Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 14 Dec 2016 11:42:23 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481712341qpix0eea109pzd6.htm/, Retrieved Fri, 01 Nov 2024 03:30:01 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299297, Retrieved Fri, 01 Nov 2024 03:30:01 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact132
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [F1 competitie N2005] [2016-12-14 10:42:23] [f07fac15bca656f595926f3a45d3c842] [Current]
Feedback Forum

Post a new message
Dataseries X:
3606.1
3102.8
3602.5
3247.3
3467.7
3330.2
3367.1
3579.2
3303.8
3513.1
3892.7
4698.2
3876.6
3937.9
4011.5
3881.2
4054.6
3609.9
3788
3603.2
4110.8
4398.5
4402
4249.8
4054.5
3868.7
4165.4
4043.8
4220.2
4078
4129.3
4129.3
4161.5
4193.3
3959.8
3962.8
4079.3
3824.5
4160
3906.2
3907.8
4076.7
4099.4
4213.7
4012.2
4088.4
3911.9
3992.5
4333
4159
4540.8
4515.4
4661.1
4394.3
4916.4
4999.7
4783.4
4889.5
4840.6
4979.2
5442.4
5229.9
5670.3
5129.1
5358
5363.5
5388.7
5409.2
5431.2
5591.9
5622.5
5528.7
4968.7
4812.5
5175.1
4943.2
5007.1
5028.5
5023
5158.3
5248.8
5494
5193.3
4318.2
5726.3
5378.7
5776.1
5626.3
5755.2
5540.9
5560.8
5742.6
5592.9
5782.6
5611.5
5653.5
5438.7
5084.7
5736.2
5497.2
5650.9
5645.8
5634
5747.2
5585.2
5952.5
5833.5
5778.4
6096.9
5797.6
6187.9
5849.6
6096.6
5757.8
6248.1
6110.5
5919.8
6082.2
5886.9
6167.4
6458.9
6282.3
6762.1
6698.1
6017.3
5790.5




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299297&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299297&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299297&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13606.1NANA65.055NA
23102.8NANA-173.658NA
33602.5NANA172.49NA
43247.3NANA-77.2149NA
53467.7NANA48.2698NA
63330.2NANA-102.887NA
73367.13570.333570.5-0.168897-203.227
83579.23645.073616.5628.5065-65.869
93303.83616.163668.4-52.2364-312.364
103513.13815.713711.85103.86-302.614
113892.73758.453762.72-4.2714134.251
124698.23791.083798.83-7.74598907.117
133876.63893.083828.0265.055-16.4758
143937.93672.93846.56-173.658264.999
154011.54053.673881.18172.49-42.1735
163881.23874.493951.7-77.21496.71492
174054.64058.084009.8148.2698-3.48231
183609.93909.464012.35-102.887-299.563
1937884000.914001.08-0.168897-212.91
203603.24034.114005.6128.5065-430.915
214110.83956.94009.14-52.2364153.899
224398.54126.194022.32103.86272.315
2344024031.734036-4.2714370.271
244249.84054.664062.4-7.74598195.142
254054.54161.184096.1365.055-106.684
263868.73958.614132.27-173.658-89.9133
274165.44328.794156.3172.49-163.394
284043.84072.654149.87-77.2149-28.8518
294220.24171.164122.8948.269849.0385
3040783989.624092.51-102.88788.3783
314129.34081.414081.58-0.16889747.8856
324129.34109.284080.7828.506520.0185
334161.54026.474078.71-52.2364135.028
344193.34176.614072.75103.8616.6897
353959.84049.734054-4.2714-89.9286
363962.84033.184040.93-7.74598-70.3832
374079.34104.684039.6365.055-25.3842
383824.53868.244041.9-173.658-43.7425
3941604211.694039.2172.49-51.686
403906.23951.394028.6-77.2149-45.1893
413907.84070.514022.2448.2698-162.707
424076.73918.594021.48-102.887158.108
434099.44033.124033.29-0.16889766.2814
444213.74086.34057.828.5065127.398
454012.24035.364087.6-52.2364-23.1636
464088.44232.714128.85103.86-144.31
473911.94181.354185.62-4.2714-269.449
483992.54222.54230.24-7.74598-229.996
4943334342.574277.5265.055-9.57166
5041594170.654344.31-173.658-11.6508
514540.84581.684409.19172.49-40.8818
524515.44397.494474.7-77.2149117.911
534661.14595.054546.7848.269866.051
544394.34523.74626.59-102.887-129.401
554916.44713.764713.92-0.168897202.644
564999.74833.284804.7728.5065166.423
574783.44844.224896.45-52.2364-60.8178
584889.55072.954969.09103.86-183.448
594840.65019.425023.7-4.2714-178.824
604979.25085.375093.12-7.74598-106.171
615442.45218.235153.1865.055224.166
625229.95016.265189.92-173.658213.637
635670.35406.475233.97172.49263.835
