Free Statistics

of Irreproducible Research!

Author's title

Author*The author of this computation has been verified*
R Software Modulerwasp_structuraltimeseries.wasp
Title produced by softwareStructural Time Series Models
Date of computationTue, 13 Dec 2016 22:32:11 +0100
Cite this page as followsStatistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?v=date/2016/Dec/13/t148166485890cutcsw6kltlxr.htm/, Retrieved Fri, 01 Nov 2024 03:41:42 +0000
Statistical Computations at FreeStatistics.org, Office for Research Development and Education, URL https://freestatistics.org/blog/index.php?pk=299241, Retrieved Fri, 01 Nov 2024 03:41:42 +0000
QR Codes:

Original text written by user:
IsPrivate?No (this computation is public)
User-defined keywords
Estimated Impact84
Family? (F = Feedback message, R = changed R code, M = changed R Module, P = changed Parameters, D = changed Data)
-       [Structural Time Series Models] [] [2016-12-13 21:32:11] [b2e25925e4919b0d6985405fcb461c0d] [Current]
Feedback Forum

Post a new message
Dataseries X:
4020
3540
3430
4200
3360
4440
4390
4940
3940
4560
4850
5070
6210
5200
4860
5160
5530
8830
4410
4850
8960
4620
5120
4520
8870
9470
6590
3970
3770
5500
6580
5280
8640
5510
5690
7620
4010
3570
4040
3600
4000
3070
3230
4060
3480
3750
3990
3100
3950
3010
3160
2960
2750
3590
3060
2970
3590
3450
2930
2660
3540
3160
2680
2900
2920
2900
3150
3150
3120
3720
3360
2740
3250
2700
2610
2410
2590
2630
2650
2600
3060
2650
2700
2620
2630
2850
2680
2430
2550
2570
2520
2500
2550
2790
2770
2460
2800
2770
2450
2370
2540
3470
2690
4110
3840
2860
3540
3370




Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center

\begin{tabular}{lllllllll}
\hline
Summary of computational transaction \tabularnewline
Raw Input view raw input (R code)  \tabularnewline
Raw Outputview raw output of R engine  \tabularnewline
Computing time5 seconds \tabularnewline
R ServerBig Analytics Cloud Computing Center \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299241&T=0

[TABLE]
[ROW]
Summary of computational transaction[/C][/ROW] [ROW]Raw Input[/C] view raw input (R code) [/C][/ROW] [ROW]Raw Output[/C]view raw output of R engine [/C][/ROW] [ROW]Computing time[/C]5 seconds[/C][/ROW] [ROW]R Server[/C]Big Analytics Cloud Computing Center[/C][/ROW] [/TABLE] Source: https://freestatistics.org/blog/index.php?pk=299241&T=0

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299241&T=0

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Summary of computational transaction
Raw Input view raw input (R code)
Raw Outputview raw output of R engine
Computing time5 seconds
R ServerBig Analytics Cloud Computing Center







Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
140204020000
235403874.31843105656-20.9206437444165-20.9206435812848-0.437993627043045
334303724.12179846944-35.0054714344806-35.0054714344806-0.364684420289874
442003865.77294748832-19.4894881019604-19.48948810196060.496225551547933
533603696.67076256683-30.5250476993798-30.5250476993796-0.426899770547752
644403920.32719750566-14.2860647380724-14.28606473807250.740088341695832
743904061.30412820579-5.48198629738311-5.481986297383120.460796837850894
849404329.718201358158.575041295162258.575041295162170.826235114761125
939404214.278004234712.723911700842082.72391170084209-0.379111985527875
1045604319.886012025977.241575669185037.241575669185020.3178869678397
1148504482.0266832086813.633102248268713.63310224826870.482701749091105
1250704663.2245821946720.179425895760720.17942589576080.525770137653013
1362104984.32462248695-17.2006445771155189.2070893828961.5202628764778
1452005053.18240238439-13.197116006982-13.19711515110020.225899751367588
1548604986.2531169785-15.3244699781912-15.3244699781913-0.153604411913791
1651605034.25175097468-13.1467777159013-13.14677771590130.190273613379279
1755305178.98381512177-8.32757887397678-8.327578873976210.489110410726759
1888306262.8880161951921.87033707927621.8703370792763.45031642844515
1944105725.663903585857.620064476707697.62006447670763-1.78902699208933
2048505472.473810380841.401343088636081.40134308863635-0.841905829928402
2189606489.0842942013724.313958410104824.31395841010483.2973497311981
2246205956.6537460751512.310304520741812.3103045207417-1.81631476970034
2351205719.564676754947.137003793854467.13700379385455-0.81631460495002
2445205375.896468286910.0982337990293010.0982337990292361-1.15110578123808
2588706147.01003912091-40.9383081794813450.3213877969813.18270354682147
2694707184.18353633888-9.50308542064655-9.503084797290293.15697277340447
2765906999.35085015299-13.8780650046485-13.8780650046488-0.538590147487399
2839706091.28114870176-33.4046904495374-33.404690449537-2.82701188810673
2937705395.82748967319-46.3417016936539-46.3417016936524-2.13098047972587
3055005406.76207947267-45.3196171359006-45.31961713590060.186504159040929
3165805726.92336280081-39.2588976796205-39.25889767962061.19926659162897
3252805581.57565058872-40.9173877291532-40.9173877291525-0.349943596044305
3386406442.31475566686-27.4762522529878-27.47625225298792.98512637058833
3455106163.44797534644-31.0816975294823-31.0816975294826-0.83447188400729
3556906014.70044751023-32.7163615372392-32.7163615372391-0.391336191609164
3676206459.42465963957-26.2584000508726-26.25840005087291.59018474584768
3740105785.40678942051-4.3144949765667147.459445455989-2.51085796403845
3835705106.79883763174-18.6419044967296-18.6419041885252-2.066982722185
3940404781.87778255969-24.2249213956802-24.2249213956804-0.970672588310472
4036004425.90063724575-29.5349793045144-29.5349793045139-1.07288315951918
4140004290.08656834875-31.062862073468-31.0628620734665-0.348098210701983
4230703925.74654281347-35.4548586939649-35.4548586939649-1.10060200892177
4332303711.24302638349-37.6557889196105-37.6557889196106-0.594527625567635
4440603794.74244182095-36.2466420492083-36.2466420492080.403797779463956
4534803689.42978819937-37.015387197562-37.0153871975622-0.230790068666569
4637503690.73283571149-36.6036221413282-36.60362214132830.128282222519456
4739903760.05206558927-35.4973394240039-35.49733942400390.355087126879582
4831003557.17406395945-37.2050208477703-37.2050208477705-0.561677015296812
4939503525.13059162428-37.3332592990106410.6658526301880.0193988447299174
5030103355.85767862591-39.5385390545806-39.5385391900801-0.414802649141978
5131603282.05108486932-40.0306024072417-40.0306024072418-0.110521233048003
5229603171.89946323152-40.9164394524172-40.9164394524168-0.22970704151492
5327503033.22083379157-42.0280844032062-42.0280844032047-0.323417349332292
5435903174.47566259401-40.1134264855497-40.11342648554980.610214173380605
5530603124.60026423782-40.2087593135659-40.2087593135659-0.0326393310083093
5629703063.29620768353-40.4041082541111-40.4041082541108-0.070736906657564
