Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_decompose.wasp
Title produced by softwareClassical Decomposition
Date of computationWed, 14 Dec 2016 11:13:42 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/14/t1481710777uwxvp3c57apaw7v.htm/, Retrieved Fri, 01 Nov 2024 03:43:12 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299280, Retrieved Fri, 01 Nov 2024 03:43:12 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact156
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Classical Decomposition] [] [2016-12-14 10:13:42] [a2f828619121b6920d6a86ccf58b51c4] [Current]
Feedback Forum

Post a new message
Dataseries X:
4250
4400
4350
4500
4550
4500
4050
2250
4450
4650
4700
4350
4450
4500
4400
4350
4350
4450
3850
2400
4350
4350
4300
4150
4100
4400
4250
4300
4200
4300
3900
2250
4300
4500
4400
4250
4300
4350
4450
3700
4300
4500
3750
2500
4400
4500
4500
4400
4450
4650
4750
4700
2900
3600
4050
2600
4600
5000
5100
4850
4950
4950
4950
5050
5250
5200
4150
2750
5000
5150
5350
5150
5400
5600
5400
5450
5500
5200
4350
2700
5100
5200
5300
4850
5200
5250
5250
5100
4950
4750
4000
2900
5050
5250
5100
4950
5050
5150
5200
5250
5350
5200
4100
3100
5200
5300
5400
5200
5350
5600
5600
5500
5600
5700
4400
3250
5400
5600
5800
5500
6000
6200
6050
5950
6300
5800




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time2 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299280&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]2 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299280&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299280&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time2 seconds
R ServerBig Analytics Cloud Computing Center







Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14250NANA244.597NA
24400NANA371.68NA
34350NANA340.43NA
44500NANA237.189NA
54550NANA116.588NA
64500NANA161.726NA
740503737.314258.33-521.028312.695
822502345.014270.83-1925.82-95.0135
944504451.684277.08174.597-1.68017
1046504599.394272.92326.47250.6115
1147004616.474258.33358.13983.5282
1243504363.354247.92115.43-13.3468
1344504482.14237.5244.597-32.0968
1445004607.14235.42371.68-107.097
1544004577.934237.5340.43-177.93
1643504458.024220.83237.189-108.023
1743504308.254191.67116.58841.7458
1844504328.394166.67161.726121.607
1938503622.724143.75-521.028227.278
2024002199.184125-1925.82200.82
2143504289.184114.58174.59760.8198
2243504432.724106.25326.472-82.7218
2343004456.064097.92358.139-156.055
2441504200.854085.42115.43-50.8468
2541004325.854081.25244.597-225.847
2644004448.764077.08371.68-48.7635
2742504409.184068.75340.43-159.18
2843004310.114072.92237.189-10.1061
2942004199.924083.33116.5880.0790895
3043004253.394091.67161.72646.6069
3139003583.144104.17-521.028316.861
3222502184.64110.42-1925.8265.4032
3343004291.264116.67174.5978.7365
3445004426.474100326.47273.5282
3544004437.314079.17358.139-37.3052
3642504207.14091.67115.4342.9032
3743004338.354093.75244.597-38.3468
3843504469.64097.92371.68-119.597
3944504452.934112.5340.43-2.93017
4037004353.864116.67237.189-653.856
4143004237.424120.83116.58862.5791
4245004292.984131.25161.726207.024
4337503622.724143.75-521.028127.278
4425002236.684162.5-1925.82263.32
4544004362.14187.5174.59737.9032
4645004568.144241.67326.472-68.1385
4745004583.144225358.139-83.1385
4844004244.64129.17115.43155.403
4944504348.764104.17244.597101.236
5046504492.514120.83371.68157.486
5147504473.764133.33340.43276.236
5247004399.694162.5237.189300.311
5329004324.924208.33116.588-1424.92
5436004413.814252.08161.726-813.81
5540503770.644291.67-521.028279.361
5626002399.184325-1925.82200.82
5746004520.434345.83174.59779.5698
5850004695.224368.75326.472304.778
5951004839.394481.25358.139260.611
6048504761.264645.83115.4388.7365
6149504961.264716.67244.597-11.2635
6249505098.764727.08371.68-148.764
6349505090.434750340.43-140.43
6450505010.114772.92237.18939.8939
6552504906.174789.58116.588343.829
6652004974.234812.5161.726225.774
