Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_exponentialsmoothing.wasp
Title produced by softwareExponential Smoothing
Date of computationWed, 14 Dec 2016 11:30:46 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481711485vyffz2wi611xvo6.htm/, Retrieved Fri, 01 Nov 2024 03:31:03 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299285, Retrieved Fri, 01 Nov 2024 03:31:03 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact162
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Exponential Smoothing] [] [2016-12-14 10:30:46] [a2f828619121b6920d6a86ccf58b51c4] [Current]
Feedback Forum

Post a new message
Dataseries X:
4250
4400
4350
4500
4550
4500
4050
2250
4450
4650
4700
4350
4450
4500
4400
4350
4350
4450
3850
2400
4350
4350
4300
4150
4100
4400
4250
4300
4200
4300
3900
2250
4300
4500
4400
4250
4300
4350
4450
3700
4300
4500
3750
2500
4400
4500
4500
4400
4450
4650
4750
4700
2900
3600
4050
2600
4600
5000
5100
4850
4950
4950
4950
5050
5250
5200
4150
2750
5000
5150
5350
5150
5400
5600
5400
5450
5500
5200
4350
2700
5100
5200
5300
4850
5200
5250
5250
5100
4950
4750
4000
2900
5050
5250
5100
4950
5050
5150
5200
5250
5350
5200
4100
3100
5200
5300
5400
5200
5350
5600
5600
5500
5600
5700
4400
3250
5400
5600
5800
5500
6000
6200
6050
5950
6300
5800




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299285&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299285&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299285&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.312620454973073
beta0.0195496284057161
gamma0.162557985903032

\begin{tabular}{lllllllll}
\hline
Estimated Parameters of Exponential Smoothing \tabularnewline
Parameter & Value \tabularnewline
alpha & 0.312620454973073 \tabularnewline
beta & 0.0195496284057161 \tabularnewline
gamma & 0.162557985903032 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299285&T=1

[TABLE]
[ROW][C]Estimated Parameters of Exponential Smoothing[/C][/ROW]
[ROW][C]Parameter[/C][C]Value[/C][/ROW]
[ROW][C]alpha[/C][C]0.312620454973073[/C][/ROW]
[ROW][C]beta[/C][C]0.0195496284057161[/C][/ROW]
[ROW][C]gamma[/C][C]0.162557985903032[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299285&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299285&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Estimated Parameters of Exponential Smoothing
ParameterValue
alpha0.312620454973073
beta0.0195496284057161
gamma0.162557985903032







Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
1344504491.42628205128-41.4262820512849
1445004522.01610376824-22.0161037682437
1544004404.37272366249-4.37272366248726
1643504360.9683006747-10.9683006746982
1743504377.93493138358-27.9349313835783
1844504485.26005210412-35.2600521041222
1938503973.41302776716-123.413027767163
2024002112.4199939833287.580006016699
2143504387.91936732402-37.9193673240243
2243504571.84589661834-221.845896618339
2343004557.33406088272-257.334060882717
2441504125.9885060430924.0114939569112
2541004228.11514278334-128.115142783344
2644004230.36536486726169.63463513274
2742504172.3709123670877.6290876329176
2843004152.12964508204147.870354917957
2942004216.09210969875-16.092109698754
3043004325.60887161945-25.6088716194527
3139003806.2956944375293.7043055624827
3222502059.79570129276190.204298707242
3343004268.5810847046331.4189152953732
3445004454.1548091415345.8451908584657
3544004521.52169674792-121.521696747917
3642504167.059605301882.9403946982038
3743004273.9587486859726.0412513140318
3843504361.96244021573-11.962440215726
3944504240.09731989547209.90268010453
4037004273.0454832874-573.045483287399
4143004092.89725259867207.102747401335
4245004272.07332876266227.926671237339
4337503847.84942910934-97.849429109338
4425002053.57487545864446.425124541357
4544004327.609766441172.3902335589019
4645004530.74650384929-30.7465038492901
4745004558.14231045978-58.1423104597834
4844004249.40212244675150.597877553249
4944504374.5698341530675.4301658469385
5046504477.54417137698172.455828623022
5147504443.02721825632306.972781743678
5247004424.33311397772275.666886022282
5329004607.36724721482-1707.36724721482
5436004189.35169358506-589.351693585058
5540503467.21706894182582.782931058175
5626001944.68770468039655.312295319613
5746004241.65621639914358.34378360086
5850004523.83663683239476.163363167613
5951004710.91284658248389.087153417523
6048504572.31464868108277.68535131892
6149504736.59453087303213.405469126974
6249504902.1687699496147.8312300503858
6349504851.5852010623998.4147989376052
6450504770.7816774107279.218322589297
6552504739.95361081896510.04638918104