645129.15213.025290.23-77.2149-83.9184
6553585400.355352.0848.2698-42.349
665363.55304.675407.55-102.88758.8325
675388.75410.545410.71-0.168897-21.8436
685409.25402.095373.5828.50657.11015
695431.25283.325335.56-52.2364147.878
705591.95411.045307.18103.86180.861
715622.55280.545284.81-4.2714341.959
725528.75248.495256.23-7.74598280.213
734968.75292.095227.0465.055-323.392
744812.55027.695201.35-173.658-215.188
755175.15355.785183.29172.49-180.682
764943.25094.45171.61-77.2149-151.198
775007.15197.925149.6548.2698-190.82
785028.54978.445081.33-102.88750.0575
7950235062.295062.46-0.168897-39.2894
805158.35146.125117.6228.506512.1768
815248.85114.015166.25-52.2364134.786
8254945323.615219.75103.86170.386
835193.35275.125279.39-4.2714-81.8161
844318.25324.165331.91-7.74598-1005.96
855726.35440.725375.6765.055285.578
865378.75248.765422.42-173.658129.937
875776.15633.595461.1172.49142.506
885626.35410.255487.47-77.2149216.048
895755.25565.195516.9248.2698190.014
905540.95487.095589.98-102.88753.8075
915560.85633.465633.63-0.168897-72.6644
925742.65637.915609.428.5065104.693
935592.95543.255595.49-52.236449.6489
945782.65692.315588.45103.8690.2939
955611.55574.455578.72-4.271437.0506
965653.555715578.75-7.7459882.5001
975438.75651.225586.1765.055-212.522
985084.75415.755589.41-173.658-331.051
995736.25761.775589.28172.49-25.5693
1005497.25518.825596.04-77.2149-21.6226
1015650.95660.645612.3748.2698-9.73647
1025645.85523.935626.82-102.887121.866
10356345659.285659.45-0.168897-25.2811
1045747.25745.095716.5828.50652.11431
1055585.25712.875765.1-52.2364-127.668
1065952.55902.475798.61103.8650.0314
1075833.55827.595831.86-4.27145.9089
1085778.45847.355855.1-7.74598-68.954
1096096.95950.415885.3565.055146.491
1105797.65752.425926.08-173.65845.1783
1116187.96127.655955.16172.4960.2515
1125849.65897.295974.5-77.2149-47.6893
1136096.66030.45982.1348.269866.1969
1145757.85897.686000.57-102.887-139.88
1156248.16031.696031.86-0.168897216.411
1166110.56095.646067.1428.506514.856
1175919.86059.026111.26-52.2364-139.222
1186082.26274.46170.54103.86-192.198
1195886.96198.326202.59-4.2714-311.416
1206167.46192.96200.65-7.74598-25.4999
1216458.9NANA65.055NA
1226282.3NANA-173.658NA
1236762.1NANA172.49NA
1246698.1NANA-77.2149NA
1256017.3NANA48.2698NA
1265790.5NANA-102.887NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 3606.1 & NA & NA & 65.055 & NA \tabularnewline
2 & 3102.8 & NA & NA & -173.658 & NA \tabularnewline
3 & 3602.5 & NA & NA & 172.49 & NA \tabularnewline
4 & 3247.3 & NA & NA & -77.2149 & NA \tabularnewline
5 & 3467.7 & NA & NA & 48.2698 & NA \tabularnewline
6 & 3330.2 & NA & NA & -102.887 & NA \tabularnewline
7 & 3367.1 & 3570.33 & 3570.5 & -0.168897 & -203.227 \tabularnewline
8 & 3579.2 & 3645.07 & 3616.56 & 28.5065 & -65.869 \tabularnewline
9 & 3303.8 & 3616.16 & 3668.4 & -52.2364 & -312.364 \tabularnewline
10 & 3513.1 & 3815.71 & 3711.85 & 103.86 & -302.614 \tabularnewline
11 & 3892.7 & 3758.45 & 3762.72 & -4.2714 & 134.251 \tabularnewline
12 & 4698.2 & 3791.08 & 3798.83 & -7.74598 & 907.117 \tabularnewline
13 & 3876.6 & 3893.08 & 3828.02 & 65.055 & -16.4758 \tabularnewline
14 & 3937.9 & 3672.9 & 3846.56 & -173.658 & 264.999 \tabularnewline
15 & 4011.5 & 4053.67 & 3881.18 & 172.49 & -42.1735 \tabularnewline
16 & 3881.2 & 3874.49 & 3951.7 & -77.2149 & 6.71492 \tabularnewline
17 & 4054.6 & 4058.08 & 4009.81 & 48.2698 & -3.48231 \tabularnewline
18 & 3609.9 & 3909.46 & 4012.35 & -102.887 & -299.563 \tabularnewline
19 & 3788 & 4000.91 & 4001.08 & -0.168897 & -212.91 \tabularnewline
20 & 3603.2 & 4034.11 & 4005.61 & 28.5065 & -430.915 \tabularnewline
21 & 4110.8 & 3956.9 & 4009.14 & -52.2364 & 153.899 \tabularnewline
22 & 4398.5 & 4126.19 & 4022.32 & 103.86 & 272.315 \tabularnewline
23 & 4402 & 4031.73 & 4036 & -4.2714 & 370.271 \tabularnewline
24 & 4249.8 & 4054.66 & 4062.4 & -7.74598 & 195.142 \tabularnewline
