| library(lattice)library(lmtest)
 library(car)
 library(MASS)
 n25 <- 25 #minimum number of obs. for Goldfeld-Quandt test
 mywarning <- ''
 par1 <- as.numeric(par1)
 if(is.na(par1)) {
 par1 <- 1
 mywarning = 'Warning: you did not specify the column number of the endogenous series! The first column was selected by default.'
 }
 if (par4=='') par4 <- 0
 par4 <- as.numeric(par4)
 if (par5=='') par5 <- 0
 par5 <- as.numeric(par5)
 x <- na.omit(t(y))
 k <- length(x[1,])
 n <- length(x[,1])
 x1 <- cbind(x[,par1], x[,1:k!=par1])
 mycolnames <- c(colnames(x)[par1], colnames(x)[1:k!=par1])
 colnames(x1) <- mycolnames #colnames(x)[par1]
 x <- x1
 if (par3 == 'First Differences'){
 (n <- n -1)
 x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
 for (i in 1:n) {
 for (j in 1:k) {
 x2[i,j] <- x[i+1,j] - x[i,j]
 }
 }
 x <- x2
 }
 if (par3 == 'Seasonal Differences (s=12)'){
 (n <- n - 12)
 x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
 for (i in 1:n) {
 for (j in 1:k) {
 x2[i,j] <- x[i+12,j] - x[i,j]
 }
 }
 x <- x2
 }
 if (par3 == 'First and Seasonal Differences (s=12)'){
 (n <- n -1)
 x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B)',colnames(x),sep='')))
 for (i in 1:n) {
 for (j in 1:k) {
 x2[i,j] <- x[i+1,j] - x[i,j]
 }
 }
 x <- x2
 (n <- n - 12)
 x2 <- array(0, dim=c(n,k), dimnames=list(1:n, paste('(1-B12)',colnames(x),sep='')))
 for (i in 1:n) {
 for (j in 1:k) {
 x2[i,j] <- x[i+12,j] - x[i,j]
 }
 }
 x <- x2
 }
 if(par4 > 0) {
 x2 <- array(0, dim=c(n-par4,par4), dimnames=list(1:(n-par4), paste(colnames(x)[par1],'(t-',1:par4,')',sep='')))
 for (i in 1:(n-par4)) {
 for (j in 1:par4) {
 x2[i,j] <- x[i+par4-j,par1]
 }
 }
 x <- cbind(x[(par4+1):n,], x2)
 n <- n - par4
 }
 if(par5 > 0) {
 x2 <- array(0, dim=c(n-par5*12,par5), dimnames=list(1:(n-par5*12), paste(colnames(x)[par1],'(t-',1:par5,'s)',sep='')))
 for (i in 1:(n-par5*12)) {
 for (j in 1:par5) {
 x2[i,j] <- x[i+par5*12-j*12,par1]
 }
 }
 x <- cbind(x[(par5*12+1):n,], x2)
 n <- n - par5*12
 }
 if (par2 == 'Include Monthly Dummies'){
 x2 <- array(0, dim=c(n,11), dimnames=list(1:n, paste('M', seq(1:11), sep ='')))
 for (i in 1:11){
 x2[seq(i,n,12),i] <- 1
 }
 x <- cbind(x, x2)
 }
 if (par2 == 'Include Quarterly Dummies'){
 x2 <- array(0, dim=c(n,3), dimnames=list(1:n, paste('Q', seq(1:3), sep ='')))
 for (i in 1:3){
 x2[seq(i,n,4),i] <- 1
 }
 x <- cbind(x, x2)
 }
 (k <- length(x[n,]))
 if (par3 == 'Linear Trend'){
 x <- cbind(x, c(1:n))
 colnames(x)[k+1] <- 't'
 }
 print(x)
 (k <- length(x[n,]))
 head(x)
 df <- as.data.frame(x)
 (mylm <- lm(df))
 (mysum <- summary(mylm))
 if (n > n25) {
 kp3 <- k + 3
 nmkm3 <- n - k - 3
 gqarr <- array(NA, dim=c(nmkm3-kp3+1,3))
 numgqtests <- 0
 numsignificant1 <- 0
 numsignificant5 <- 0
 numsignificant10 <- 0
 for (mypoint in kp3:nmkm3) {
 j <- 0
 numgqtests <- numgqtests + 1
 for (myalt in c('greater', 'two.sided', 'less')) {
 j <- j + 1
 gqarr[mypoint-kp3+1,j] <- gqtest(mylm, point=mypoint, alternative=myalt)$p.value
 }
 if (gqarr[mypoint-kp3+1,2] < 0.01) numsignificant1 <- numsignificant1 + 1
 if (gqarr[mypoint-kp3+1,2] < 0.05) numsignificant5 <- numsignificant5 + 1
 if (gqarr[mypoint-kp3+1,2] < 0.10) numsignificant10 <- numsignificant10 + 1
 }
 gqarr
 }
 bitmap(file='test0.png')
 plot(x[,1], type='l', main='Actuals and Interpolation', ylab='value of Actuals and Interpolation (dots)', xlab='time or index')
 points(x[,1]-mysum$resid)
 grid()
 dev.off()
 bitmap(file='test1.png')
 plot(mysum$resid, type='b', pch=19, main='Residuals', ylab='value of Residuals', xlab='time or index')
 grid()
 dev.off()
 bitmap(file='test2.png')
 sresid <- studres(mylm)
 hist(sresid, freq=FALSE, main='Distribution of Studentized Residuals')
 xfit<-seq(min(sresid),max(sresid),length=40)
 yfit<-dnorm(xfit)
 lines(xfit, yfit)
 grid()
 dev.off()
 bitmap(file='test3.png')
 densityplot(~mysum$resid,col='black',main='Residual Density Plot', xlab='values of Residuals')
 dev.off()
 bitmap(file='test4.png')
 qqPlot(mylm, main='QQ Plot')
 grid()
 dev.off()
 (myerror <- as.ts(mysum$resid))
 bitmap(file='test5.png')
 dum <- cbind(lag(myerror,k=1),myerror)
 dum
 dum1 <- dum[2:length(myerror),]
 dum1
 z <- as.data.frame(dum1)
 print(z)
 plot(z,main=paste('Residual Lag plot, lowess, and regression line'), ylab='values of Residuals', xlab='lagged values of Residuals')