6652005160.2347387441539.765261255855
6741504789.75489699002-639.754896990023
6827502909.67464596067-159.674645960666
6950004930.2327933087469.7672066912601
7051505145.153849211684.84615078831757
7153505182.06686743508167.933132564915
7251504967.44188261002182.558117389977
7354005099.7775062655300.222493734498
7456005279.49904218084320.50095781916
7554005326.9838435415673.0161564584359
7654505265.46184592956184.538154070436
7755005237.26752869213262.732471307866
7852005532.61322227131-332.613222271313
7943504972.44420409911-622.44420409911
8027003154.17801056113-454.178010561132
8151005109.26477945908-9.26477945908391
8252005292.70037714294-92.7003771429418
8353005317.22114393658-17.2211439365801
8448505045.09534186367-195.095341863673
8552005068.95641622443131.043583775573
8652505193.4610473483356.5389526516738
8752505124.56496702951125.435032970488
8851005086.0046598954913.9953401045104
8949505006.30335339088-56.303353390882
9047505126.50957096969-376.509570969687
9140004511.08494632134-511.084946321336
9229002737.96714544174162.032854558263
9350504930.70756180533119.292438194665
9452505141.09480592104108.905194078963
9551005234.3927538045-134.392753804505
9649504902.3622900604647.6377099395413
9750505036.6336922274213.3663077725751
9851505113.3902882789236.6097117210811
9952005043.20586528985156.794134710153
10052504999.43211006087250.56788993913
10153504984.71417255782365.285827442181
10252005202.39590729512-2.3959072951202
10341004692.63363129693-592.633631296934
10431002972.48126985178127.518730148216
10552005152.6908484215147.3091515784936
10653005342.00880639086-42.0088063908634
10754005362.6145672366537.385432763348
10852005107.3477227292.6522772800017
10953505254.8595938113595.1404061886487
11056005363.27486071756236.725139282438
11156005373.80015279717226.199847202833
11255005367.34666043476132.65333956524
11356005333.00847451401266.991525485987
11457005482.7000414491217.299958550895
11544004980.83233351517-580.832333515173
11632503350.07629347587-100.076293475867
11754005454.01936332395-54.0193633239542
11856005604.90726371453-4.90726371452911
11958005649.43752285776150.562477142244
12055005439.8736571919260.1263428080802
12160005581.44254692881418.557453071186
12262005812.70900955791387.290990442093
12360505875.9722508996174.027749100399
12459505849.28111168937100.718888310629
12563005826.30042586589473.699574134107
12658006042.65403265807-242.65403265807

\begin{tabular}{lllllllll}
\hline
Interpolation Forecasts of Exponential Smoothing \tabularnewline
t & Observed & Fitted & Residuals \tabularnewline
13 & 4450 & 4491.42628205128 & -41.4262820512849 \tabularnewline
14 & 4500 & 4522.01610376824 & -22.0161037682437 \tabularnewline
15 & 4400 & 4404.37272366249 & -4.37272366248726 \tabularnewline
16 & 4350 & 4360.9683006747 & -10.9683006746982 \tabularnewline
17 & 4350 & 4377.93493138358 & -27.9349313835783 \tabularnewline
18 & 4450 & 4485.26005210412 & -35.2600521041222 \tabularnewline
19 & 3850 & 3973.41302776716 & -123.413027767163 \tabularnewline
20 & 2400 & 2112.4199939833 & 287.580006016699 \tabularnewline
21 & 4350 & 4387.91936732402 & -37.9193673240243 \tabularnewline
22 & 4350 & 4571.84589661834 & -221.845896618339 \tabularnewline
23 & 4300 & 4557.33406088272 & -257.334060882717 \tabularnewline
24 & 4150 & 4125.98850604309 & 24.0114939569112 \tabularnewline
25 & 4100 & 4228.11514278334 & -128.115142783344 \tabularnewline
26 & 4400 & 4230.36536486726 & 169.63463513274 \tabularnewline
27 & 4250 & 4172.37091236708 & 77.6290876329176 \tabularnewline
28 & 4300 & 4152.12964508204 & 147.870354917957 \tabularnewline
29 & 4200 & 4216.09210969875 & -16.092109698754 \tabularnewline
30 & 4300 & 4325.60887161945 & -25.6088716194527 \tabularnewline
31 & 3900 & 3806.29569443752 & 93.7043055624827 \tabularnewline
32 & 2250 & 2059.79570129276 & 190.204298707242 \tabularnewline
33 & 4300 & 4268.58108470463 & 31.4189152953732 \tabularnewline
34 & 4500 & 4454.15480914153 & 45.8451908584657 \tabularnewline
35 & 4400 & 4521.52169674792 & -121.521696747917 \tabularnewline
36 & 4250 & 4167.0596053018 & 82.9403946982038 \tabularnewline
37 & 4300 & 4273.95874868597 & 26.0412513140318 \tabularnewline
38 & 4350 & 4361.96244021573 & -11.962440215726 \tabularnewline
39 & 4450 & 4240.09731989547 & 209.90268010453 \tabularnewline
40 & 3700 & 4273.0454832874 & -573.045483287399 \tabularnewline
41 & 4300 & 4092.89725259867 & 207.102747401335 \tabularnewline
42 & 4500 & 4272.07332876266 & 227.926671237339 \tabularnewline
43 & 3750 & 3847.84942910934 & -97.849429109338 \tabularnewline