25 & 4054.5 & 4161.18 & 4096.13 & 65.055 & -106.684 \tabularnewline
26 & 3868.7 & 3958.61 & 4132.27 & -173.658 & -89.9133 \tabularnewline
27 & 4165.4 & 4328.79 & 4156.3 & 172.49 & -163.394 \tabularnewline
28 & 4043.8 & 4072.65 & 4149.87 & -77.2149 & -28.8518 \tabularnewline
29 & 4220.2 & 4171.16 & 4122.89 & 48.2698 & 49.0385 \tabularnewline
30 & 4078 & 3989.62 & 4092.51 & -102.887 & 88.3783 \tabularnewline
31 & 4129.3 & 4081.41 & 4081.58 & -0.168897 & 47.8856 \tabularnewline
32 & 4129.3 & 4109.28 & 4080.78 & 28.5065 & 20.0185 \tabularnewline
33 & 4161.5 & 4026.47 & 4078.71 & -52.2364 & 135.028 \tabularnewline
34 & 4193.3 & 4176.61 & 4072.75 & 103.86 & 16.6897 \tabularnewline
35 & 3959.8 & 4049.73 & 4054 & -4.2714 & -89.9286 \tabularnewline
36 & 3962.8 & 4033.18 & 4040.93 & -7.74598 & -70.3832 \tabularnewline
37 & 4079.3 & 4104.68 & 4039.63 & 65.055 & -25.3842 \tabularnewline
38 & 3824.5 & 3868.24 & 4041.9 & -173.658 & -43.7425 \tabularnewline
39 & 4160 & 4211.69 & 4039.2 & 172.49 & -51.686 \tabularnewline
40 & 3906.2 & 3951.39 & 4028.6 & -77.2149 & -45.1893 \tabularnewline
41 & 3907.8 & 4070.51 & 4022.24 & 48.2698 & -162.707 \tabularnewline
42 & 4076.7 & 3918.59 & 4021.48 & -102.887 & 158.108 \tabularnewline
43 & 4099.4 & 4033.12 & 4033.29 & -0.168897 & 66.2814 \tabularnewline
44 & 4213.7 & 4086.3 & 4057.8 & 28.5065 & 127.398 \tabularnewline
45 & 4012.2 & 4035.36 & 4087.6 & -52.2364 & -23.1636 \tabularnewline
46 & 4088.4 & 4232.71 & 4128.85 & 103.86 & -144.31 \tabularnewline
47 & 3911.9 & 4181.35 & 4185.62 & -4.2714 & -269.449 \tabularnewline
48 & 3992.5 & 4222.5 & 4230.24 & -7.74598 & -229.996 \tabularnewline
49 & 4333 & 4342.57 & 4277.52 & 65.055 & -9.57166 \tabularnewline
50 & 4159 & 4170.65 & 4344.31 & -173.658 & -11.6508 \tabularnewline
51 & 4540.8 & 4581.68 & 4409.19 & 172.49 & -40.8818 \tabularnewline
52 & 4515.4 & 4397.49 & 4474.7 & -77.2149 & 117.911 \tabularnewline
53 & 4661.1 & 4595.05 & 4546.78 & 48.2698 & 66.051 \tabularnewline
54 & 4394.3 & 4523.7 & 4626.59 & -102.887 & -129.401 \tabularnewline
55 & 4916.4 & 4713.76 & 4713.92 & -0.168897 & 202.644 \tabularnewline
56 & 4999.7 & 4833.28 & 4804.77 & 28.5065 & 166.423 \tabularnewline
57 & 4783.4 & 4844.22 & 4896.45 & -52.2364 & -60.8178 \tabularnewline
58 & 4889.5 & 5072.95 & 4969.09 & 103.86 & -183.448 \tabularnewline
59 & 4840.6 & 5019.42 & 5023.7 & -4.2714 & -178.824 \tabularnewline
60 & 4979.2 & 5085.37 & 5093.12 & -7.74598 & -106.171 \tabularnewline
61 & 5442.4 & 5218.23 & 5153.18 & 65.055 & 224.166 \tabularnewline
62 & 5229.9 & 5016.26 & 5189.92 & -173.658 & 213.637 \tabularnewline
63 & 5670.3 & 5406.47 & 5233.97 & 172.49 & 263.835 \tabularnewline
64 & 5129.1 & 5213.02 & 5290.23 & -77.2149 & -83.9184 \tabularnewline
65 & 5358 & 5400.35 & 5352.08 & 48.2698 & -42.349 \tabularnewline
66 & 5363.5 & 5304.67 & 5407.55 & -102.887 & 58.8325 \tabularnewline
67 & 5388.7 & 5410.54 & 5410.71 & -0.168897 & -21.8436 \tabularnewline
68 & 5409.2 & 5402.09 & 5373.58 & 28.5065 & 7.11015 \tabularnewline
69 & 5431.2 & 5283.32 & 5335.56 & -52.2364 & 147.878 \tabularnewline
70 & 5591.9 & 5411.04 & 5307.18 & 103.86 & 180.861 \tabularnewline
71 & 5622.5 & 5280.54 & 5284.81 & -4.2714 & 341.959 \tabularnewline
72 & 5528.7 & 5248.49 & 5256.23 & -7.74598 & 280.213 \tabularnewline
73 & 4968.7 & 5292.09 & 5227.04 & 65.055 & -323.392 \tabularnewline
74 & 4812.5 & 5027.69 & 5201.35 & -173.658 & -215.188 \tabularnewline
75 & 5175.1 & 5355.78 & 5183.29 & 172.49 & -180.682 \tabularnewline
76 & 4943.2 & 5094.4 & 5171.61 & -77.2149 & -151.198 \tabularnewline
77 & 5007.1 & 5197.92 & 5149.65 & 48.2698 & -190.82 \tabularnewline
78 & 5028.5 & 4978.44 & 5081.33 & -102.887 & 50.0575 \tabularnewline
79 & 5023 & 5062.29 & 5062.46 & -0.168897 & -39.2894 \tabularnewline
80 & 5158.3 & 5146.12 & 5117.62 & 28.5065 & 12.1768 \tabularnewline