6741504322.724843.75-521.028-172.722
6827502963.764889.58-1925.82-213.764
6950005110.014935.42174.597-110.014
7051505297.314970.83326.472-147.305
7153505356.064997.92358.139-6.05517
7251505123.765008.33115.4326.2365
7354005261.265016.67244.597138.736
7456005394.65022.92371.68205.403
7554005365.435025340.4334.5698
7654505268.445031.25237.189181.561
7755005147.845031.25116.588352.162
7852005178.395016.67161.72621.6069
7943504474.814995.83-521.028-124.805
8027003047.14972.92-1925.82-347.097
8151005126.684952.08174.597-26.6802
8252005257.724931.25326.472-57.7218
8353005251.894893.75358.13948.1115
8448504967.514852.08115.43-117.514
8552005063.354818.75244.597136.653
8652505184.184812.5371.6865.8198
8752505159.184818.75340.4390.8198
8851005055.944818.75237.18944.0606
8949504929.094812.5116.58820.9124
9047504970.064808.33161.726-220.06
9140004285.224806.25-521.028-285.222
9229002870.014795.83-1925.8229.9865
9350504964.184789.58174.59785.8198
9452505120.224793.75326.472129.778
9551005174.814816.67358.139-74.8052
9649504967.514852.08115.43-17.5135
9750505119.64875244.597-69.5968
9851505259.184887.5371.68-109.18
9952005242.514902.08340.43-42.5135
10052505147.614910.42237.189102.394
10153505041.594925116.588308.412
10252005109.644947.92161.72690.3569
10341004449.814970.83-521.028-349.805
10431003076.265002.08-1925.8223.7365
10552005212.15037.5174.597-12.0968
10653005391.065064.58326.472-91.0552
10754005443.565085.42358.139-43.5552
10852005232.15116.67115.43-32.0968
10953505394.65150244.597-44.5968
11056005540.435168.75371.6859.5698
11156005523.765183.33340.4376.2365
11255005441.365204.17237.18958.6439
11356005349.925233.33116.588250.079
11457005424.235262.5161.726275.774
11544004781.065302.08-521.028-381.055
11632503428.355354.17-1925.82-178.347
11754005572.515397.92174.597-172.514
11856005761.895435.42326.472-161.889
11958005841.475483.33358.139-41.4718
12055005632.15516.67115.43-132.097
1216000NANA244.597NA
1226200NANA371.68NA
1236050NANA340.43NA
1245950NANA237.189NA
1256300NANA116.588NA
1265800NANA161.726NA

\begin{tabular}{lllllllll}
\hline
Classical Decomposition by Moving Averages \tabularnewline
t & Observations & Fit & Trend & Seasonal & Random \tabularnewline
1 & 4250 & NA & NA & 244.597 & NA \tabularnewline
2 & 4400 & NA & NA & 371.68 & NA \tabularnewline
3 & 4350 & NA & NA & 340.43 & NA \tabularnewline
4 & 4500 & NA & NA & 237.189 & NA \tabularnewline
5 & 4550 & NA & NA & 116.588 & NA \tabularnewline
6 & 4500 & NA & NA & 161.726 & NA \tabularnewline
7 & 4050 & 3737.31 & 4258.33 & -521.028 & 312.695 \tabularnewline
8 & 2250 & 2345.01 & 4270.83 & -1925.82 & -95.0135 \tabularnewline
9 & 4450 & 4451.68 & 4277.08 & 174.597 & -1.68017 \tabularnewline
10 & 4650 & 4599.39 & 4272.92 & 326.472 & 50.6115 \tabularnewline
11 & 4700 & 4616.47 & 4258.33 & 358.139 & 83.5282 \tabularnewline
12 & 4350 & 4363.35 & 4247.92 & 115.43 & -13.3468 \tabularnewline
13 & 4450 & 4482.1 & 4237.5 & 244.597 & -32.0968 \tabularnewline
14 & 4500 & 4607.1 & 4235.42 & 371.68 & -107.097 \tabularnewline
15 & 4400 & 4577.93 & 4237.5 & 340.43 & -177.93 \tabularnewline
16 & 4350 & 4458.02 & 4220.83 & 237.189 & -108.023 \tabularnewline
17 & 4350 & 4308.25 & 4191.67 & 116.588 & 41.7458 \tabularnewline
18 & 4450 & 4328.39 & 4166.67 & 161.726 & 121.607 \tabularnewline
19 & 3850 & 3622.72 & 4143.75 & -521.028 & 227.278 \tabularnewline
20 & 2400 & 2199.18 & 4125 & -1925.82 & 200.82 \tabularnewline
21 & 4350 & 4289.18 & 4114.58 & 174.597 & 60.8198 \tabularnewline
22 & 4350 & 4432.72 & 4106.25 & 326.472 & -82.7218 \tabularnewline
23 & 4300 & 4456.06 & 4097.92 & 358.139 & -156.055 \tabularnewline
24 & 4150 & 4200.85 & 4085.42 & 115.43 & -50.8468 \tabularnewline
25 & 4100 & 4325.85 & 4081.25 & 244.597 & -225.847 \tabularnewline
26 & 4400 & 4448.76 & 4077.08 & 371.68 & -48.7635 \tabularnewline
27 & 4250 & 4409.18 & 4068.75 & 340.43 & -159.18 \tabularnewline
28 & 4300 & 4310.11 & 4072.92 & 237.189 & -10.1061 \tabularnewline
