW]
[ROW][C]8[/C][C]6766[/C][C]6792.21699855376[/C][C]-8.02000553125896[/C][C]6747.8030069775[/C][C]26.2169985537575[/C][/ROW]
[ROW][C]9[/C][C]6759[/C][C]6792.75869462841[/C][C]-3.95843150049849[/C][C]6729.19973687209[/C][C]33.7586946284055[/C][/ROW]
[ROW][C]10[/C][C]6719[/C][C]6716.98454140449[/C][C]13.6017220955836[/C][C]6707.41373649993[/C][C]-2.01545859551334[/C][/ROW]
[ROW][C]11[/C][C]6702[/C][C]6724.81038501623[/C][C]-6.43812114399433[/C][C]6685.62773612777[/C][C]22.810385016227[/C][/ROW]
[ROW][C]12[/C][C]6627[/C][C]6610.52749911207[/C][C]-13.0210716678334[/C][C]6656.49357255576[/C][C]-16.4725008879268[/C][/ROW]
[ROW][C]13[/C][C]6630[/C][C]6655.43756668206[/C][C]-22.796975665808[/C][C]6627.35940898375[/C][C]25.4375666820551[/C][/ROW]
[ROW][C]14[/C][C]6606[/C][C]6625.11799743875[/C][C]-5.58526351784757[/C][C]6592.4672660791[/C][C]19.1179974387451[/C][/ROW]
[ROW][C]15[/C][C]6512[/C][C]6481.63184573829[/C][C]-15.2069689127455[/C][C]6557.57512317445[/C][C]-30.368154261706[/C][/ROW]
[ROW][C]16[/C][C]6550[/C][C]6576.81428202939[/C][C]2.59304338700942[/C][C]6520.5926745836[/C][C]26.8142820293897[/C][/ROW]
[ROW][C]17[/C][C]6578[/C][C]6650.02012257764[/C][C]22.3696514296077[/C][C]6483.61022599275[/C][C]72.0201225776418[/C][/ROW]
[ROW][C]18[/C][C]6499[/C][C]6533.30793842779[/C][C]17.3440431665611[/C][C]6447.34801840565[/C][C]34.3079384277853[/C][/ROW]
[ROW][C]19[/C][C]6371[/C][C]6311.79578885959[/C][C]19.1184003218574[/C][C]6411.08581081856[/C][C]-59.2042111404144[/C][/ROW]
[ROW][C]20[/C][C]6332[/C][C]6295.45413019108[/C][C]-8.02000553125896[/C][C]6376.56587534018[/C][C]-36.5458698089242[/C][/ROW]
[ROW][C]21[/C][C]6291[/C][C]6243.91249163869[/C][C]-3.95843150049849[/C][C]6342.04593986181[/C][C]-47.0875083613109[/C][/ROW]
[ROW][C]22[/C][C]6307[/C][C]6291.43130582997[/C][C]13.6017220955836[/C][C]6308.96697207445[/C][C]-15.5686941700342[/C][/ROW]
[ROW][C]23[/C][C]6252[/C][C]6234.5501168569[/C][C]-6.43812114399433[/C][C]6275.88800428709[/C][C]-17.4498831430974[/C][/ROW]
[ROW][C]24[/C][C]6250[/C][C]6268.02607158029[/C][C]-13.0210716678334[/C][C]6244.99500008754[/C][C]18.0260715802915[/C][/ROW]
[ROW][C]25[/C][C]6164[/C][C]6136.69497977782[/C][C]-22.796975665808[/C][C]6214.10199588799[/C][C]-27.3050202221839[/C][/ROW]
[ROW][C]26[/C][C]6213[/C][C]6245.90186365134[/C][C]-5.58526351784757[/C][C]6185.68339986651[/C][C]32.901863651342[/C][/ROW]
[ROW][C]27[/C][C]6174[/C][C]6205.94216506773[/C][C]-15.2069689127455[/C][C]6157.26480384502[/C][C]31.9421650677268[/C][/ROW]
[ROW][C]28[/C][C]6154[/C][C]6178.72502201979[/C][C]2.59304338700942[/C][C]6126.6819345932[/C][C]24.7250220197939[/C][/ROW]
[ROW][C]29[/C][C]6091[/C][C]6063.53128322902[/C][C]22.3696514296077[/C][C]6096.09906534137[/C][C]-27.4687167709826[/C][/ROW]
[ROW][C]30[/C][C]6096[/C][C]6112.85862794812[/C][C]17.3440431665611[/C][C]6061.79732888532[/C][C]16.8586279481196[/C][/ROW]
[ROW][C]31[/C][C]6046[/C][C]6045.38600724888[/C][C]19.1184003218574[/C][C]6027.49559242926[/C][C]-0.61399275112035[/C][/ROW]
[ROW][C]32[/C][C]6001[/C][C]6018.8892458975[/C][C]-8.02000553125896[/C][C]5991.13075963376[/C][C]17.8892458975006[/C][/ROW]
[ROW][C]33[/C][C]5979[/C][C]6007.19250466224[/C][C]-3.95843150049849[/C][C]5954.76592683825[/C][C]28.1925046622446[/C][/ROW]
[ROW][C]34[/C][C]5921[/C][C]5912.29316421741[/C][C]13.6017220955836[/C][C]5916.10511368701[/C][C]-8.70683578259468[/C][/ROW]
[ROW][C]35[/C][C]5863[/C][C]5854.99382060823[/C][C]-6.43812114399433[/C][C]5877.44430053577[/C][C]-8.00617939177391[/C][/ROW]
[ROW][C]36[/C][C]5818[/C][C]5811.67525897485[/C][C]-13.0210716678334[/C][C]5837.34581269298[/C][C]-6.3247410251488[/C][/ROW]