44 & 2500 & 2053.57487545864 & 446.425124541357 \tabularnewline
45 & 4400 & 4327.6097664411 & 72.3902335589019 \tabularnewline
46 & 4500 & 4530.74650384929 & -30.7465038492901 \tabularnewline
47 & 4500 & 4558.14231045978 & -58.1423104597834 \tabularnewline
48 & 4400 & 4249.40212244675 & 150.597877553249 \tabularnewline
49 & 4450 & 4374.56983415306 & 75.4301658469385 \tabularnewline
50 & 4650 & 4477.54417137698 & 172.455828623022 \tabularnewline
51 & 4750 & 4443.02721825632 & 306.972781743678 \tabularnewline
52 & 4700 & 4424.33311397772 & 275.666886022282 \tabularnewline
53 & 2900 & 4607.36724721482 & -1707.36724721482 \tabularnewline
54 & 3600 & 4189.35169358506 & -589.351693585058 \tabularnewline
55 & 4050 & 3467.21706894182 & 582.782931058175 \tabularnewline
56 & 2600 & 1944.68770468039 & 655.312295319613 \tabularnewline
57 & 4600 & 4241.65621639914 & 358.34378360086 \tabularnewline
58 & 5000 & 4523.83663683239 & 476.163363167613 \tabularnewline
59 & 5100 & 4710.91284658248 & 389.087153417523 \tabularnewline
60 & 4850 & 4572.31464868108 & 277.68535131892 \tabularnewline
61 & 4950 & 4736.59453087303 & 213.405469126974 \tabularnewline
62 & 4950 & 4902.16876994961 & 47.8312300503858 \tabularnewline
63 & 4950 & 4851.58520106239 & 98.4147989376052 \tabularnewline
64 & 5050 & 4770.7816774107 & 279.218322589297 \tabularnewline
65 & 5250 & 4739.95361081896 & 510.04638918104 \tabularnewline
66 & 5200 & 5160.23473874415 & 39.765261255855 \tabularnewline
67 & 4150 & 4789.75489699002 & -639.754896990023 \tabularnewline
68 & 2750 & 2909.67464596067 & -159.674645960666 \tabularnewline
69 & 5000 & 4930.23279330874 & 69.7672066912601 \tabularnewline
70 & 5150 & 5145.15384921168 & 4.84615078831757 \tabularnewline
71 & 5350 & 5182.06686743508 & 167.933132564915 \tabularnewline
72 & 5150 & 4967.44188261002 & 182.558117389977 \tabularnewline
73 & 5400 & 5099.7775062655 & 300.222493734498 \tabularnewline
74 & 5600 & 5279.49904218084 & 320.50095781916 \tabularnewline
75 & 5400 & 5326.98384354156 & 73.0161564584359 \tabularnewline
76 & 5450 & 5265.46184592956 & 184.538154070436 \tabularnewline
77 & 5500 & 5237.26752869213 & 262.732471307866 \tabularnewline
78 & 5200 & 5532.61322227131 & -332.613222271313 \tabularnewline
79 & 4350 & 4972.44420409911 & -622.44420409911 \tabularnewline
80 & 2700 & 3154.17801056113 & -454.178010561132 \tabularnewline
81 & 5100 & 5109.26477945908 & -9.26477945908391 \tabularnewline
82 & 5200 & 5292.70037714294 & -92.7003771429418 \tabularnewline
83 & 5300 & 5317.22114393658 & -17.2211439365801 \tabularnewline
84 & 4850 & 5045.09534186367 & -195.095341863673 \tabularnewline
85 & 5200 & 5068.95641622443 & 131.043583775573 \tabularnewline
86 & 5250 & 5193.46104734833 & 56.5389526516738 \tabularnewline
87 & 5250 & 5124.56496702951 & 125.435032970488 \tabularnewline
88 & 5100 & 5086.00465989549 & 13.9953401045104 \tabularnewline
89 & 4950 & 5006.30335339088 & -56.303353390882 \tabularnewline
90 & 4750 & 5126.50957096969 & -376.509570969687 \tabularnewline
91 & 4000 & 4511.08494632134 & -511.084946321336 \tabularnewline
92 & 2900 & 2737.96714544174 & 162.032854558263 \tabularnewline
93 & 5050 & 4930.70756180533 & 119.292438194665 \tabularnewline
94 & 5250 & 5141.09480592104 & 108.905194078963 \tabularnewline
95 & 5100 & 5234.3927538045 & -134.392753804505 \tabularnewline
96 & 4950 & 4902.36229006046 & 47.6377099395413 \tabularnewline
97 & 5050 & 5036.63369222742 & 13.3663077725751 \tabularnewline
98 & 5150 & 5113.39028827892 & 36.6097117210811 \tabularnewline
99 & 5200 & 5043.20586528985 & 156.794134710153 \tabularnewline
100 & 5250 & 4999.43211006087 & 250.56788993913 \tabularnewline
101 & 5350 & 4984.71417255782 & 365.285827442181 \tabularnewline
102 & 5200 & 5202.39590729512 & -2.3959072951202 \tabularnewline
103 & 4100 & 4692.63363129693 & -592.633631296934 \tabularnewline
104 & 3100 & 2972.48126985178 & 127.518730148216 \tabularnewline
105 & 5200 & 5152.69084842151 & 47.3091515784936 \tabularnewline
106 & 5300 & 5342.00880639086 & -42.0088063908634 \tabularnewline
107 & 5400 & 5362.61456723665 & 37.385432763348 \tabularnewline
108 & 5200 & 5107.34772272 & 92.6522772800017 \tabularnewline
109 & 5350 & 5254.85959381135 & 95.1404061886487 \tabularnewline
110 & 5600 & 5363.27486071756 & 236.725139282438 \tabularnewline
111 & 5600 & 5373.80015279717 & 226.199847202833 \tabularnewline
112 & 5500 & 5367.34666043476 & 132.65333956524 \tabularnewline
113 & 5600 & 5333.00847451401 & 266.991525485987 \tabularnewline
114 & 5700 & 5482.7000414491 & 217.299958550895 \tabularnewline
115 & 4400 & 4980.83233351517 & -580.832333515173 \tabularnewline