29 & 4200 & 4199.92 & 4083.33 & 116.588 & 0.0790895 \tabularnewline
30 & 4300 & 4253.39 & 4091.67 & 161.726 & 46.6069 \tabularnewline
31 & 3900 & 3583.14 & 4104.17 & -521.028 & 316.861 \tabularnewline
32 & 2250 & 2184.6 & 4110.42 & -1925.82 & 65.4032 \tabularnewline
33 & 4300 & 4291.26 & 4116.67 & 174.597 & 8.7365 \tabularnewline
34 & 4500 & 4426.47 & 4100 & 326.472 & 73.5282 \tabularnewline
35 & 4400 & 4437.31 & 4079.17 & 358.139 & -37.3052 \tabularnewline
36 & 4250 & 4207.1 & 4091.67 & 115.43 & 42.9032 \tabularnewline
37 & 4300 & 4338.35 & 4093.75 & 244.597 & -38.3468 \tabularnewline
38 & 4350 & 4469.6 & 4097.92 & 371.68 & -119.597 \tabularnewline
39 & 4450 & 4452.93 & 4112.5 & 340.43 & -2.93017 \tabularnewline
40 & 3700 & 4353.86 & 4116.67 & 237.189 & -653.856 \tabularnewline
41 & 4300 & 4237.42 & 4120.83 & 116.588 & 62.5791 \tabularnewline
42 & 4500 & 4292.98 & 4131.25 & 161.726 & 207.024 \tabularnewline
43 & 3750 & 3622.72 & 4143.75 & -521.028 & 127.278 \tabularnewline
44 & 2500 & 2236.68 & 4162.5 & -1925.82 & 263.32 \tabularnewline
45 & 4400 & 4362.1 & 4187.5 & 174.597 & 37.9032 \tabularnewline
46 & 4500 & 4568.14 & 4241.67 & 326.472 & -68.1385 \tabularnewline
47 & 4500 & 4583.14 & 4225 & 358.139 & -83.1385 \tabularnewline
48 & 4400 & 4244.6 & 4129.17 & 115.43 & 155.403 \tabularnewline
49 & 4450 & 4348.76 & 4104.17 & 244.597 & 101.236 \tabularnewline
50 & 4650 & 4492.51 & 4120.83 & 371.68 & 157.486 \tabularnewline
51 & 4750 & 4473.76 & 4133.33 & 340.43 & 276.236 \tabularnewline
52 & 4700 & 4399.69 & 4162.5 & 237.189 & 300.311 \tabularnewline
53 & 2900 & 4324.92 & 4208.33 & 116.588 & -1424.92 \tabularnewline
54 & 3600 & 4413.81 & 4252.08 & 161.726 & -813.81 \tabularnewline
55 & 4050 & 3770.64 & 4291.67 & -521.028 & 279.361 \tabularnewline
56 & 2600 & 2399.18 & 4325 & -1925.82 & 200.82 \tabularnewline
57 & 4600 & 4520.43 & 4345.83 & 174.597 & 79.5698 \tabularnewline
58 & 5000 & 4695.22 & 4368.75 & 326.472 & 304.778 \tabularnewline
59 & 5100 & 4839.39 & 4481.25 & 358.139 & 260.611 \tabularnewline
60 & 4850 & 4761.26 & 4645.83 & 115.43 & 88.7365 \tabularnewline
61 & 4950 & 4961.26 & 4716.67 & 244.597 & -11.2635 \tabularnewline
62 & 4950 & 5098.76 & 4727.08 & 371.68 & -148.764 \tabularnewline
63 & 4950 & 5090.43 & 4750 & 340.43 & -140.43 \tabularnewline
64 & 5050 & 5010.11 & 4772.92 & 237.189 & 39.8939 \tabularnewline
65 & 5250 & 4906.17 & 4789.58 & 116.588 & 343.829 \tabularnewline
66 & 5200 & 4974.23 & 4812.5 & 161.726 & 225.774 \tabularnewline
67 & 4150 & 4322.72 & 4843.75 & -521.028 & -172.722 \tabularnewline
68 & 2750 & 2963.76 & 4889.58 & -1925.82 & -213.764 \tabularnewline
69 & 5000 & 5110.01 & 4935.42 & 174.597 & -110.014 \tabularnewline
70 & 5150 & 5297.31 & 4970.83 & 326.472 & -147.305 \tabularnewline
71 & 5350 & 5356.06 & 4997.92 & 358.139 & -6.05517 \tabularnewline
72 & 5150 & 5123.76 & 5008.33 & 115.43 & 26.2365 \tabularnewline
73 & 5400 & 5261.26 & 5016.67 & 244.597 & 138.736 \tabularnewline
74 & 5600 & 5394.6 & 5022.92 & 371.68 & 205.403 \tabularnewline
75 & 5400 & 5365.43 & 5025 & 340.43 & 34.5698 \tabularnewline
76 & 5450 & 5268.44 & 5031.25 & 237.189 & 181.561 \tabularnewline
77 & 5500 & 5147.84 & 5031.25 & 116.588 & 352.162 \tabularnewline
78 & 5200 & 5178.39 & 5016.67 & 161.726 & 21.6069 \tabularnewline
79 & 4350 & 4474.81 & 4995.83 & -521.028 & -124.805 \tabularnewline
80 & 2700 & 3047.1 & 4972.92 & -1925.82 & -347.097 \tabularnewline
81 & 5100 & 5126.68 & 4952.08 & 174.597 & -26.6802 \tabularnewline
82 & 5200 & 5257.72 & 4931.25 & 326.472 & -57.7218 \tabularnewline
83 & 5300 & 5251.89 & 4893.75 & 358.139 & 48.1115 \tabularnewline
84 & 4850 & 4967.51 & 4852.08 & 115.43 & -117.514 \tabularnewline
85 & 5200 & 5063.35 & 4818.75 & 244.597 & 136.653 \tabularnewline
86 & 5250 & 5184.18 & 4812.5 & 371.68 & 65.8198 \tabularnewline
87 & 5250 & 5159.18 & 4818.75 & 340.43 & 90.8198 \tabularnewline
88 & 5100 & 5055.94 & 4818.75 & 237.189 & 44.0606 \tabularnewline