[ROW][C]37[/C][C]5758[/C][C]5741.54965081561[/C][C]-22.796975665808[/C][C]5797.24732485019[/C][C]-16.4503491843871[/C][/ROW]
[ROW][C]38[/C][C]5786[/C][C]5818.95930767211[/C][C]-5.58526351784757[/C][C]5758.62595584574[/C][C]32.9593076721058[/C][/ROW]
[ROW][C]39[/C][C]5734[/C][C]5763.20238207146[/C][C]-15.2069689127455[/C][C]5720.00458684129[/C][C]29.2023820714576[/C][/ROW]
[ROW][C]40[/C][C]5678[/C][C]5668.60444026869[/C][C]2.59304338700942[/C][C]5684.8025163443[/C][C]-9.39555973131337[/C][/ROW]
[ROW][C]41[/C][C]5610[/C][C]5548.02990272307[/C][C]22.3696514296077[/C][C]5649.60044584732[/C][C]-61.9700972769269[/C][/ROW]
[ROW][C]42[/C][C]5578[/C][C]5523.32558831889[/C][C]17.3440431665611[/C][C]5615.33036851455[/C][C]-54.6744116811087[/C][/ROW]
[ROW][C]43[/C][C]5589[/C][C]5577.82130849637[/C][C]19.1184003218574[/C][C]5581.06029118178[/C][C]-11.1786915036346[/C][/ROW]
[ROW][C]44[/C][C]5553[/C][C]5568.70420135677[/C][C]-8.02000553125896[/C][C]5545.31580417448[/C][C]15.7042013567743[/C][/ROW]
[ROW][C]45[/C][C]5533[/C][C]5560.38711433331[/C][C]-3.95843150049849[/C][C]5509.57131716719[/C][C]27.3871143333063[/C][/ROW]
[ROW][C]46[/C][C]5521[/C][C]5555.59495084586[/C][C]13.6017220955836[/C][C]5472.80332705855[/C][C]34.5949508458643[/C][/ROW]
[ROW][C]47[/C][C]5464[/C][C]5498.40278419408[/C][C]-6.43812114399433[/C][C]5436.03533694991[/C][C]34.4027841940824[/C][/ROW]
[ROW][C]48[/C][C]5419[/C][C]5452.4116465801[/C][C]-13.0210716678334[/C][C]5398.60942508774[/C][C]33.4116465800953[/C][/ROW]
[ROW][C]49[/C][C]5346[/C][C]5353.61346244024[/C][C]-22.796975665808[/C][C]5361.18351322556[/C][C]7.61346244024298[/C][/ROW]
[ROW][C]50[/C][C]5296[/C][C]5274.96220007111[/C][C]-5.58526351784757[/C][C]5322.62306344673[/C][C]-21.0377999288867[/C][/ROW]
[ROW][C]51[/C][C]5255[/C][C]5241.14435524484[/C][C]-15.2069689127455[/C][C]5284.0626136679[/C][C]-13.8556447551573[/C][/ROW]
[ROW][C]52[/C][C]5235[/C][C]5219.63411593713[/C][C]2.59304338700942[/C][C]5247.77284067586[/C][C]-15.3658840628668[/C][/ROW]
[ROW][C]53[/C][C]5164[/C][C]5094.14728088658[/C][C]22.3696514296077[/C][C]5211.48306768381[/C][C]-69.852719113419[/C][/ROW]
[ROW][C]54[/C][C]5164[/C][C]5129.47292582825[/C][C]17.3440431665611[/C][C]5181.18303100519[/C][C]-34.5270741717522[/C][/ROW]
[ROW][C]55[/C][C]5172[/C][C]5173.99860535157[/C][C]19.1184003218574[/C][C]5150.88299432657[/C][C]1.99860535157131[/C][/ROW]
[ROW][C]56[/C][C]5093[/C][C]5071.88676196088[/C][C]-8.02000553125896[/C][C]5122.13324357037[/C][C]-21.1132380391155[/C][/ROW]
[ROW][C]57[/C][C]5070[/C][C]5050.57493868632[/C][C]-3.95843150049849[/C][C]5093.38349281418[/C][C]-19.4250613136792[/C][/ROW]
[ROW][C]58[/C][C]5108[/C][C]5137.38343210703[/C][C]13.6017220955836[/C][C]5065.01484579739[/C][C]29.3834321070262[/C][/ROW]
[ROW][C]59[/C][C]5051[/C][C]5071.79192236339[/C][C]-6.43812114399433[/C][C]5036.6461987806[/C][C]20.7919223633926[/C][/ROW]
[ROW][C]60[/C][C]5021[/C][C]5046.08148078816[/C][C]-13.0210716678334[/C][C]5008.93959087968[/C][C]25.081480788157[/C][/ROW]
[ROW][C]61[/C][C]5001[/C][C]5043.56399268706[/C][C]-22.796975665808[/C][C]4981.23298297875[/C][C]42.5639926870572[/C][/ROW]
[ROW][C]62[/C][C]4918[/C][C]4887.74318395999[/C][C]-5.58526351784757[/C][C]4953.84207955785[/C][C]-30.256816040006[/C][/ROW]
[ROW][C]63[/C][C]4886[/C][C]4860.75579277579[/C][C]-15.2069689127455[/C][C]4926.45117613696[/C][C]-25.2442072242102[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299316&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299316&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Seasonal Decomposition by Loess - Time Series Components
tObservedFittedSeasonalTrendRemainder