116 & 3250 & 3350.07629347587 & -100.076293475867 \tabularnewline
117 & 5400 & 5454.01936332395 & -54.0193633239542 \tabularnewline
118 & 5600 & 5604.90726371453 & -4.90726371452911 \tabularnewline
119 & 5800 & 5649.43752285776 & 150.562477142244 \tabularnewline
120 & 5500 & 5439.87365719192 & 60.1263428080802 \tabularnewline
121 & 6000 & 5581.44254692881 & 418.557453071186 \tabularnewline
122 & 6200 & 5812.70900955791 & 387.290990442093 \tabularnewline
123 & 6050 & 5875.9722508996 & 174.027749100399 \tabularnewline
124 & 5950 & 5849.28111168937 & 100.718888310629 \tabularnewline
125 & 6300 & 5826.30042586589 & 473.699574134107 \tabularnewline
126 & 5800 & 6042.65403265807 & -242.65403265807 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299285&T=2

[TABLE]
[ROW][C]Interpolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Fitted[/C][C]Residuals[/C][/ROW]
[ROW][C]13[/C][C]4450[/C][C]4491.42628205128[/C][C]-41.4262820512849[/C][/ROW]
[ROW][C]14[/C][C]4500[/C][C]4522.01610376824[/C][C]-22.0161037682437[/C][/ROW]
[ROW][C]15[/C][C]4400[/C][C]4404.37272366249[/C][C]-4.37272366248726[/C][/ROW]
[ROW][C]16[/C][C]4350[/C][C]4360.9683006747[/C][C]-10.9683006746982[/C][/ROW]
[ROW][C]17[/C][C]4350[/C][C]4377.93493138358[/C][C]-27.9349313835783[/C][/ROW]
[ROW][C]18[/C][C]4450[/C][C]4485.26005210412[/C][C]-35.2600521041222[/C][/ROW]
[ROW][C]19[/C][C]3850[/C][C]3973.41302776716[/C][C]-123.413027767163[/C][/ROW]
[ROW][C]20[/C][C]2400[/C][C]2112.4199939833[/C][C]287.580006016699[/C][/ROW]
[ROW][C]21[/C][C]4350[/C][C]4387.91936732402[/C][C]-37.9193673240243[/C][/ROW]
[ROW][C]22[/C][C]4350[/C][C]4571.84589661834[/C][C]-221.845896618339[/C][/ROW]
[ROW][C]23[/C][C]4300[/C][C]4557.33406088272[/C][C]-257.334060882717[/C][/ROW]
[ROW][C]24[/C][C]4150[/C][C]4125.98850604309[/C][C]24.0114939569112[/C][/ROW]
[ROW][C]25[/C][C]4100[/C][C]4228.11514278334[/C][C]-128.115142783344[/C][/ROW]
[ROW][C]26[/C][C]4400[/C][C]4230.36536486726[/C][C]169.63463513274[/C][/ROW]
[ROW][C]27[/C][C]4250[/C][C]4172.37091236708[/C][C]77.6290876329176[/C][/ROW]
[ROW][C]28[/C][C]4300[/C][C]4152.12964508204[/C][C]147.870354917957[/C][/ROW]
[ROW][C]29[/C][C]4200[/C][C]4216.09210969875[/C][C]-16.092109698754[/C][/ROW]
[ROW][C]30[/C][C]4300[/C][C]4325.60887161945[/C][C]-25.6088716194527[/C][/ROW]
[ROW][C]31[/C][C]3900[/C][C]3806.29569443752[/C][C]93.7043055624827[/C][/ROW]
[ROW][C]32[/C][C]2250[/C][C]2059.79570129276[/C][C]190.204298707242[/C][/ROW]
[ROW][C]33[/C][C]4300[/C][C]4268.58108470463[/C][C]31.4189152953732[/C][/ROW]
[ROW][C]34[/C][C]4500[/C][C]4454.15480914153[/C][C]45.8451908584657[/C][/ROW]
[ROW][C]35[/C][C]4400[/C][C]4521.52169674792[/C][C]-121.521696747917[/C][/ROW]
[ROW][C]36[/C][C]4250[/C][C]4167.0596053018[/C][C]82.9403946982038[/C][/ROW]
[ROW][C]37[/C][C]4300[/C][C]4273.95874868597[/C][C]26.0412513140318[/C][/ROW]
[ROW][C]38[/C][C]4350[/C][C]4361.96244021573[/C][C]-11.962440215726[/C][/ROW]
[ROW][C]39[/C][C]4450[/C][C]4240.09731989547[/C][C]209.90268010453[/C][/ROW]
[ROW][C]40[/C][C]3700[/C][C]4273.0454832874[/C][C]-573.045483287399[/C][/ROW]
[ROW][C]41[/C][C]4300[/C][C]4092.89725259867[/C][C]207.102747401335[/C][/ROW]
[ROW][C]42[/C][C]4500[/C][C]4272.07332876266[/C][C]227.926671237339[/C][/ROW]
[ROW][C]43[/C][C]3750[/C][C]3847.84942910934[/C][C]-97.849429109338[/C][/ROW]
[ROW][C]44[/C][C]2500[/C][C]2053.57487545864[/C][C]446.425124541357[/C][/ROW]
[ROW][C]45[/C][C]4400[/C][C]4327.6097664411[/C][C]72.3902335589019[/C][/ROW]
[ROW][C]46[/C][C]4500[/C][C]4530.74650384929[/C][C]-30.7465038492901[/C][/ROW]
[ROW][C]47[/C][C]4500[/C][C]4558.14231045978[/C][C]-58.1423104597834[/C][/ROW]
[ROW][C]48[/C][C]4400[/C][C]4249.40212244675[/C][C]150.597877553249[/C][/ROW]
[ROW][C]49[/C][C]4450[/C][C]4374.56983415306[/C][C]75.4301658469385[/C][/ROW]
[ROW][C]50[/C][C]4650[/C][C]4477.54417137698[/C][C]172.455828623022[/C][/ROW]
[ROW][C]51[/C][C]4750[/C][C]4443.02721825632[/C][C]306.972781743678[/C][/ROW]
[ROW][C]52[/C][C]4700[/C][C]4424.33311397772[/C][C]275.666886022282[/C][/ROW]
[ROW][C]53[/C][C]2900[/C][C]4607.36724721482[/C][C]-1707.36724721482[/C][/ROW]
[ROW][C]54[/C][C]3600[/C][C]4189.35169358506[/C][C]-589.351693585058[/C][/ROW]
[ROW][C]55[/C][C]4050[/C][C]3467.21706894182[/C][C]582.782931058175[/C][/ROW]
[ROW][C]56[/C][C]2600[/C][C]1944.68770468039[/C][C]655.312295319613[/C][/ROW]
[ROW][C]57[/C][C]4600[/C][C]4241.65621639914[/C][C]358.34378360086[/C][/ROW]
[ROW][C]58[/C][C]5000[/C][C]4523.83663683239[/C][C]476.163363167613[/C][/ROW]
[ROW][C]59[/C][C]5100[/C][C]4710.91284658248[/C][C]389.087153417523[/C][/ROW]