89 & 4950 & 4929.09 & 4812.5 & 116.588 & 20.9124 \tabularnewline
90 & 4750 & 4970.06 & 4808.33 & 161.726 & -220.06 \tabularnewline
91 & 4000 & 4285.22 & 4806.25 & -521.028 & -285.222 \tabularnewline
92 & 2900 & 2870.01 & 4795.83 & -1925.82 & 29.9865 \tabularnewline
93 & 5050 & 4964.18 & 4789.58 & 174.597 & 85.8198 \tabularnewline
94 & 5250 & 5120.22 & 4793.75 & 326.472 & 129.778 \tabularnewline
95 & 5100 & 5174.81 & 4816.67 & 358.139 & -74.8052 \tabularnewline
96 & 4950 & 4967.51 & 4852.08 & 115.43 & -17.5135 \tabularnewline
97 & 5050 & 5119.6 & 4875 & 244.597 & -69.5968 \tabularnewline
98 & 5150 & 5259.18 & 4887.5 & 371.68 & -109.18 \tabularnewline
99 & 5200 & 5242.51 & 4902.08 & 340.43 & -42.5135 \tabularnewline
100 & 5250 & 5147.61 & 4910.42 & 237.189 & 102.394 \tabularnewline
101 & 5350 & 5041.59 & 4925 & 116.588 & 308.412 \tabularnewline
102 & 5200 & 5109.64 & 4947.92 & 161.726 & 90.3569 \tabularnewline
103 & 4100 & 4449.81 & 4970.83 & -521.028 & -349.805 \tabularnewline
104 & 3100 & 3076.26 & 5002.08 & -1925.82 & 23.7365 \tabularnewline
105 & 5200 & 5212.1 & 5037.5 & 174.597 & -12.0968 \tabularnewline
106 & 5300 & 5391.06 & 5064.58 & 326.472 & -91.0552 \tabularnewline
107 & 5400 & 5443.56 & 5085.42 & 358.139 & -43.5552 \tabularnewline
108 & 5200 & 5232.1 & 5116.67 & 115.43 & -32.0968 \tabularnewline
109 & 5350 & 5394.6 & 5150 & 244.597 & -44.5968 \tabularnewline
110 & 5600 & 5540.43 & 5168.75 & 371.68 & 59.5698 \tabularnewline
111 & 5600 & 5523.76 & 5183.33 & 340.43 & 76.2365 \tabularnewline
112 & 5500 & 5441.36 & 5204.17 & 237.189 & 58.6439 \tabularnewline
113 & 5600 & 5349.92 & 5233.33 & 116.588 & 250.079 \tabularnewline
114 & 5700 & 5424.23 & 5262.5 & 161.726 & 275.774 \tabularnewline
115 & 4400 & 4781.06 & 5302.08 & -521.028 & -381.055 \tabularnewline
116 & 3250 & 3428.35 & 5354.17 & -1925.82 & -178.347 \tabularnewline
117 & 5400 & 5572.51 & 5397.92 & 174.597 & -172.514 \tabularnewline
118 & 5600 & 5761.89 & 5435.42 & 326.472 & -161.889 \tabularnewline
119 & 5800 & 5841.47 & 5483.33 & 358.139 & -41.4718 \tabularnewline
120 & 5500 & 5632.1 & 5516.67 & 115.43 & -132.097 \tabularnewline
121 & 6000 & NA & NA & 244.597 & NA \tabularnewline
122 & 6200 & NA & NA & 371.68 & NA \tabularnewline
123 & 6050 & NA & NA & 340.43 & NA \tabularnewline
124 & 5950 & NA & NA & 237.189 & NA \tabularnewline
125 & 6300 & NA & NA & 116.588 & NA \tabularnewline
126 & 5800 & NA & NA & 161.726 & NA \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299280&T=1

[TABLE]
[ROW][C]Classical Decomposition by Moving Averages[/C][/ROW]
[ROW][C]t[/C][C]Observations[/C][C]Fit[/C][C]Trend[/C][C]Seasonal[/C][C]Random[/C][/ROW]
[ROW][C]1[/C][C]4250[/C][C]NA[/C][C]NA[/C][C]244.597[/C][C]NA[/C][/ROW]
[ROW][C]2[/C][C]4400[/C][C]NA[/C][C]NA[/C][C]371.68[/C][C]NA[/C][/ROW]
[ROW][C]3[/C][C]4350[/C][C]NA[/C][C]NA[/C][C]340.43[/C][C]NA[/C][/ROW]
[ROW][C]4[/C][C]4500[/C][C]NA[/C][C]NA[/C][C]237.189[/C][C]NA[/C][/ROW]
[ROW][C]5[/C][C]4550[/C][C]NA[/C][C]NA[/C][C]116.588[/C][C]NA[/C][/ROW]
[ROW][C]6[/C][C]4500[/C][C]NA[/C][C]NA[/C][C]161.726[/C][C]NA[/C][/ROW]
[ROW][C]7[/C][C]4050[/C][C]3737.31[/C][C]4258.33[/C][C]-521.028[/C][C]312.695[/C][/ROW]
[ROW][C]8[/C][C]2250[/C][C]2345.01[/C][C]4270.83[/C][C]-1925.82[/C][C]-95.0135[/C][/ROW]
[ROW][C]9[/C][C]4450[/C][C]4451.68[/C][C]4277.08[/C][C]174.597[/C][C]-1.68017[/C][/ROW]
[ROW][C]10[/C][C]4650[/C][C]4599.39[/C][C]4272.92[/C][C]326.472[/C][C]50.6115[/C][/ROW]
[ROW][C]11[/C][C]4700[/C][C]4616.47[/C][C]4258.33[/C][C]358.139[/C][C]83.5282[/C][/ROW]
[ROW][C]12[/C][C]4350[/C][C]4363.35[/C][C]4247.92[/C][C]115.43[/C][C]-13.3468[/C][/ROW]
[ROW][C]13[/C][C]4450[/C][C]4482.1[/C][C]4237.5[/C][C]244.597[/C][C]-32.0968[/C][/ROW]
[ROW][C]14[/C][C]4500[/C][C]4607.1[/C][C]4235.42[/C][C]371.68[/C][C]-107.097[/C][/ROW]
[ROW][C]15[/C][C]4400[/C][C]4577.93[/C][C]4237.5[/C][C]340.43[/C][C]-177.93[/C][/ROW]
[ROW][C]16[/C][C]4350[/C][C]4458.02[/C][C]4220.83[/C][C]237.189[/C][C]-108.023[/C][/ROW]