168306810.56374285388-22.7969756658086872.23323281193-19.4362571461188
268276804.2026215961-5.585263517847576855.38264192175-22.7973784039004
368416858.67491788118-15.20696891274556838.5320510315717.6749178811779
467546684.559768923622.593043387009426820.84718768937-69.4402310763753
568696912.4680242232322.36965142960776803.1623243471643.4680242232298
668096815.871656118417.34404316656116784.784300715036.87165611840373
768366886.4753225952319.11840032185746766.4062770829150.4753225952336
867666792.21699855376-8.020005531258966747.803006977526.2169985537575
967596792.75869462841-3.958431500498496729.1997368720933.7586946284055
1067196716.9845414044913.60172209558366707.41373649993-2.01545859551334
1167026724.81038501623-6.438121143994336685.6277361277722.810385016227
1266276610.52749911207-13.02107166783346656.49357255576-16.4725008879268
1366306655.43756668206-22.7969756658086627.3594089837525.4375666820551
1466066625.11799743875-5.585263517847576592.467266079119.1179974387451
1565126481.63184573829-15.20696891274556557.57512317445-30.368154261706
1665506576.814282029392.593043387009426520.592674583626.8142820293897
1765786650.0201225776422.36965142960776483.6102259927572.0201225776418
1864996533.3079384277917.34404316656116447.3480184056534.3079384277853
1963716311.7957888595919.11840032185746411.08581081856-59.2042111404144
2063326295.45413019108-8.020005531258966376.56587534018-36.5458698089242
2162916243.91249163869-3.958431500498496342.04593986181-47.0875083613109
2263076291.4313058299713.60172209558366308.96697207445-15.5686941700342
2362526234.5501168569-6.438121143994336275.88800428709-17.4498831430974
2462506268.02607158029-13.02107166783346244.9950000875418.0260715802915
2561646136.69497977782-22.7969756658086214.10199588799-27.3050202221839
2662136245.90186365134-5.585263517847576185.6833998665132.901863651342
2761746205.94216506773-15.20696891274556157.2648038450231.9421650677268
2861546178.725022019792.593043387009426126.681934593224.7250220197939
2960916063.5312832290222.36965142960776096.09906534137-27.4687167709826
3060966112.8586279481217.34404316656116061.7973288853216.8586279481196
3160466045.3860072488819.11840032185746027.49559242926-0.61399275112035
3260016018.8892458975-8.020005531258965991.1307596337617.8892458975006
3359796007.19250466224-3.958431500498495954.7659268382528.1925046622446
3459215912.2931642174113.60172209558365916.10511368701-8.70683578259468
3558635854.99382060823-6.438121143994335877.44430053577-8.00617939177391
3658185811.67525897485-13.02107166783345837.34581269298-6.3247410251488
3757585741.54965081561-22.7969756658085797.24732485019-16.4503491843871
3857865818.95930767211-5.585263517847575758.6259558457432.9593076721058
3957345763.20238207146-15.20696891274555720.0045868412929.2023820714576
4056785668.604440268692.593043387009425684.8025163443-9.39555973131337
4156105548.0299027230722.36965142960775649.60044584732-61.9700972769269
4255785523.3255883188917.34404316656115615.33036851455-54.6744116811087
4355895577.8213084963719.11840032185745581.06029118178-11.1786915036346
4455535568.70420135677-8.020005531258965545.3158041744815.7042013567743
4555335560.38711433331-3.958431500498495509.5713171671927.3871143333063
4655215555.5949508458613.60172209558365472.8033270585534.5949508458643
4754645498.40278419408-6.438121143994335436.0353369499134.4027841940824
4854195452.4116465801-13.02107166783345398.6094250877433.4116465800953
4953465353.61346244024-22.7969756658085361.183513225567.61346244024298
5052965274.96220007111-5.585263517847575322.62306344673-21.0377999288867
5152555241.14435524484-15.20696891274555284.0626136679-13.8556447551573