81 & 5248.8 & 5114.01 & 5166.25 & -52.2364 & 134.786 \tabularnewline
82 & 5494 & 5323.61 & 5219.75 & 103.86 & 170.386 \tabularnewline
83 & 5193.3 & 5275.12 & 5279.39 & -4.2714 & -81.8161 \tabularnewline
84 & 4318.2 & 5324.16 & 5331.91 & -7.74598 & -1005.96 \tabularnewline
85 & 5726.3 & 5440.72 & 5375.67 & 65.055 & 285.578 \tabularnewline
86 & 5378.7 & 5248.76 & 5422.42 & -173.658 & 129.937 \tabularnewline
87 & 5776.1 & 5633.59 & 5461.1 & 172.49 & 142.506 \tabularnewline
88 & 5626.3 & 5410.25 & 5487.47 & -77.2149 & 216.048 \tabularnewline
89 & 5755.2 & 5565.19 & 5516.92 & 48.2698 & 190.014 \tabularnewline
90 & 5540.9 & 5487.09 & 5589.98 & -102.887 & 53.8075 \tabularnewline
91 & 5560.8 & 5633.46 & 5633.63 & -0.168897 & -72.6644 \tabularnewline
92 & 5742.6 & 5637.91 & 5609.4 & 28.5065 & 104.693 \tabularnewline
93 & 5592.9 & 5543.25 & 5595.49 & -52.2364 & 49.6489 \tabularnewline
94 & 5782.6 & 5692.31 & 5588.45 & 103.86 & 90.2939 \tabularnewline
95 & 5611.5 & 5574.45 & 5578.72 & -4.2714 & 37.0506 \tabularnewline
96 & 5653.5 & 5571 & 5578.75 & -7.74598 & 82.5001 \tabularnewline
97 & 5438.7 & 5651.22 & 5586.17 & 65.055 & -212.522 \tabularnewline
98 & 5084.7 & 5415.75 & 5589.41 & -173.658 & -331.051 \tabularnewline
99 & 5736.2 & 5761.77 & 5589.28 & 172.49 & -25.5693 \tabularnewline
100 & 5497.2 & 5518.82 & 5596.04 & -77.2149 & -21.6226 \tabularnewline
101 & 5650.9 & 5660.64 & 5612.37 & 48.2698 & -9.73647 \tabularnewline
102 & 5645.8 & 5523.93 & 5626.82 & -102.887 & 121.866 \tabularnewline
103 & 5634 & 5659.28 & 5659.45 & -0.168897 & -25.2811 \tabularnewline
104 & 5747.2 & 5745.09 & 5716.58 & 28.5065 & 2.11431 \tabularnewline
105 & 5585.2 & 5712.87 & 5765.1 & -52.2364 & -127.668 \tabularnewline
106 & 5952.5 & 5902.47 & 5798.61 & 103.86 & 50.0314 \tabularnewline
107 & 5833.5 & 5827.59 & 5831.86 & -4.2714 & 5.9089 \tabularnewline
108 & 5778.4 & 5847.35 & 5855.1 & -7.74598 & -68.954 \tabularnewline
109 & 6096.9 & 5950.41 & 5885.35 & 65.055 & 146.491 \tabularnewline
110 & 5797.6 & 5752.42 & 5926.08 & -173.658 & 45.1783 \tabularnewline
111 & 6187.9 & 6127.65 & 5955.16 & 172.49 & 60.2515 \tabularnewline
112 & 5849.6 & 5897.29 & 5974.5 & -77.2149 & -47.6893 \tabularnewline
113 & 6096.6 & 6030.4 & 5982.13 & 48.2698 & 66.1969 \tabularnewline
114 & 5757.8 & 5897.68 & 6000.57 & -102.887 & -139.88 \tabularnewline
115 & 6248.1 & 6031.69 & 6031.86 & -0.168897 & 216.411 \tabularnewline
116 & 6110.5 & 6095.64 & 6067.14 & 28.5065 & 14.856 \tabularnewline
117 & 5919.8 & 6059.02 & 6111.26 & -52.2364 & -139.222 \tabularnewline
118 & 6082.2 & 6274.4 & 6170.54 & 103.86 & -192.198 \tabularnewline
119 & 5886.9 & 6198.32 & 6202.59 & -4.2714 & -311.416 \tabularnewline
120 & 6167.4 & 6192.9 & 6200.65 & -7.74598 & -25.4999 \tabularnewline
121 & 6458.9 & NA & NA & 65.055 & NA \tabularnewline
122 & 6282.3 & NA & NA & -173.658 & NA \tabularnewline
123 & 6762.1 & NA & NA & 172.49 & NA \tabularnewline
124 & 6698.1 & NA & NA & -77.2149 & NA \tabularnewline
125 & 6017.3 & NA & NA & 48.2698 & NA \tabularnewline
126 & 5790.5 & NA & NA & -102.887 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299297&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]3606.1[/C][C]NA[/C][C]NA[/C][C]65.055[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]3102.8[/C][C]NA[/C][C]NA[/C][C]-173.658[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]3602.5[/C][C]NA[/C][C]NA[/C][C]172.49[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]3247.3[/C][C]NA[/C][C]NA[/C][C]-77.2149[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]3467.7[/C][C]NA[/C][C]NA[/C][C]48.2698[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]3330.2[/C][C]NA[/C][C]NA[/C][C]-102.887[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]3367.1[/C][C]3570.33[/C][C]3570.5[/C][C]-0.168897[/C][C]-203.227[/C][/ROW]
[ROW][C]8[/C][C]3579.2[/C][C]3645.07[/C][C]3616.56[/C][C]28.5065[/C][C]-65.869[/C][/ROW]