[ROW][C]60[/C][C]4850[/C][C]4572.31464868108[/C][C]277.68535131892[/C][/ROW]
[ROW][C]61[/C][C]4950[/C][C]4736.59453087303[/C][C]213.405469126974[/C][/ROW]
[ROW][C]62[/C][C]4950[/C][C]4902.16876994961[/C][C]47.8312300503858[/C][/ROW]
[ROW][C]63[/C][C]4950[/C][C]4851.58520106239[/C][C]98.4147989376052[/C][/ROW]
[ROW][C]64[/C][C]5050[/C][C]4770.7816774107[/C][C]279.218322589297[/C][/ROW]
[ROW][C]65[/C][C]5250[/C][C]4739.95361081896[/C][C]510.04638918104[/C][/ROW]
[ROW][C]66[/C][C]5200[/C][C]5160.23473874415[/C][C]39.765261255855[/C][/ROW]
[ROW][C]67[/C][C]4150[/C][C]4789.75489699002[/C][C]-639.754896990023[/C][/ROW]
[ROW][C]68[/C][C]2750[/C][C]2909.67464596067[/C][C]-159.674645960666[/C][/ROW]
[ROW][C]69[/C][C]5000[/C][C]4930.23279330874[/C][C]69.7672066912601[/C][/ROW]
[ROW][C]70[/C][C]5150[/C][C]5145.15384921168[/C][C]4.84615078831757[/C][/ROW]
[ROW][C]71[/C][C]5350[/C][C]5182.06686743508[/C][C]167.933132564915[/C][/ROW]
[ROW][C]72[/C][C]5150[/C][C]4967.44188261002[/C][C]182.558117389977[/C][/ROW]
[ROW][C]73[/C][C]5400[/C][C]5099.7775062655[/C][C]300.222493734498[/C][/ROW]
[ROW][C]74[/C][C]5600[/C][C]5279.49904218084[/C][C]320.50095781916[/C][/ROW]
[ROW][C]75[/C][C]5400[/C][C]5326.98384354156[/C][C]73.0161564584359[/C][/ROW]
[ROW][C]76[/C][C]5450[/C][C]5265.46184592956[/C][C]184.538154070436[/C][/ROW]
[ROW][C]77[/C][C]5500[/C][C]5237.26752869213[/C][C]262.732471307866[/C][/ROW]
[ROW][C]78[/C][C]5200[/C][C]5532.61322227131[/C][C]-332.613222271313[/C][/ROW]
[ROW][C]79[/C][C]4350[/C][C]4972.44420409911[/C][C]-622.44420409911[/C][/ROW]
[ROW][C]80[/C][C]2700[/C][C]3154.17801056113[/C][C]-454.178010561132[/C][/ROW]
[ROW][C]81[/C][C]5100[/C][C]5109.26477945908[/C][C]-9.26477945908391[/C][/ROW]
[ROW][C]82[/C][C]5200[/C][C]5292.70037714294[/C][C]-92.7003771429418[/C][/ROW]
[ROW][C]83[/C][C]5300[/C][C]5317.22114393658[/C][C]-17.2211439365801[/C][/ROW]
[ROW][C]84[/C][C]4850[/C][C]5045.09534186367[/C][C]-195.095341863673[/C][/ROW]
[ROW][C]85[/C][C]5200[/C][C]5068.95641622443[/C][C]131.043583775573[/C][/ROW]
[ROW][C]86[/C][C]5250[/C][C]5193.46104734833[/C][C]56.5389526516738[/C][/ROW]
[ROW][C]87[/C][C]5250[/C][C]5124.56496702951[/C][C]125.435032970488[/C][/ROW]
[ROW][C]88[/C][C]5100[/C][C]5086.00465989549[/C][C]13.9953401045104[/C][/ROW]
[ROW][C]89[/C][C]4950[/C][C]5006.30335339088[/C][C]-56.303353390882[/C][/ROW]
[ROW][C]90[/C][C]4750[/C][C]5126.50957096969[/C][C]-376.509570969687[/C][/ROW]
[ROW][C]91[/C][C]4000[/C][C]4511.08494632134[/C][C]-511.084946321336[/C][/ROW]
[ROW][C]92[/C][C]2900[/C][C]2737.96714544174[/C][C]162.032854558263[/C][/ROW]
[ROW][C]93[/C][C]5050[/C][C]4930.70756180533[/C][C]119.292438194665[/C][/ROW]
[ROW][C]94[/C][C]5250[/C][C]5141.09480592104[/C][C]108.905194078963[/C][/ROW]
[ROW][C]95[/C][C]5100[/C][C]5234.3927538045[/C][C]-134.392753804505[/C][/ROW]
[ROW][C]96[/C][C]4950[/C][C]4902.36229006046[/C][C]47.6377099395413[/C][/ROW]
[ROW][C]97[/C][C]5050[/C][C]5036.63369222742[/C][C]13.3663077725751[/C][/ROW]
[ROW][C]98[/C][C]5150[/C][C]5113.39028827892[/C][C]36.6097117210811[/C][/ROW]
[ROW][C]99[/C][C]5200[/C][C]5043.20586528985[/C][C]156.794134710153[/C][/ROW]
[ROW][C]100[/C][C]5250[/C][C]4999.43211006087[/C][C]250.56788993913[/C][/ROW]
[ROW][C]101[/C][C]5350[/C][C]4984.71417255782[/C][C]365.285827442181[/C][/ROW]
[ROW][C]102[/C][C]5200[/C][C]5202.39590729512[/C][C]-2.3959072951202[/C][/ROW]
[ROW][C]103[/C][C]4100[/C][C]4692.63363129693[/C][C]-592.633631296934[/C][/ROW]
[ROW][C]104[/C][C]3100[/C][C]2972.48126985178[/C][C]127.518730148216[/C][/ROW]
[ROW][C]105[/C][C]5200[/C][C]5152.69084842151[/C][C]47.3091515784936[/C][/ROW]
[ROW][C]106[/C][C]5300[/C][C]5342.00880639086[/C][C]-42.0088063908634[/C][/ROW]
[ROW][C]107[/C][C]5400[/C][C]5362.61456723665[/C][C]37.385432763348[/C][/ROW]
[ROW][C]108[/C][C]5200[/C][C]5107.34772272[/C][C]92.6522772800017[/C][/ROW]
[ROW][C]109[/C][C]5350[/C][C]5254.85959381135[/C][C]95.1404061886487[/C][/ROW]
[ROW][C]110[/C][C]5600[/C][C]5363.27486071756[/C][C]236.725139282438[/C][/ROW]
[ROW][C]111[/C][C]5600[/C][C]5373.80015279717[/C][C]226.199847202833[/C][/ROW]
[ROW][C]112[/C][C]5500[/C][C]5367.34666043476[/C][C]132.65333956524[/C][/ROW]
[ROW][C]113[/C][C]5600[/C][C]5333.00847451401[/C][C]266.991525485987[/C][/ROW]
[ROW][C]114[/C][C]5700[/C][C]5482.7000414491[/C][C]217.299958550895[/C][/ROW]
[ROW][C]115[/C][C]4400[/C][C]4980.83233351517[/C][C]-580.832333515173[/C][/ROW]
[ROW][C]116[/C][C]3250[/C][C]3350.07629347587[/C][C]-100.076293475867[/C][/ROW]
[ROW][C]117[/C][C]5400[/C][C]5454.01936332395[/C][C]-54.0193633239542[/C][/ROW]