 lines(lowess(z))
 abline(lm(z))
 grid()
 dev.off()
 bitmap(file='test6.png')
 acf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Autocorrelation Function')
 grid()
 dev.off()
 bitmap(file='test7.png')
 pacf(mysum$resid, lag.max=length(mysum$resid)/2, main='Residual Partial Autocorrelation Function')
 grid()
 dev.off()
 bitmap(file='test8.png')
 opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
 plot(mylm, las = 1, sub='Residual Diagnostics')
 par(opar)
 dev.off()
 if (n > n25) {
 bitmap(file='test9.png')
 plot(kp3:nmkm3,gqarr[,2], main='Goldfeld-Quandt test',ylab='2-sided p-value',xlab='breakpoint')
 grid()
 dev.off()
 }
 load(file='createtable')
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a, 'Multiple Linear Regression - Estimated Regression Equation', 1, TRUE)
 a<-table.row.end(a)
 myeq <- colnames(x)[1]
 myeq <- paste(myeq, '[t] = ', sep='')
 for (i in 1:k){
 if (mysum$coefficients[i,1] > 0) myeq <- paste(myeq, '+', '')
 myeq <- paste(myeq, signif(mysum$coefficients[i,1],6), sep=' ')
 if (rownames(mysum$coefficients)[i] != '(Intercept)') {
 myeq <- paste(myeq, rownames(mysum$coefficients)[i], sep='')
 if (rownames(mysum$coefficients)[i] != 't') myeq <- paste(myeq, '[t]', sep='')
 }
 }
 myeq <- paste(myeq, ' + e[t]')
 a<-table.row.start(a)
 a<-table.element(a, myeq)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, mywarning)
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable1.tab')
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Multiple Linear Regression - Ordinary Least Squares', 6, TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Variable',header=TRUE)
 a<-table.element(a,'Parameter',header=TRUE)
 a<-table.element(a,'S.D.',header=TRUE)
 a<-table.element(a,'T-STAT
 H0: parameter = 0',header=TRUE)
 a<-table.element(a,'2-tail p-value',header=TRUE)
 a<-table.element(a,'1-tail p-value',header=TRUE)
 a<-table.row.end(a)
 for (i in 1:k){
 a<-table.row.start(a)
 a<-table.element(a,rownames(mysum$coefficients)[i],header=TRUE)
 a<-table.element(a,formatC(signif(mysum$coefficients[i,1],5),format='g',flag='+'))
 a<-table.element(a,formatC(signif(mysum$coefficients[i,2],5),format='g',flag=' '))
 a<-table.element(a,formatC(signif(mysum$coefficients[i,3],4),format='e',flag='+'))
 a<-table.element(a,formatC(signif(mysum$coefficients[i,4],4),format='g',flag=' '))
 a<-table.element(a,formatC(signif(mysum$coefficients[i,4]/2,4),format='g',flag=' '))
 a<-table.row.end(a)
 }
 a<-table.end(a)
 table.save(a,file='mytable2.tab')
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a, 'Multiple Linear Regression - Regression Statistics', 2, TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, 'Multiple R',1,TRUE)
 a<-table.element(a,formatC(signif(sqrt(mysum$r.squared),6),format='g',flag=' '))
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, 'R-squared',1,TRUE)
 a<-table.element(a,formatC(signif(mysum$r.squared,6),format='g',flag=' '))
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, 'Adjusted R-squared',1,TRUE)
 a<-table.element(a,formatC(signif(mysum$adj.r.squared,6),format='g',flag=' '))
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, 'F-TEST (value)',1,TRUE)
 a<-table.element(a,formatC(signif(mysum$fstatistic[1],6),format='g',flag=' '))
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, 'F-TEST (DF numerator)',1,TRUE)
 a<-table.element(a, signif(mysum$fstatistic[2],6))
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, 'F-TEST (DF denominator)',1,TRUE)
 a<-table.element(a, signif(mysum$fstatistic[3],6))
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, 'p-value',1,TRUE)
 a<-table.element(a,formatC(signif(1-pf(mysum$fstatistic[1],mysum$fstatistic[2],mysum$fstatistic[3]),6),format='g',flag=' '))
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, 'Multiple Linear Regression - Residual Statistics', 2, TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, 'Residual Standard Deviation',1,TRUE)
 a<-table.element(a,formatC(signif(mysum$sigma,6),format='g',flag=' '))
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, 'Sum Squared Residuals',1,TRUE)
 a<-table.element(a,formatC(signif(sum(myerror*myerror),6),format='g',flag=' '))