[ROW][C]9[/C][C]3303.8[/C][C]3616.16[/C][C]3668.4[/C][C]-52.2364[/C][C]-312.364[/C][/ROW]
[ROW][C]10[/C][C]3513.1[/C][C]3815.71[/C][C]3711.85[/C][C]103.86[/C][C]-302.614[/C][/ROW]
[ROW][C]11[/C][C]3892.7[/C][C]3758.45[/C][C]3762.72[/C][C]-4.2714[/C][C]134.251[/C][/ROW]
[ROW][C]12[/C][C]4698.2[/C][C]3791.08[/C][C]3798.83[/C][C]-7.74598[/C][C]907.117[/C][/ROW]
[ROW][C]13[/C][C]3876.6[/C][C]3893.08[/C][C]3828.02[/C][C]65.055[/C][C]-16.4758[/C][/ROW]
[ROW][C]14[/C][C]3937.9[/C][C]3672.9[/C][C]3846.56[/C][C]-173.658[/C][C]264.999[/C][/ROW]
[ROW][C]15[/C][C]4011.5[/C][C]4053.67[/C][C]3881.18[/C][C]172.49[/C][C]-42.1735[/C][/ROW]
[ROW][C]16[/C][C]3881.2[/C][C]3874.49[/C][C]3951.7[/C][C]-77.2149[/C][C]6.71492[/C][/ROW]
[ROW][C]17[/C][C]4054.6[/C][C]4058.08[/C][C]4009.81[/C][C]48.2698[/C][C]-3.48231[/C][/ROW]
[ROW][C]18[/C][C]3609.9[/C][C]3909.46[/C][C]4012.35[/C][C]-102.887[/C][C]-299.563[/C][/ROW]
[ROW][C]19[/C][C]3788[/C][C]4000.91[/C][C]4001.08[/C][C]-0.168897[/C][C]-212.91[/C][/ROW]
[ROW][C]20[/C][C]3603.2[/C][C]4034.11[/C][C]4005.61[/C][C]28.5065[/C][C]-430.915[/C][/ROW]
[ROW][C]21[/C][C]4110.8[/C][C]3956.9[/C][C]4009.14[/C][C]-52.2364[/C][C]153.899[/C][/ROW]
[ROW][C]22[/C][C]4398.5[/C][C]4126.19[/C][C]4022.32[/C][C]103.86[/C][C]272.315[/C][/ROW]
[ROW][C]23[/C][C]4402[/C][C]4031.73[/C][C]4036[/C][C]-4.2714[/C][C]370.271[/C][/ROW]
[ROW][C]24[/C][C]4249.8[/C][C]4054.66[/C][C]4062.4[/C][C]-7.74598[/C][C]195.142[/C][/ROW]
[ROW][C]25[/C][C]4054.5[/C][C]4161.18[/C][C]4096.13[/C][C]65.055[/C][C]-106.684[/C][/ROW]
[ROW][C]26[/C][C]3868.7[/C][C]3958.61[/C][C]4132.27[/C][C]-173.658[/C][C]-89.9133[/C][/ROW]
[ROW][C]27[/C][C]4165.4[/C][C]4328.79[/C][C]4156.3[/C][C]172.49[/C][C]-163.394[/C][/ROW]
[ROW][C]28[/C][C]4043.8[/C][C]4072.65[/C][C]4149.87[/C][C]-77.2149[/C][C]-28.8518[/C][/ROW]
[ROW][C]29[/C][C]4220.2[/C][C]4171.16[/C][C]4122.89[/C][C]48.2698[/C][C]49.0385[/C][/ROW]
[ROW][C]30[/C][C]4078[/C][C]3989.62[/C][C]4092.51[/C][C]-102.887[/C][C]88.3783[/C][/ROW]
[ROW][C]31[/C][C]4129.3[/C][C]4081.41[/C][C]4081.58[/C][C]-0.168897[/C][C]47.8856[/C][/ROW]
[ROW][C]32[/C][C]4129.3[/C][C]4109.28[/C][C]4080.78[/C][C]28.5065[/C][C]20.0185[/C][/ROW]
[ROW][C]33[/C][C]4161.5[/C][C]4026.47[/C][C]4078.71[/C][C]-52.2364[/C][C]135.028[/C][/ROW]
[ROW][C]34[/C][C]4193.3[/C][C]4176.61[/C][C]4072.75[/C][C]103.86[/C][C]16.6897[/C][/ROW]
[ROW][C]35[/C][C]3959.8[/C][C]4049.73[/C][C]4054[/C][C]-4.2714[/C][C]-89.9286[/C][/ROW]
[ROW][C]36[/C][C]3962.8[/C][C]4033.18[/C][C]4040.93[/C][C]-7.74598[/C][C]-70.3832[/C][/ROW]
[ROW][C]37[/C][C]4079.3[/C][C]4104.68[/C][C]4039.63[/C][C]65.055[/C][C]-25.3842[/C][/ROW]
[ROW][C]38[/C][C]3824.5[/C][C]3868.24[/C][C]4041.9[/C][C]-173.658[/C][C]-43.7425[/C][/ROW]
[ROW][C]39[/C][C]4160[/C][C]4211.69[/C][C]4039.2[/C][C]172.49[/C][C]-51.686[/C][/ROW]
[ROW][C]40[/C][C]3906.2[/C][C]3951.39[/C][C]4028.6[/C][C]-77.2149[/C][C]-45.1893[/C][/ROW]
[ROW][C]41[/C][C]3907.8[/C][C]4070.51[/C][C]4022.24[/C][C]48.2698[/C][C]-162.707[/C][/ROW]
[ROW][C]42[/C][C]4076.7[/C][C]3918.59[/C][C]4021.48[/C][C]-102.887[/C][C]158.108[/C][/ROW]
[ROW][C]43[/C][C]4099.4[/C][C]4033.12[/C][C]4033.29[/C][C]-0.168897[/C][C]66.2814[/C][/ROW]
[ROW][C]44[/C][C]4213.7[/C][C]4086.3[/C][C]4057.8[/C][C]28.5065[/C][C]127.398[/C][/ROW]
[ROW][C]45[/C][C]4012.2[/C][C]4035.36[/C][C]4087.6[/C][C]-52.2364[/C][C]-23.1636[/C][/ROW]
[ROW][C]46[/C][C]4088.4[/C][C]4232.71[/C][C]4128.85[/C][C]103.86[/C][C]-144.31[/C][/ROW]
[ROW][C]47[/C][C]3911.9[/C][C]4181.35[/C][C]4185.62[/C][C]-4.2714[/C][C]-269.449[/C][/ROW]
[ROW][C]48[/C][C]3992.5[/C][C]4222.5[/C][C]4230.24[/C][C]-7.74598[/C][C]-229.996[/C][/ROW]
[ROW][C]49[/C][C]4333[/C][C]4342.57[/C][C]4277.52[/C][C]65.055[/C][C]-9.57166[/C][/ROW]
[ROW][C]50[/C][C]4159[/C][C]4170.65[/C][C]4344.31[/C][C]-173.658[/C][C]-11.6508[/C][/ROW]
[ROW][C]51[/C][C]4540.8[/C][C]4581.68[/C][C]4409.19[/C][C]172.49[/C][C]-40.8818[/C][/ROW]