[ROW][C]17[/C][C]4350[/C][C]4308.25[/C][C]4191.67[/C][C]116.588[/C][C]41.7458[/C][/ROW]
[ROW][C]18[/C][C]4450[/C][C]4328.39[/C][C]4166.67[/C][C]161.726[/C][C]121.607[/C][/ROW]
[ROW][C]19[/C][C]3850[/C][C]3622.72[/C][C]4143.75[/C][C]-521.028[/C][C]227.278[/C][/ROW]
[ROW][C]20[/C][C]2400[/C][C]2199.18[/C][C]4125[/C][C]-1925.82[/C][C]200.82[/C][/ROW]
[ROW][C]21[/C][C]4350[/C][C]4289.18[/C][C]4114.58[/C][C]174.597[/C][C]60.8198[/C][/ROW]
[ROW][C]22[/C][C]4350[/C][C]4432.72[/C][C]4106.25[/C][C]326.472[/C][C]-82.7218[/C][/ROW]
[ROW][C]23[/C][C]4300[/C][C]4456.06[/C][C]4097.92[/C][C]358.139[/C][C]-156.055[/C][/ROW]
[ROW][C]24[/C][C]4150[/C][C]4200.85[/C][C]4085.42[/C][C]115.43[/C][C]-50.8468[/C][/ROW]
[ROW][C]25[/C][C]4100[/C][C]4325.85[/C][C]4081.25[/C][C]244.597[/C][C]-225.847[/C][/ROW]
[ROW][C]26[/C][C]4400[/C][C]4448.76[/C][C]4077.08[/C][C]371.68[/C][C]-48.7635[/C][/ROW]
[ROW][C]27[/C][C]4250[/C][C]4409.18[/C][C]4068.75[/C][C]340.43[/C][C]-159.18[/C][/ROW]
[ROW][C]28[/C][C]4300[/C][C]4310.11[/C][C]4072.92[/C][C]237.189[/C][C]-10.1061[/C][/ROW]
[ROW][C]29[/C][C]4200[/C][C]4199.92[/C][C]4083.33[/C][C]116.588[/C][C]0.0790895[/C][/ROW]
[ROW][C]30[/C][C]4300[/C][C]4253.39[/C][C]4091.67[/C][C]161.726[/C][C]46.6069[/C][/ROW]
[ROW][C]31[/C][C]3900[/C][C]3583.14[/C][C]4104.17[/C][C]-521.028[/C][C]316.861[/C][/ROW]
[ROW][C]32[/C][C]2250[/C][C]2184.6[/C][C]4110.42[/C][C]-1925.82[/C][C]65.4032[/C][/ROW]
[ROW][C]33[/C][C]4300[/C][C]4291.26[/C][C]4116.67[/C][C]174.597[/C][C]8.7365[/C][/ROW]
[ROW][C]34[/C][C]4500[/C][C]4426.47[/C][C]4100[/C][C]326.472[/C][C]73.5282[/C][/ROW]
[ROW][C]35[/C][C]4400[/C][C]4437.31[/C][C]4079.17[/C][C]358.139[/C][C]-37.3052[/C][/ROW]
[ROW][C]36[/C][C]4250[/C][C]4207.1[/C][C]4091.67[/C][C]115.43[/C][C]42.9032[/C][/ROW]
[ROW][C]37[/C][C]4300[/C][C]4338.35[/C][C]4093.75[/C][C]244.597[/C][C]-38.3468[/C][/ROW]
[ROW][C]38[/C][C]4350[/C][C]4469.6[/C][C]4097.92[/C][C]371.68[/C][C]-119.597[/C][/ROW]
[ROW][C]39[/C][C]4450[/C][C]4452.93[/C][C]4112.5[/C][C]340.43[/C][C]-2.93017[/C][/ROW]
[ROW][C]40[/C][C]3700[/C][C]4353.86[/C][C]4116.67[/C][C]237.189[/C][C]-653.856[/C][/ROW]
[ROW][C]41[/C][C]4300[/C][C]4237.42[/C][C]4120.83[/C][C]116.588[/C][C]62.5791[/C][/ROW]
[ROW][C]42[/C][C]4500[/C][C]4292.98[/C][C]4131.25[/C][C]161.726[/C][C]207.024[/C][/ROW]
[ROW][C]43[/C][C]3750[/C][C]3622.72[/C][C]4143.75[/C][C]-521.028[/C][C]127.278[/C][/ROW]
[ROW][C]44[/C][C]2500[/C][C]2236.68[/C][C]4162.5[/C][C]-1925.82[/C][C]263.32[/C][/ROW]
[ROW][C]45[/C][C]4400[/C][C]4362.1[/C][C]4187.5[/C][C]174.597[/C][C]37.9032[/C][/ROW]
[ROW][C]46[/C][C]4500[/C][C]4568.14[/C][C]4241.67[/C][C]326.472[/C][C]-68.1385[/C][/ROW]
[ROW][C]47[/C][C]4500[/C][C]4583.14[/C][C]4225[/C][C]358.139[/C][C]-83.1385[/C][/ROW]
[ROW][C]48[/C][C]4400[/C][C]4244.6[/C][C]4129.17[/C][C]115.43[/C][C]155.403[/C][/ROW]
[ROW][C]49[/C][C]4450[/C][C]4348.76[/C][C]4104.17[/C][C]244.597[/C][C]101.236[/C][/ROW]
[ROW][C]50[/C][C]4650[/C][C]4492.51[/C][C]4120.83[/C][C]371.68[/C][C]157.486[/C][/ROW]
[ROW][C]51[/C][C]4750[/C][C]4473.76[/C][C]4133.33[/C][C]340.43[/C][C]276.236[/C][/ROW]
[ROW][C]52[/C][C]4700[/C][C]4399.69[/C][C]4162.5[/C][C]237.189[/C][C]300.311[/C][/ROW]
[ROW][C]53[/C][C]2900[/C][C]4324.92[/C][C]4208.33[/C][C]116.588[/C][C]-1424.92[/C][/ROW]
[ROW][C]54[/C][C]3600[/C][C]4413.81[/C][C]4252.08[/C][C]161.726[/C][C]-813.81[/C][/ROW]
[ROW][C]55[/C][C]4050[/C][C]3770.64[/C][C]4291.67[/C][C]-521.028[/C][C]279.361[/C][/ROW]
[ROW][C]56[/C][C]2600[/C][C]2399.18[/C][C]4325[/C][C]-1925.82[/C][C]200.82[/C][/ROW]
[ROW][C]57[/C][C]4600[/C][C]4520.43[/C][C]4345.83[/C][C]174.597[/C][C]79.5698[/C][/ROW]
[ROW][C]58[/C][C]5000[/C][C]4695.22[/C][C]4368.75[/C][C]326.472[/C][C]304.778[/C][/ROW]
[ROW][C]59[/C][C]5100[/C][C]4839.39[/C][C]4481.25[/C][C]358.139[/C][C]260.611[/C][/ROW]
[ROW][C]60[/C][C]4850[/C][C]4761.26[/C][C]4645.83[/C][C]115.43[/C][C]88.7365[/C][/ROW]
[ROW][C]61[/C][C]4950[/C][C]4961.26[/C][C]4716.67[/C][C]244.597[/C][C]-11.2635[/C][/ROW]