[ROW][C]118[/C][C]5600[/C][C]5604.90726371453[/C][C]-4.90726371452911[/C][/ROW]
[ROW][C]119[/C][C]5800[/C][C]5649.43752285776[/C][C]150.562477142244[/C][/ROW]
[ROW][C]120[/C][C]5500[/C][C]5439.87365719192[/C][C]60.1263428080802[/C][/ROW]
[ROW][C]121[/C][C]6000[/C][C]5581.44254692881[/C][C]418.557453071186[/C][/ROW]
[ROW][C]122[/C][C]6200[/C][C]5812.70900955791[/C][C]387.290990442093[/C][/ROW]
[ROW][C]123[/C][C]6050[/C][C]5875.9722508996[/C][C]174.027749100399[/C][/ROW]
[ROW][C]124[/C][C]5950[/C][C]5849.28111168937[/C][C]100.718888310629[/C][/ROW]
[ROW][C]125[/C][C]6300[/C][C]5826.30042586589[/C][C]473.699574134107[/C][/ROW]
[ROW][C]126[/C][C]5800[/C][C]6042.65403265807[/C][C]-242.65403265807[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299285&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299285&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Interpolation Forecasts of Exponential Smoothing
tObservedFittedResiduals
1344504491.42628205128-41.4262820512849
1445004522.01610376824-22.0161037682437
1544004404.37272366249-4.37272366248726
1643504360.9683006747-10.9683006746982
1743504377.93493138358-27.9349313835783
1844504485.26005210412-35.2600521041222
1938503973.41302776716-123.413027767163
2024002112.4199939833287.580006016699
2143504387.91936732402-37.9193673240243
2243504571.84589661834-221.845896618339
2343004557.33406088272-257.334060882717
2441504125.9885060430924.0114939569112
2541004228.11514278334-128.115142783344
2644004230.36536486726169.63463513274
2742504172.3709123670877.6290876329176
2843004152.12964508204147.870354917957
2942004216.09210969875-16.092109698754
3043004325.60887161945-25.6088716194527
3139003806.2956944375293.7043055624827
3222502059.79570129276190.204298707242
3343004268.5810847046331.4189152953732
3445004454.1548091415345.8451908584657
3544004521.52169674792-121.521696747917
3642504167.059605301882.9403946982038
3743004273.9587486859726.0412513140318
3843504361.96244021573-11.962440215726
3944504240.09731989547209.90268010453
4037004273.0454832874-573.045483287399
4143004092.89725259867207.102747401335
4245004272.07332876266227.926671237339
4337503847.84942910934-97.849429109338
4425002053.57487545864446.425124541357
4544004327.609766441172.3902335589019
4645004530.74650384929-30.7465038492901
4745004558.14231045978-58.1423104597834
4844004249.40212244675150.597877553249
4944504374.5698341530675.4301658469385
5046504477.54417137698172.455828623022
5147504443.02721825632306.972781743678
5247004424.33311397772275.666886022282
5329004607.36724721482-1707.36724721482
5436004189.35169358506-589.351693585058
5540503467.21706894182582.782931058175
5626001944.68770468039655.312295319613
5746004241.65621639914358.34378360086
5850004523.83663683239476.163363167613
5951004710.91284658248389.087153417523
6048504572.31464868108277.68535131892
6149504736.59453087303213.405469126974
6249504902.1687699496147.8312300503858
6349504851.5852010623998.4147989376052
6450504770.7816774107279.218322589297
6552504739.95361081896510.04638918104
6652005160.2347387441539.765261255855
6741504789.75489699002-639.754896990023
6827502909.67464596067-159.674645960666
6950004930.2327933087469.7672066912601
7051505145.153849211684.84615078831757
7153505182.06686743508167.933132564915
7251504967.44188261002182.558117389977
7354005099.7775062655300.222493734498
7456005279.49904218084320.50095781916
7554005326.9838435415673.0161564584359
7654505265.46184592956184.538154070436
7755005237.26752869213262.732471307866
7852005532.61322227131-332.613222271313
7943504972.44420409911-622.44420409911
8027003154.17801056113-454.178010561132
8151005109.26477945908-9.26477945908391
8252005292.70037714294-92.7003771429418
8353005317.22114393658-17.2211439365801
8448505045.09534186367-195.095341863673
8552005068.95641622443131.043583775573
8652505193.4610473483356.5389526516738
8752505124.56496702951125.435032970488
8851005086.0046598954913.9953401045104
8949505006.30335339088-56.303353390882
9047505126.50957096969-376.509570969687
9140004511.08494632134-511.084946321336
9229002737.96714544174162.032854558263
9350504930.70756180533119.292438194665
9452505141.09480592104108.905194078963
9551005234.3927538045-134.392753804505
9649504902.3622900604647.6377099395413
9750505036.6336922274213.3663077725751
9851505113.3902882789236.6097117210811
9952005043.20586528985156.794134710153
10052504999.43211006087250.56788993913
10153504984.71417255782365.285827442181
10252005202.39590729512-2.3959072951202
10341004692.63363129693-592.633631296934
10431002972.48126985178127.518730148216
10552005152.6908484215147.3091515784936