[ROW][C]52[/C][C]4515.4[/C][C]4397.49[/C][C]4474.7[/C][C]-77.2149[/C][C]117.911[/C][/ROW]
[ROW][C]53[/C][C]4661.1[/C][C]4595.05[/C][C]4546.78[/C][C]48.2698[/C][C]66.051[/C][/ROW]
[ROW][C]54[/C][C]4394.3[/C][C]4523.7[/C][C]4626.59[/C][C]-102.887[/C][C]-129.401[/C][/ROW]
[ROW][C]55[/C][C]4916.4[/C][C]4713.76[/C][C]4713.92[/C][C]-0.168897[/C][C]202.644[/C][/ROW]
[ROW][C]56[/C][C]4999.7[/C][C]4833.28[/C][C]4804.77[/C][C]28.5065[/C][C]166.423[/C][/ROW]
[ROW][C]57[/C][C]4783.4[/C][C]4844.22[/C][C]4896.45[/C][C]-52.2364[/C][C]-60.8178[/C][/ROW]
[ROW][C]58[/C][C]4889.5[/C][C]5072.95[/C][C]4969.09[/C][C]103.86[/C][C]-183.448[/C][/ROW]
[ROW][C]59[/C][C]4840.6[/C][C]5019.42[/C][C]5023.7[/C][C]-4.2714[/C][C]-178.824[/C][/ROW]
[ROW][C]60[/C][C]4979.2[/C][C]5085.37[/C][C]5093.12[/C][C]-7.74598[/C][C]-106.171[/C][/ROW]
[ROW][C]61[/C][C]5442.4[/C][C]5218.23[/C][C]5153.18[/C][C]65.055[/C][C]224.166[/C][/ROW]
[ROW][C]62[/C][C]5229.9[/C][C]5016.26[/C][C]5189.92[/C][C]-173.658[/C][C]213.637[/C][/ROW]
[ROW][C]63[/C][C]5670.3[/C][C]5406.47[/C][C]5233.97[/C][C]172.49[/C][C]263.835[/C][/ROW]
[ROW][C]64[/C][C]5129.1[/C][C]5213.02[/C][C]5290.23[/C][C]-77.2149[/C][C]-83.9184[/C][/ROW]
[ROW][C]65[/C][C]5358[/C][C]5400.35[/C][C]5352.08[/C][C]48.2698[/C][C]-42.349[/C][/ROW]
[ROW][C]66[/C][C]5363.5[/C][C]5304.67[/C][C]5407.55[/C][C]-102.887[/C][C]58.8325[/C][/ROW]
[ROW][C]67[/C][C]5388.7[/C][C]5410.54[/C][C]5410.71[/C][C]-0.168897[/C][C]-21.8436[/C][/ROW]
[ROW][C]68[/C][C]5409.2[/C][C]5402.09[/C][C]5373.58[/C][C]28.5065[/C][C]7.11015[/C][/ROW]
[ROW][C]69[/C][C]5431.2[/C][C]5283.32[/C][C]5335.56[/C][C]-52.2364[/C][C]147.878[/C][/ROW]
[ROW][C]70[/C][C]5591.9[/C][C]5411.04[/C][C]5307.18[/C][C]103.86[/C][C]180.861[/C][/ROW]
[ROW][C]71[/C][C]5622.5[/C][C]5280.54[/C][C]5284.81[/C][C]-4.2714[/C][C]341.959[/C][/ROW]
[ROW][C]72[/C][C]5528.7[/C][C]5248.49[/C][C]5256.23[/C][C]-7.74598[/C][C]280.213[/C][/ROW]
[ROW][C]73[/C][C]4968.7[/C][C]5292.09[/C][C]5227.04[/C][C]65.055[/C][C]-323.392[/C][/ROW]
[ROW][C]74[/C][C]4812.5[/C][C]5027.69[/C][C]5201.35[/C][C]-173.658[/C][C]-215.188[/C][/ROW]
[ROW][C]75[/C][C]5175.1[/C][C]5355.78[/C][C]5183.29[/C][C]172.49[/C][C]-180.682[/C][/ROW]
[ROW][C]76[/C][C]4943.2[/C][C]5094.4[/C][C]5171.61[/C][C]-77.2149[/C][C]-151.198[/C][/ROW]
[ROW][C]77[/C][C]5007.1[/C][C]5197.92[/C][C]5149.65[/C][C]48.2698[/C][C]-190.82[/C][/ROW]
[ROW][C]78[/C][C]5028.5[/C][C]4978.44[/C][C]5081.33[/C][C]-102.887[/C][C]50.0575[/C][/ROW]
[ROW][C]79[/C][C]5023[/C][C]5062.29[/C][C]5062.46[/C][C]-0.168897[/C][C]-39.2894[/C][/ROW]
[ROW][C]80[/C][C]5158.3[/C][C]5146.12[/C][C]5117.62[/C][C]28.5065[/C][C]12.1768[/C][/ROW]
[ROW][C]81[/C][C]5248.8[/C][C]5114.01[/C][C]5166.25[/C][C]-52.2364[/C][C]134.786[/C][/ROW]
[ROW][C]82[/C][C]5494[/C][C]5323.61[/C][C]5219.75[/C][C]103.86[/C][C]170.386[/C][/ROW]
[ROW][C]83[/C][C]5193.3[/C][C]5275.12[/C][C]5279.39[/C][C]-4.2714[/C][C]-81.8161[/C][/ROW]
[ROW][C]84[/C][C]4318.2[/C][C]5324.16[/C][C]5331.91[/C][C]-7.74598[/C][C]-1005.96[/C][/ROW]
[ROW][C]85[/C][C]5726.3[/C][C]5440.72[/C][C]5375.67[/C][C]65.055[/C][C]285.578[/C][/ROW]
[ROW][C]86[/C][C]5378.7[/C][C]5248.76[/C][C]5422.42[/C][C]-173.658[/C][C]129.937[/C][/ROW]
[ROW][C]87[/C][C]5776.1[/C][C]5633.59[/C][C]5461.1[/C][C]172.49[/C][C]142.506[/C][/ROW]
[ROW][C]88[/C][C]5626.3[/C][C]5410.25[/C][C]5487.47[/C][C]-77.2149[/C][C]216.048[/C][/ROW]
[ROW][C]89[/C][C]5755.2[/C][C]5565.19[/C][C]5516.92[/C][C]48.2698[/C][C]190.014[/C][/ROW]
[ROW][C]90[/C][C]5540.9[/C][C]5487.09[/C][C]5589.98[/C][C]-102.887[/C][C]53.8075[/C][/ROW]
[ROW][C]91[/C][C]5560.8[/C][C]5633.46[/C][C]5633.63[/C][C]-0.168897[/C][C]-72.6644[/C][/ROW]
[ROW][C]92[/C][C]5742.6[/C][C]5637.91[/C][C]5609.4[/C][C]28.5065[/C][C]104.693[/C][/ROW]
[ROW][C]93[/C][C]5592.9[/C][C]5543.25[/C][C]5595.49[/C][C]-52.2364[/C][C]49.6489[/C][/ROW]
[ROW][C]94[/C][C]5782.6[/C][C]5692.31[/C][C]5588.45[/C][C]103.86[/C][C]90.2939[/C][/ROW]