[ROW][C]62[/C][C]4950[/C][C]5098.76[/C][C]4727.08[/C][C]371.68[/C][C]-148.764[/C][/ROW]
[ROW][C]63[/C][C]4950[/C][C]5090.43[/C][C]4750[/C][C]340.43[/C][C]-140.43[/C][/ROW]
[ROW][C]64[/C][C]5050[/C][C]5010.11[/C][C]4772.92[/C][C]237.189[/C][C]39.8939[/C][/ROW]
[ROW][C]65[/C][C]5250[/C][C]4906.17[/C][C]4789.58[/C][C]116.588[/C][C]343.829[/C][/ROW]
[ROW][C]66[/C][C]5200[/C][C]4974.23[/C][C]4812.5[/C][C]161.726[/C][C]225.774[/C][/ROW]
[ROW][C]67[/C][C]4150[/C][C]4322.72[/C][C]4843.75[/C][C]-521.028[/C][C]-172.722[/C][/ROW]
[ROW][C]68[/C][C]2750[/C][C]2963.76[/C][C]4889.58[/C][C]-1925.82[/C][C]-213.764[/C][/ROW]
[ROW][C]69[/C][C]5000[/C][C]5110.01[/C][C]4935.42[/C][C]174.597[/C][C]-110.014[/C][/ROW]
[ROW][C]70[/C][C]5150[/C][C]5297.31[/C][C]4970.83[/C][C]326.472[/C][C]-147.305[/C][/ROW]
[ROW][C]71[/C][C]5350[/C][C]5356.06[/C][C]4997.92[/C][C]358.139[/C][C]-6.05517[/C][/ROW]
[ROW][C]72[/C][C]5150[/C][C]5123.76[/C][C]5008.33[/C][C]115.43[/C][C]26.2365[/C][/ROW]
[ROW][C]73[/C][C]5400[/C][C]5261.26[/C][C]5016.67[/C][C]244.597[/C][C]138.736[/C][/ROW]
[ROW][C]74[/C][C]5600[/C][C]5394.6[/C][C]5022.92[/C][C]371.68[/C][C]205.403[/C][/ROW]
[ROW][C]75[/C][C]5400[/C][C]5365.43[/C][C]5025[/C][C]340.43[/C][C]34.5698[/C][/ROW]
[ROW][C]76[/C][C]5450[/C][C]5268.44[/C][C]5031.25[/C][C]237.189[/C][C]181.561[/C][/ROW]
[ROW][C]77[/C][C]5500[/C][C]5147.84[/C][C]5031.25[/C][C]116.588[/C][C]352.162[/C][/ROW]
[ROW][C]78[/C][C]5200[/C][C]5178.39[/C][C]5016.67[/C][C]161.726[/C][C]21.6069[/C][/ROW]
[ROW][C]79[/C][C]4350[/C][C]4474.81[/C][C]4995.83[/C][C]-521.028[/C][C]-124.805[/C][/ROW]
[ROW][C]80[/C][C]2700[/C][C]3047.1[/C][C]4972.92[/C][C]-1925.82[/C][C]-347.097[/C][/ROW]
[ROW][C]81[/C][C]5100[/C][C]5126.68[/C][C]4952.08[/C][C]174.597[/C][C]-26.6802[/C][/ROW]
[ROW][C]82[/C][C]5200[/C][C]5257.72[/C][C]4931.25[/C][C]326.472[/C][C]-57.7218[/C][/ROW]
[ROW][C]83[/C][C]5300[/C][C]5251.89[/C][C]4893.75[/C][C]358.139[/C][C]48.1115[/C][/ROW]
[ROW][C]84[/C][C]4850[/C][C]4967.51[/C][C]4852.08[/C][C]115.43[/C][C]-117.514[/C][/ROW]
[ROW][C]85[/C][C]5200[/C][C]5063.35[/C][C]4818.75[/C][C]244.597[/C][C]136.653[/C][/ROW]
[ROW][C]86[/C][C]5250[/C][C]5184.18[/C][C]4812.5[/C][C]371.68[/C][C]65.8198[/C][/ROW]
[ROW][C]87[/C][C]5250[/C][C]5159.18[/C][C]4818.75[/C][C]340.43[/C][C]90.8198[/C][/ROW]
[ROW][C]88[/C][C]5100[/C][C]5055.94[/C][C]4818.75[/C][C]237.189[/C][C]44.0606[/C][/ROW]
[ROW][C]89[/C][C]4950[/C][C]4929.09[/C][C]4812.5[/C][C]116.588[/C][C]20.9124[/C][/ROW]
[ROW][C]90[/C][C]4750[/C][C]4970.06[/C][C]4808.33[/C][C]161.726[/C][C]-220.06[/C][/ROW]
[ROW][C]91[/C][C]4000[/C][C]4285.22[/C][C]4806.25[/C][C]-521.028[/C][C]-285.222[/C][/ROW]
[ROW][C]92[/C][C]2900[/C][C]2870.01[/C][C]4795.83[/C][C]-1925.82[/C][C]29.9865[/C][/ROW]
[ROW][C]93[/C][C]5050[/C][C]4964.18[/C][C]4789.58[/C][C]174.597[/C][C]85.8198[/C][/ROW]
[ROW][C]94[/C][C]5250[/C][C]5120.22[/C][C]4793.75[/C][C]326.472[/C][C]129.778[/C][/ROW]
[ROW][C]95[/C][C]5100[/C][C]5174.81[/C][C]4816.67[/C][C]358.139[/C][C]-74.8052[/C][/ROW]
[ROW][C]96[/C][C]4950[/C][C]4967.51[/C][C]4852.08[/C][C]115.43[/C][C]-17.5135[/C][/ROW]
[ROW][C]97[/C][C]5050[/C][C]5119.6[/C][C]4875[/C][C]244.597[/C][C]-69.5968[/C][/ROW]
[ROW][C]98[/C][C]5150[/C][C]5259.18[/C][C]4887.5[/C][C]371.68[/C][C]-109.18[/C][/ROW]
[ROW][C]99[/C][C]5200[/C][C]5242.51[/C][C]4902.08[/C][C]340.43[/C][C]-42.5135[/C][/ROW]
[ROW][C]100[/C][C]5250[/C][C]5147.61[/C][C]4910.42[/C][C]237.189[/C][C]102.394[/C][/ROW]
[ROW][C]101[/C][C]5350[/C][C]5041.59[/C][C]4925[/C][C]116.588[/C][C]308.412[/C][/ROW]
[ROW][C]102[/C][C]5200[/C][C]5109.64[/C][C]4947.92[/C][C]161.726[/C][C]90.3569[/C][/ROW]
[ROW][C]103[/C][C]4100[/C][C]4449.81[/C][C]4970.83[/C][C]-521.028[/C][C]-349.805[/C][/ROW]
[ROW][C]104[/C][C]3100[/C][C]3076.26[/C][C]5002.08[/C][C]-1925.82[/C][C]23.7365[/C][/ROW]
[ROW][C]105[/C][C]5200[/C][C]5212.1[/C][C]5037.5[/C][C]174.597[/C][C]-12.0968[/C][/ROW]
[ROW][C]106[/C][C]5300[/C][C]5391.06[/C][C]5064.58[/C][C]326.472[/C][C]-91.0552[/C][/ROW]