10653005342.00880639086-42.0088063908634
10754005362.6145672366537.385432763348
10852005107.3477227292.6522772800017
10953505254.8595938113595.1404061886487
11056005363.27486071756236.725139282438
11156005373.80015279717226.199847202833
11255005367.34666043476132.65333956524
11356005333.00847451401266.991525485987
11457005482.7000414491217.299958550895
11544004980.83233351517-580.832333515173
11632503350.07629347587-100.076293475867
11754005454.01936332395-54.0193633239542
11856005604.90726371453-4.90726371452911
11958005649.43752285776150.562477142244
12055005439.8736571919260.1263428080802
12160005581.44254692881418.557453071186
12262005812.70900955791387.290990442093
12360505875.9722508996174.027749100399
12459505849.28111168937100.718888310629
12563005826.30042586589473.699574134107
12658006042.65403265807-242.65403265807







Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1275312.59506931684727.207741793515897.98239684009
1283925.470438420383311.067428024284539.87344881648
1296074.78951430295431.631954190886717.94707441493
1306257.326609436645585.623039116416929.03017975687
1316330.066907831765629.982072787777030.15174287575
1326071.71259554985343.374407561686800.05078353793
1336242.551747630915486.056866504536999.0466287573
1346344.933083862345560.351448311247129.51471941344
1356266.382617329915453.761162763027079.0040718968
1366179.122998744195338.488737471667019.75726001671
1376167.744091015685299.106686472147036.38149555922
1386154.481853399535257.835788453667051.1279183454
1395527.395431449054584.603297232586470.18756566552
1404140.270800552633169.944297133295110.59730397197
1416289.589876435165291.659477079327287.52027579099
1426472.12697156895446.516283334017497.73765980379
1436544.867269964025491.493771081917598.24076884612
1446286.512957682065205.288645037057367.73727032706

\begin{tabular}{lllllllll}
\hline
Extrapolation Forecasts of Exponential Smoothing \tabularnewline
t & Forecast & 95% Lower Bound & 95% Upper Bound \tabularnewline
127 & 5312.5950693168 & 4727.20774179351 & 5897.98239684009 \tabularnewline
128 & 3925.47043842038 & 3311.06742802428 & 4539.87344881648 \tabularnewline
129 & 6074.7895143029 & 5431.63195419088 & 6717.94707441493 \tabularnewline
130 & 6257.32660943664 & 5585.62303911641 & 6929.03017975687 \tabularnewline
131 & 6330.06690783176 & 5629.98207278777 & 7030.15174287575 \tabularnewline
132 & 6071.7125955498 & 5343.37440756168 & 6800.05078353793 \tabularnewline
133 & 6242.55174763091 & 5486.05686650453 & 6999.0466287573 \tabularnewline
134 & 6344.93308386234 & 5560.35144831124 & 7129.51471941344 \tabularnewline
135 & 6266.38261732991 & 5453.76116276302 & 7079.0040718968 \tabularnewline
136 & 6179.12299874419 & 5338.48873747166 & 7019.75726001671 \tabularnewline
137 & 6167.74409101568 & 5299.10668647214 & 7036.38149555922 \tabularnewline
138 & 6154.48185339953 & 5257.83578845366 & 7051.1279183454 \tabularnewline
139 & 5527.39543144905 & 4584.60329723258 & 6470.18756566552 \tabularnewline
140 & 4140.27080055263 & 3169.94429713329 & 5110.59730397197 \tabularnewline
141 & 6289.58987643516 & 5291.65947707932 & 7287.52027579099 \tabularnewline
142 & 6472.1269715689 & 5446.51628333401 & 7497.73765980379 \tabularnewline
143 & 6544.86726996402 & 5491.49377108191 & 7598.24076884612 \tabularnewline
144 & 6286.51295768206 & 5205.28864503705 & 7367.73727032706 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299285&T=3

[TABLE]
[ROW][C]Extrapolation Forecasts of Exponential Smoothing[/C][/ROW]
[ROW][C]t[/C][C]Forecast[/C][C]95% Lower Bound[/C][C]95% Upper Bound[/C][/ROW]
[ROW][C]127[/C][C]5312.5950693168[/C][C]4727.20774179351[/C][C]5897.98239684009[/C][/ROW]
[ROW][C]128[/C][C]3925.47043842038[/C][C]3311.06742802428[/C][C]4539.87344881648[/C][/ROW]
[ROW][C]129[/C][C]6074.7895143029[/C][C]5431.63195419088[/C][C]6717.94707441493[/C][/ROW]
[ROW][C]130[/C][C]6257.32660943664[/C][C]5585.62303911641[/C][C]6929.03017975687[/C][/ROW]
[ROW][C]131[/C][C]6330.06690783176[/C][C]5629.98207278777[/C][C]7030.15174287575[/C][/ROW]
[ROW][C]132[/C][C]6071.7125955498[/C][C]5343.37440756168[/C][C]6800.05078353793[/C][/ROW]
[ROW][C]133[/C][C]6242.55174763091[/C][C]5486.05686650453[/C][C]6999.0466287573[/C][/ROW]
[ROW][C]134[/C][C]6344.93308386234[/C][C]5560.35144831124[/C][C]7129.51471941344[/C][/ROW]
[ROW][C]135[/C][C]6266.38261732991[/C][C]5453.76116276302[/C][C]7079.0040718968[/C][/ROW]
[ROW][C]136[/C][C]6179.12299874419[/C][C]5338.48873747166[/C][C]7019.75726001671[/C][/ROW]
[ROW][C]137[/C][C]6167.74409101568[/C][C]5299.10668647214[/C][C]7036.38149555922[/C][/ROW]