[ROW][C]95[/C][C]5611.5[/C][C]5574.45[/C][C]5578.72[/C][C]-4.2714[/C][C]37.0506[/C][/ROW]
[ROW][C]96[/C][C]5653.5[/C][C]5571[/C][C]5578.75[/C][C]-7.74598[/C][C]82.5001[/C][/ROW]
[ROW][C]97[/C][C]5438.7[/C][C]5651.22[/C][C]5586.17[/C][C]65.055[/C][C]-212.522[/C][/ROW]
[ROW][C]98[/C][C]5084.7[/C][C]5415.75[/C][C]5589.41[/C][C]-173.658[/C][C]-331.051[/C][/ROW]
[ROW][C]99[/C][C]5736.2[/C][C]5761.77[/C][C]5589.28[/C][C]172.49[/C][C]-25.5693[/C][/ROW]
[ROW][C]100[/C][C]5497.2[/C][C]5518.82[/C][C]5596.04[/C][C]-77.2149[/C][C]-21.6226[/C][/ROW]
[ROW][C]101[/C][C]5650.9[/C][C]5660.64[/C][C]5612.37[/C][C]48.2698[/C][C]-9.73647[/C][/ROW]
[ROW][C]102[/C][C]5645.8[/C][C]5523.93[/C][C]5626.82[/C][C]-102.887[/C][C]121.866[/C][/ROW]
[ROW][C]103[/C][C]5634[/C][C]5659.28[/C][C]5659.45[/C][C]-0.168897[/C][C]-25.2811[/C][/ROW]
[ROW][C]104[/C][C]5747.2[/C][C]5745.09[/C][C]5716.58[/C][C]28.5065[/C][C]2.11431[/C][/ROW]
[ROW][C]105[/C][C]5585.2[/C][C]5712.87[/C][C]5765.1[/C][C]-52.2364[/C][C]-127.668[/C][/ROW]
[ROW][C]106[/C][C]5952.5[/C][C]5902.47[/C][C]5798.61[/C][C]103.86[/C][C]50.0314[/C][/ROW]
[ROW][C]107[/C][C]5833.5[/C][C]5827.59[/C][C]5831.86[/C][C]-4.2714[/C][C]5.9089[/C][/ROW]
[ROW][C]108[/C][C]5778.4[/C][C]5847.35[/C][C]5855.1[/C][C]-7.74598[/C][C]-68.954[/C][/ROW]
[ROW][C]109[/C][C]6096.9[/C][C]5950.41[/C][C]5885.35[/C][C]65.055[/C][C]146.491[/C][/ROW]
[ROW][C]110[/C][C]5797.6[/C][C]5752.42[/C][C]5926.08[/C][C]-173.658[/C][C]45.1783[/C][/ROW]
[ROW][C]111[/C][C]6187.9[/C][C]6127.65[/C][C]5955.16[/C][C]172.49[/C][C]60.2515[/C][/ROW]
[ROW][C]112[/C][C]5849.6[/C][C]5897.29[/C][C]5974.5[/C][C]-77.2149[/C][C]-47.6893[/C][/ROW]
[ROW][C]113[/C][C]6096.6[/C][C]6030.4[/C][C]5982.13[/C][C]48.2698[/C][C]66.1969[/C][/ROW]
[ROW][C]114[/C][C]5757.8[/C][C]5897.68[/C][C]6000.57[/C][C]-102.887[/C][C]-139.88[/C][/ROW]
[ROW][C]115[/C][C]6248.1[/C][C]6031.69[/C][C]6031.86[/C][C]-0.168897[/C][C]216.411[/C][/ROW]
[ROW][C]116[/C][C]6110.5[/C][C]6095.64[/C][C]6067.14[/C][C]28.5065[/C][C]14.856[/C][/ROW]
[ROW][C]117[/C][C]5919.8[/C][C]6059.02[/C][C]6111.26[/C][C]-52.2364[/C][C]-139.222[/C][/ROW]
[ROW][C]118[/C][C]6082.2[/C][C]6274.4[/C][C]6170.54[/C][C]103.86[/C][C]-192.198[/C][/ROW]
[ROW][C]119[/C][C]5886.9[/C][C]6198.32[/C][C]6202.59[/C][C]-4.2714[/C][C]-311.416[/C][/ROW]
[ROW][C]120[/C][C]6167.4[/C][C]6192.9[/C][C]6200.65[/C][C]-7.74598[/C][C]-25.4999[/C][/ROW]
[ROW][C]121[/C][C]6458.9[/C][C]NA[/C][C]NA[/C][C]65.055[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]6282.3[/C][C]NA[/C][C]NA[/C][C]-173.658[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]6762.1[/C][C]NA[/C][C]NA[/C][C]172.49[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]6698.1[/C][C]NA[/C][C]NA[/C][C]-77.2149[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]6017.3[/C][C]NA[/C][C]NA[/C][C]48.2698[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]5790.5[/C][C]NA[/C][C]NA[/C][C]-102.887[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299297&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299297&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
13606.1NANA65.055NA
23102.8NANA-173.658NA
33602.5NANA172.49NA
43247.3NANA-77.2149NA
53467.7NANA48.2698NA
63330.2NANA-102.887NA
73367.13570.333570.5-0.168897-203.227
83579.23645.073616.5628.5065-65.869
93303.83616.163668.4-52.2364-312.364
103513.13815.713711.85103.86-302.614
113892.73758.453762.72-4.2714134.251
124698.23791.083798.83-7.74598907.117
133876.63893.083828.0265.055-16.4758
143937.93672.93846.56-173.658264.999
154011.54053.673881.18172.49-42.1735
163881.23874.493951.7-77.21496.71492
174054.64058.084009.8148.2698-3.48231
183609.93909.464012.35-102.887-299.563
1937884000.914001.08-0.168897-212.91
203603.24034.114005.6128.5065-430.915
214110.83956.94009.14-52.2364153.899
224398.54126.194022.32103.86272.315
2344024031.734036-4.2714370.271
244249.84054.664062.4-7.74598195.142