[ROW][C]107[/C][C]5400[/C][C]5443.56[/C][C]5085.42[/C][C]358.139[/C][C]-43.5552[/C][/ROW]
[ROW][C]108[/C][C]5200[/C][C]5232.1[/C][C]5116.67[/C][C]115.43[/C][C]-32.0968[/C][/ROW]
[ROW][C]109[/C][C]5350[/C][C]5394.6[/C][C]5150[/C][C]244.597[/C][C]-44.5968[/C][/ROW]
[ROW][C]110[/C][C]5600[/C][C]5540.43[/C][C]5168.75[/C][C]371.68[/C][C]59.5698[/C][/ROW]
[ROW][C]111[/C][C]5600[/C][C]5523.76[/C][C]5183.33[/C][C]340.43[/C][C]76.2365[/C][/ROW]
[ROW][C]112[/C][C]5500[/C][C]5441.36[/C][C]5204.17[/C][C]237.189[/C][C]58.6439[/C][/ROW]
[ROW][C]113[/C][C]5600[/C][C]5349.92[/C][C]5233.33[/C][C]116.588[/C][C]250.079[/C][/ROW]
[ROW][C]114[/C][C]5700[/C][C]5424.23[/C][C]5262.5[/C][C]161.726[/C][C]275.774[/C][/ROW]
[ROW][C]115[/C][C]4400[/C][C]4781.06[/C][C]5302.08[/C][C]-521.028[/C][C]-381.055[/C][/ROW]
[ROW][C]116[/C][C]3250[/C][C]3428.35[/C][C]5354.17[/C][C]-1925.82[/C][C]-178.347[/C][/ROW]
[ROW][C]117[/C][C]5400[/C][C]5572.51[/C][C]5397.92[/C][C]174.597[/C][C]-172.514[/C][/ROW]
[ROW][C]118[/C][C]5600[/C][C]5761.89[/C][C]5435.42[/C][C]326.472[/C][C]-161.889[/C][/ROW]
[ROW][C]119[/C][C]5800[/C][C]5841.47[/C][C]5483.33[/C][C]358.139[/C][C]-41.4718[/C][/ROW]
[ROW][C]120[/C][C]5500[/C][C]5632.1[/C][C]5516.67[/C][C]115.43[/C][C]-132.097[/C][/ROW]
[ROW][C]121[/C][C]6000[/C][C]NA[/C][C]NA[/C][C]244.597[/C][C]NA[/C][/ROW]
[ROW][C]122[/C][C]6200[/C][C]NA[/C][C]NA[/C][C]371.68[/C][C]NA[/C][/ROW]
[ROW][C]123[/C][C]6050[/C][C]NA[/C][C]NA[/C][C]340.43[/C][C]NA[/C][/ROW]
[ROW][C]124[/C][C]5950[/C][C]NA[/C][C]NA[/C][C]237.189[/C][C]NA[/C][/ROW]
[ROW][C]125[/C][C]6300[/C][C]NA[/C][C]NA[/C][C]116.588[/C][C]NA[/C][/ROW]
[ROW][C]126[/C][C]5800[/C][C]NA[/C][C]NA[/C][C]161.726[/C][C]NA[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299280&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299280&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Classical Decomposition by Moving Averages
tObservationsFitTrendSeasonalRandom
14250NANA244.597NA
24400NANA371.68NA
34350NANA340.43NA
44500NANA237.189NA
54550NANA116.588NA
64500NANA161.726NA
740503737.314258.33-521.028312.695
822502345.014270.83-1925.82-95.0135
944504451.684277.08174.597-1.68017
1046504599.394272.92326.47250.6115
1147004616.474258.33358.13983.5282
1243504363.354247.92115.43-13.3468
1344504482.14237.5244.597-32.0968
1445004607.14235.42371.68-107.097
1544004577.934237.5340.43-177.93
1643504458.024220.83237.189-108.023
1743504308.254191.67116.58841.7458
1844504328.394166.67161.726121.607
1938503622.724143.75-521.028227.278
2024002199.184125-1925.82200.82
2143504289.184114.58174.59760.8198
2243504432.724106.25326.472-82.7218
2343004456.064097.92358.139-156.055
2441504200.854085.42115.43-50.8468
2541004325.854081.25244.597-225.847
2644004448.764077.08371.68-48.7635
2742504409.184068.75340.43-159.18
2843004310.114072.92237.189-10.1061
2942004199.924083.33116.5880.0790895
3043004253.394091.67161.72646.6069
3139003583.144104.17-521.028316.861
3222502184.64110.42-1925.8265.4032
3343004291.264116.67174.5978.7365
3445004426.474100326.47273.5282
3544004437.314079.17358.139-37.3052
3642504207.14091.67115.4342.9032
3743004338.354093.75244.597-38.3468
3843504469.64097.92371.68-119.597
3944504452.934112.5340.43-2.93017
4037004353.864116.67237.189-653.856
4143004237.424120.83116.58862.5791
4245004292.984131.25161.726207.024
4337503622.724143.75-521.028127.278
4425002236.684162.5-1925.82263.32
4544004362.14187.5174.59737.9032
4645004568.144241.67326.472-68.1385
4745004583.144225358.139-83.1385
4844004244.64129.17115.43155.403
4944504348.764104.17244.597101.236
5046504492.514120.83371.68157.486
5147504473.764133.33340.43276.236
5247004399.694162.5237.189300.311
5329004324.924208.33116.588-1424.92
5436004413.814252.08161.726-813.81
5540503770.644291.67-521.028279.361
5626002399.184325-1925.82200.82
5746004520.434345.83174.59779.5698
5850004695.224368.75326.472304.778
5951004839.394481.25358.139260.611
6048504761.264645.83115.4388.7365