[ROW][C]138[/C][C]6154.48185339953[/C][C]5257.83578845366[/C][C]7051.1279183454[/C][/ROW]
[ROW][C]139[/C][C]5527.39543144905[/C][C]4584.60329723258[/C][C]6470.18756566552[/C][/ROW]
[ROW][C]140[/C][C]4140.27080055263[/C][C]3169.94429713329[/C][C]5110.59730397197[/C][/ROW]
[ROW][C]141[/C][C]6289.58987643516[/C][C]5291.65947707932[/C][C]7287.52027579099[/C][/ROW]
[ROW][C]142[/C][C]6472.1269715689[/C][C]5446.51628333401[/C][C]7497.73765980379[/C][/ROW]
[ROW][C]143[/C][C]6544.86726996402[/C][C]5491.49377108191[/C][C]7598.24076884612[/C][/ROW]
[ROW][C]144[/C][C]6286.51295768206[/C][C]5205.28864503705[/C][C]7367.73727032706[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299285&T=3

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299285&T=3

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Extrapolation Forecasts of Exponential Smoothing
tForecast95% Lower Bound95% Upper Bound
1275312.59506931684727.207741793515897.98239684009
1283925.470438420383311.067428024284539.87344881648
1296074.78951430295431.631954190886717.94707441493
1306257.326609436645585.623039116416929.03017975687
1316330.066907831765629.982072787777030.15174287575
1326071.71259554985343.374407561686800.05078353793
1336242.551747630915486.056866504536999.0466287573
1346344.933083862345560.351448311247129.51471941344
1356266.382617329915453.761162763027079.0040718968
1366179.122998744195338.488737471667019.75726001671
1376167.744091015685299.106686472147036.38149555922
1386154.481853399535257.835788453667051.1279183454
1395527.395431449054584.603297232586470.18756566552
1404140.270800552633169.944297133295110.59730397197
1416289.589876435165291.659477079327287.52027579099
1426472.12697156895446.516283334017497.73765980379
1436544.867269964025491.493771081917598.24076884612
1446286.512957682065205.288645037057367.73727032706



Parameters (Session):
par1 = 12 ; par2 = Triple ; par3 = additive ; par4 = 18 ;
Parameters (R input):
par1 = 12 ; par2 = Triple ; par3 = additive ; par4 = 18 ;
R code (references can be found in the software module):
par1 <- as.numeric(par1)
par4 <- as.numeric(par4)
if (par2 == 'Single') K <- 1
if (par2 == 'Double') K <- 2
if (par2 == 'Triple') K <- par1
nx <- length(x)
nxmK <- nx - K
x <- ts(x, frequency = par1)
if (par2 == 'Single') fit <- HoltWinters(x, gamma=F, beta=F)
if (par2 == 'Double') fit <- HoltWinters(x, gamma=F)
if (par2 == 'Triple') fit <- HoltWinters(x, seasonal=par3)
fit
myresid <- x - fit$fitted[,'xhat']
bitmap(file='test1.png')
op <- par(mfrow=c(2,1))
plot(fit,ylab='Observed (black) / Fitted (red)',main='Interpolation Fit of Exponential Smoothing')
plot(myresid,ylab='Residuals',main='Interpolation Prediction Errors')
par(op)
dev.off()
bitmap(file='test2.png')
p <- predict(fit, par4, prediction.interval=TRUE)
np <- length(p[,1])
plot(fit,p,ylab='Observed (black) / Fitted (red)',main='Extrapolation Fit of Exponential Smoothing')
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(myresid),lag.max = nx/2,main='Residual ACF')
spectrum(myresid,main='Residals Periodogram')
cpgram(myresid,main='Residal Cumulative Periodogram')
qqnorm(myresid,main='Residual Normal QQ Plot')
qqline(myresid)
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Estimated Parameters of Exponential Smoothing',2,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'Parameter',header=TRUE)
a<-table.element(a,'Value',header=TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'alpha',header=TRUE)
a<-table.element(a,fit$alpha)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'beta',header=TRUE)
a<-table.element(a,fit$beta)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'gamma',header=TRUE)
a<-table.element(a,fit$gamma)
a<-table.row.end(a)
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Interpolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Fitted',header=TRUE)
a<-table.element(a,'Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nxmK) {
a<-table.row.start(a)
a<-table.element(a,i+K,header=TRUE)
a<-table.element(a,x[i+K])
a<-table.element(a,fit$fitted[i,'xhat'])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Extrapolation Forecasts of Exponential Smoothing',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Forecast',header=TRUE)
a<-table.element(a,'95% Lower Bound',header=TRUE)
a<-table.element(a,'95% Upper Bound',header=TRUE)
a<-table.row.end(a)
for (i in 1:np) {
a<-table.row.start(a)
a<-table.element(a,nx+i,header=TRUE)
a<-table.element(a,p[i,'fit'])
a<-table.element(a,p[i,'lwr'])
a<-table.element(a,p[i,'upr'])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable2.tab')