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable3.tab')
 myr <- as.numeric(mysum$resid)
 myr
 if(n < 200) {
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a, 'Multiple Linear Regression - Actuals, Interpolation, and Residuals', 4, TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a, 'Time or Index', 1, TRUE)
 a<-table.element(a, 'Actuals', 1, TRUE)
 a<-table.element(a, 'Interpolation
 Forecast', 1, TRUE)
 a<-table.element(a, 'Residuals
 Prediction Error', 1, TRUE)
 a<-table.row.end(a)
 for (i in 1:n) {
 a<-table.row.start(a)
 a<-table.element(a,i, 1, TRUE)
 a<-table.element(a,formatC(signif(x[i],6),format='g',flag=' '))
 a<-table.element(a,formatC(signif(x[i]-mysum$resid[i],6),format='g',flag=' '))
 a<-table.element(a,formatC(signif(mysum$resid[i],6),format='g',flag=' '))
 a<-table.row.end(a)
 }
 a<-table.end(a)
 table.save(a,file='mytable4.tab')
 if (n > n25) {
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'p-values',header=TRUE)
 a<-table.element(a,'Alternative Hypothesis',3,header=TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'breakpoint index',header=TRUE)
 a<-table.element(a,'greater',header=TRUE)
 a<-table.element(a,'2-sided',header=TRUE)
 a<-table.element(a,'less',header=TRUE)
 a<-table.row.end(a)
 for (mypoint in kp3:nmkm3) {
 a<-table.row.start(a)
 a<-table.element(a,mypoint,header=TRUE)
 a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,1],6),format='g',flag=' '))
 a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,2],6),format='g',flag=' '))
 a<-table.element(a,formatC(signif(gqarr[mypoint-kp3+1,3],6),format='g',flag=' '))
 a<-table.row.end(a)
 }
 a<-table.end(a)
 table.save(a,file='mytable5.tab')
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Meta Analysis of Goldfeld-Quandt test for Heteroskedasticity',4,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Description',header=TRUE)
 a<-table.element(a,'# significant tests',header=TRUE)
 a<-table.element(a,'% significant tests',header=TRUE)
 a<-table.element(a,'OK/NOK',header=TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'1% type I error level',header=TRUE)
 a<-table.element(a,signif(numsignificant1,6))
 a<-table.element(a,formatC(signif(numsignificant1/numgqtests,6),format='g',flag=' '))
 if (numsignificant1/numgqtests < 0.01) dum <- 'OK' else dum <- 'NOK'
 a<-table.element(a,dum)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'5% type I error level',header=TRUE)
 a<-table.element(a,signif(numsignificant5,6))
 a<-table.element(a,signif(numsignificant5/numgqtests,6))
 if (numsignificant5/numgqtests < 0.05) dum <- 'OK' else dum <- 'NOK'
 a<-table.element(a,dum)
 a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'10% type I error level',header=TRUE)
 a<-table.element(a,signif(numsignificant10,6))
 a<-table.element(a,signif(numsignificant10/numgqtests,6))
 if (numsignificant10/numgqtests < 0.1) dum <- 'OK' else dum <- 'NOK'
 a<-table.element(a,dum)
 a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable6.tab')
 }
 }
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of fitted values',1,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 reset_test_fitted <- resettest(mylm,power=2:3,type='fitted')
 a<-table.element(a,paste('
 ',RC.texteval('reset_test_fitted'),'',sep=''))a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of regressors',1,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 reset_test_regressors <- resettest(mylm,power=2:3,type='regressor')
 a<-table.element(a,paste('
 ',RC.texteval('reset_test_regressors'),'',sep=''))a<-table.row.end(a)
 a<-table.row.start(a)
 a<-table.element(a,'Ramsey RESET F-Test for powers (2 and 3) of principal components',1,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 reset_test_principal_components <- resettest(mylm,power=2:3,type='princomp')
 a<-table.element(a,paste('
 ',RC.texteval('reset_test_principal_components'),'',sep=''))a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable8.tab')
 a<-table.start()
 a<-table.row.start(a)
 a<-table.element(a,'Variance Inflation Factors (Multicollinearity)',1,TRUE)
 a<-table.row.end(a)
 a<-table.row.start(a)
 vif <- vif(mylm)
 a<-table.element(a,paste('
 ',RC.texteval('vif'),'',sep=''))a<-table.row.end(a)
 a<-table.end(a)
 table.save(a,file='mytable9.tab')
 
 |