5252355219.634115937132.593043387009425247.77284067586-15.3658840628668
5351645094.1472808865822.36965142960775211.48306768381-69.852719113419
5451645129.4729258282517.34404316656115181.18303100519-34.5270741717522
5551725173.9986053515719.11840032185745150.882994326571.99860535157131
5650935071.88676196088-8.020005531258965122.13324357037-21.1132380391155
5750705050.57493868632-3.958431500498495093.38349281418-19.4250613136792
5851085137.3834321070313.60172209558365065.0148457973929.3834321070262
5950515071.79192236339-6.438121143994335036.646198780620.7919223633926
6050215046.08148078816-13.02107166783345008.9395908796825.081480788157
6150015043.56399268706-22.7969756658084981.2329829787542.5639926870572
6249184887.74318395999-5.585263517847574953.84207955785-30.256816040006
6348864860.75579277579-15.20696891274554926.45117613696-25.2442072242102



Parameters (Session):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par5 = 1 ; par7 = 1 ; par8 = FALSE ;
Parameters (R input):
par1 = 12 ; par2 = periodic ; par3 = 0 ; par4 = ; par5 = 1 ; par6 = ; par7 = 1 ; par8 = FALSE ;
R code (references can be found in the software module):
par1 <- as.numeric(par1) #seasonal period
if (par2 != 'periodic') par2 <- as.numeric(par2) #s.window
par3 <- as.numeric(par3) #s.degree
if (par4 == '') par4 <- NULL else par4 <- as.numeric(par4)#t.window
par5 <- as.numeric(par5)#t.degree
if (par6 != '') par6 <- as.numeric(par6)#l.window
par7 <- as.numeric(par7)#l.degree
if (par8 == 'FALSE') par8 <- FALSE else par9 <- TRUE #robust
nx <- length(x)
x <- ts(x,frequency=par1)
if (par6 != '') {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.window=par6, l.degree=par7, robust=par8)
} else {
m <- stl(x,s.window=par2, s.degree=par3, t.window=par4, t.degre=par5, l.degree=par7, robust=par8)
}
m$time.series
m$win
m$deg
m$jump
m$inner
m$outer
bitmap(file='test1.png')
plot(m,main=main)
dev.off()
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$time.series[,'trend']),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$time.series[,'seasonal']),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$time.series[,'remainder']),na.action=na.pass,lag.max = mylagmax,main='Remainder')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
spectrum(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'trend']),'trend']),main='Trend')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'seasonal']),'seasonal']),main='Seasonal')
cpgram(as.numeric(m$time.series[!is.na(m$time.series[,'remainder']),'remainder']),main='Remainder')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Parameters',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Component',header=TRUE)
a<-table.element(a,'Window',header=TRUE)
a<-table.element(a,'Degree',header=TRUE)
a<-table.element(a,'Jump',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,m$win['s'])
a<-table.element(a,m$deg['s'])
a<-table.element(a,m$jump['s'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,m$win['t'])
a<-table.element(a,m$deg['t'])
a<-table.element(a,m$jump['t'])
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Low-pass',header=TRUE)
a<-table.element(a,m$win['l'])
a<-table.element(a,m$deg['l'])
a<-table.element(a,m$jump['l'])
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Seasonal Decomposition by Loess - Time Series Components',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Remainder',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,x[i]+m$time.series[i,'remainder'])
a<-table.element(a,m$time.series[i,'seasonal'])
a<-table.element(a,m$time.series[i,'trend'])
a<-table.element(a,m$time.series[i,'remainder'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')