254054.54161.184096.1365.055-106.684
263868.73958.614132.27-173.658-89.9133
274165.44328.794156.3172.49-163.394
284043.84072.654149.87-77.2149-28.8518
294220.24171.164122.8948.269849.0385
3040783989.624092.51-102.88788.3783
314129.34081.414081.58-0.16889747.8856
324129.34109.284080.7828.506520.0185
334161.54026.474078.71-52.2364135.028
344193.34176.614072.75103.8616.6897
353959.84049.734054-4.2714-89.9286
363962.84033.184040.93-7.74598-70.3832
374079.34104.684039.6365.055-25.3842
383824.53868.244041.9-173.658-43.7425
3941604211.694039.2172.49-51.686
403906.23951.394028.6-77.2149-45.1893
413907.84070.514022.2448.2698-162.707
424076.73918.594021.48-102.887158.108
434099.44033.124033.29-0.16889766.2814
444213.74086.34057.828.5065127.398
454012.24035.364087.6-52.2364-23.1636
464088.44232.714128.85103.86-144.31
473911.94181.354185.62-4.2714-269.449
483992.54222.54230.24-7.74598-229.996
4943334342.574277.5265.055-9.57166
5041594170.654344.31-173.658-11.6508
514540.84581.684409.19172.49-40.8818
524515.44397.494474.7-77.2149117.911
534661.14595.054546.7848.269866.051
544394.34523.74626.59-102.887-129.401
554916.44713.764713.92-0.168897202.644
564999.74833.284804.7728.5065166.423
574783.44844.224896.45-52.2364-60.8178
584889.55072.954969.09103.86-183.448
594840.65019.425023.7-4.2714-178.824
604979.25085.375093.12-7.74598-106.171
615442.45218.235153.1865.055224.166
625229.95016.265189.92-173.658213.637
635670.35406.475233.97172.49263.835
645129.15213.025290.23-77.2149-83.9184
6553585400.355352.0848.2698-42.349
665363.55304.675407.55-102.88758.8325
675388.75410.545410.71-0.168897-21.8436
685409.25402.095373.5828.50657.11015
695431.25283.325335.56-52.2364147.878
705591.95411.045307.18103.86180.861
715622.55280.545284.81-4.2714341.959
725528.75248.495256.23-7.74598280.213
734968.75292.095227.0465.055-323.392
744812.55027.695201.35-173.658-215.188
755175.15355.785183.29172.49-180.682
764943.25094.45171.61-77.2149-151.198
775007.15197.925149.6548.2698-190.82
785028.54978.445081.33-102.88750.0575
7950235062.295062.46-0.168897-39.2894
805158.35146.125117.6228.506512.1768
815248.85114.015166.25-52.2364134.786
8254945323.615219.75103.86170.386
835193.35275.125279.39-4.2714-81.8161
844318.25324.165331.91-7.74598-1005.96
855726.35440.725375.6765.055285.578
865378.75248.765422.42-173.658129.937
875776.15633.595461.1172.49142.506
885626.35410.255487.47-77.2149216.048
895755.25565.195516.9248.2698190.014
905540.95487.095589.98-102.88753.8075
915560.85633.465633.63-0.168897-72.6644
925742.65637.915609.428.5065104.693
935592.95543.255595.49-52.236449.6489
945782.65692.315588.45103.8690.2939
955611.55574.455578.72-4.271437.0506
965653.555715578.75-7.7459882.5001
975438.75651.225586.1765.055-212.522
985084.75415.755589.41-173.658-331.051
995736.25761.775589.28172.49-25.5693
1005497.25518.825596.04-77.2149-21.6226
1015650.95660.645612.3748.2698-9.73647
1025645.85523.935626.82-102.887121.866
10356345659.285659.45-0.168897-25.2811
1045747.25745.095716.5828.50652.11431
1055585.25712.875765.1-52.2364-127.668
1065952.55902.475798.61103.8650.0314
1075833.55827.595831.86-4.27145.9089
1085778.45847.355855.1-7.74598-68.954
1096096.95950.415885.3565.055146.491
1105797.65752.425926.08-173.65845.1783
1116187.96127.655955.16172.4960.2515
1125849.65897.295974.5-77.2149-47.6893
1136096.66030.45982.1348.269866.1969
1145757.85897.686000.57-102.887-139.88
1156248.16031.696031.86-0.168897216.411
1166110.56095.646067.1428.506514.856
1175919.86059.026111.26-52.2364-139.222
1186082.26274.46170.54103.86-192.198
1195886.96198.326202.59-4.2714-311.416
1206167.46192.96200.65-7.74598-25.4999
1216458.9NANA65.055NA
1226282.3NANA-173.658NA
1236762.1NANA172.49NA
1246698.1NANA-77.2149NA
1256017.3NANA48.2698NA
1265790.5NANA-102.887NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- '12'
par1 <- 'additive'
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')