6149504961.264716.67244.597-11.2635
6249505098.764727.08371.68-148.764
6349505090.434750340.43-140.43
6450505010.114772.92237.18939.8939
6552504906.174789.58116.588343.829
6652004974.234812.5161.726225.774
6741504322.724843.75-521.028-172.722
6827502963.764889.58-1925.82-213.764
6950005110.014935.42174.597-110.014
7051505297.314970.83326.472-147.305
7153505356.064997.92358.139-6.05517
7251505123.765008.33115.4326.2365
7354005261.265016.67244.597138.736
7456005394.65022.92371.68205.403
7554005365.435025340.4334.5698
7654505268.445031.25237.189181.561
7755005147.845031.25116.588352.162
7852005178.395016.67161.72621.6069
7943504474.814995.83-521.028-124.805
8027003047.14972.92-1925.82-347.097
8151005126.684952.08174.597-26.6802
8252005257.724931.25326.472-57.7218
8353005251.894893.75358.13948.1115
8448504967.514852.08115.43-117.514
8552005063.354818.75244.597136.653
8652505184.184812.5371.6865.8198
8752505159.184818.75340.4390.8198
8851005055.944818.75237.18944.0606
8949504929.094812.5116.58820.9124
9047504970.064808.33161.726-220.06
9140004285.224806.25-521.028-285.222
9229002870.014795.83-1925.8229.9865
9350504964.184789.58174.59785.8198
9452505120.224793.75326.472129.778
9551005174.814816.67358.139-74.8052
9649504967.514852.08115.43-17.5135
9750505119.64875244.597-69.5968
9851505259.184887.5371.68-109.18
9952005242.514902.08340.43-42.5135
10052505147.614910.42237.189102.394
10153505041.594925116.588308.412
10252005109.644947.92161.72690.3569
10341004449.814970.83-521.028-349.805
10431003076.265002.08-1925.8223.7365
10552005212.15037.5174.597-12.0968
10653005391.065064.58326.472-91.0552
10754005443.565085.42358.139-43.5552
10852005232.15116.67115.43-32.0968
10953505394.65150244.597-44.5968
11056005540.435168.75371.6859.5698
11156005523.765183.33340.4376.2365
11255005441.365204.17237.18958.6439
11356005349.925233.33116.588250.079
11457005424.235262.5161.726275.774
11544004781.065302.08-521.028-381.055
11632503428.355354.17-1925.82-178.347
11754005572.515397.92174.597-172.514
11856005761.895435.42326.472-161.889
11958005841.475483.33358.139-41.4718
12055005632.15516.67115.43-132.097
1216000NANA244.597NA
1226200NANA371.68NA
1236050NANA340.43NA
1245950NANA237.189NA
1256300NANA116.588NA
1265800NANA161.726NA



Parameters (Session):
par1 = additive ; par2 = 12 ;
Parameters (R input):
par1 = additive ; par2 = 12 ;
R code (references can be found in the software module):
par2 <- as.numeric(par2)
x <- ts(x,freq=par2)
m <- decompose(x,type=par1)
m$figure
bitmap(file='test1.png')
plot(m)
dev.off()
mylagmax <- length(x)/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(as.numeric(m$trend),na.action=na.pass,lag.max = mylagmax,main='Trend')
acf(as.numeric(m$seasonal),na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(as.numeric(m$random),na.action=na.pass,lag.max = mylagmax,main='Random')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
spectrum(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
spectrum(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(as.numeric(m$trend[!is.na(m$trend)]),main='Trend')
cpgram(as.numeric(m$seasonal[!is.na(m$seasonal)]),main='Seasonal')
cpgram(as.numeric(m$random[!is.na(m$random)]),main='Random')
par(op)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Classical Decomposition by Moving Averages',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observations',header=TRUE)
a<-table.element(a,'Fit',header=TRUE)
a<-table.element(a,'Trend',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Random',header=TRUE)
a<-table.row.end(a)
for (i in 1:length(m$trend)) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
if (par1 == 'additive') a<-table.element(a,signif(m$trend[i]+m$seasonal[i],6)) else a<-table.element(a,signif(m$trend[i]*m$seasonal[i],6))
a<-table.element(a,signif(m$trend[i],6))
a<-table.element(a,signif(m$seasonal[i],6))
a<-table.element(a,signif(m$random[i],6))
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')