5735903195.37114246126-38.8723608460857-38.87236084608580.579524504702987
5834503250.75524562941-38.0625446038095-38.06254460380960.317152401852811
5929303143.37630224107-38.6425428823103-38.6425428823104-0.233476200178923
6026602989.73697604475-39.5843524715433-39.5843524715434-0.387636138487298
6135402989.4301981212-40.3547975318273443.9027729472050.144932364857101
6231603023.39785123681-39.3309984794982-39.33099869445210.23743868943349
6326802907.06551425639-40.2430773108536-40.2430773108538-0.25114243913147
6429002887.9595008152-40.022531108586-40.02253110858550.0698189020345024
6529202879.99690797928-39.7210110034658-39.72101100346410.106750241506227
6629002868.60101699619-39.4759194080502-39.47591940805040.0948062943129512
6731502931.47806299624-38.6467901077815-38.64679010778150.343772431356693
6831502976.69433564343-38.0016788873805-38.00167888738020.282336469842023
6931203000.78439015081-37.5429737018723-37.54297370187250.209383822593883
7037203187.91817833409-35.9349907433794-35.93499074337950.758529563272684
7133603220.94137694917-35.453695012021-35.4536950120210.233004479070331
7227403069.63962998616-36.2461567827712-36.2461567827714-0.391682674740496
7332502986.34427814926-35.4837465137561390.32121177533-0.171508150887563
7427002887.71436030444-36.2235048497976-36.2235048724673-0.203982008417403
7526102792.15262664898-36.8216336572313-36.8216336572314-0.195046548072091
7624102666.91745826578-37.6073828722664-37.6073828722661-0.293739718076974
7725902628.82477711276-37.6112742343347-37.6112742343328-0.0016232586631044
7826302612.91101790238-37.4510419300861-37.45104193008630.0728949121651439
7926502607.19116327411-37.2314395179858-37.23143951798580.106916612004775
8026002588.98968010061-37.1062489418031-37.10624894180270.0642484695942325
8130602705.94553272226-36.1319327125726-36.13193271257270.520861533331059
8226502674.42100702018-36.1036766846683-36.10367668466830.0155922270349733
8327002665.9113203209-35.9384836405061-35.93848364050620.0934483390363454
8426202637.29698604612-35.8954695281765-35.89546952817670.024816329696917
8526302505.71145202953-34.574547621377380.320023964056-0.345808531125122
8628502591.57314347585-33.3471884060347-33.3471887299570.392218022948522
8726802602.86535972628-32.9555764898866-32.95557648988670.147573778658015
8824302539.36139800343-33.1920135898127-33.1920135898124-0.101926794912527
8925502528.06462534354-33.0390023663302-33.03900236632830.0734832807342701
9025702525.6362377349-32.8418404155346-32.84184041553470.103124628110481
9125202509.77682606244-32.7392531392501-32.73925313925010.0573575871017166
9225002492.76904484856-32.6488517121339-32.64885171213360.0532242904822069
9325502494.69186429289-32.4577250469129-32.45772504691310.117106461202857
9427902563.80291501191-31.9128067981449-31.9128067981450.344340104207437
9527702607.98886705285-31.5139780757399-31.51397807574010.258147550768569
9624602552.53934435389-31.6371294142686-31.6371294142687-0.0812316609769471
9728002502.746819796-31.4188437289616345.607281246766-0.0651867012270018
9827702567.01142894464-30.5559918310756-30.5559922152490.313545697194606
9924502520.4250179887-30.6804793206055-30.6804793206056-0.0532281888333584
10023702464.37163930327-30.8544036463419-30.8544036463416-0.0849368688282243
10125402472.4791438727-30.613123009561-30.61312300955910.131100080382532
10234702741.41315987138-28.9023980556635-28.90239805566361.01130827428256
10326902714.31585916985-28.8927238533141-28.89272385331420.00610786277460357
10441103095.40223301044-26.8012927724621-26.80129277246191.38934715131443
10538403293.55768307636-25.6966348808574-25.69663488085760.763143000571913
10628603160.21996961825-26.2098808388026-26.2098808388027-0.365432869532096
10735403255.69232690566-25.6427836822809-25.64278368228110.413321147862694
10833703276.65653319645-25.4294250877993-25.42942508779940.158372283079433

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Interpolation \tabularnewline
t & Observed & Level & Slope & Seasonal & Stand. Residuals \tabularnewline
1 & 4020 & 4020 & 0 & 0 & 0 \tabularnewline
2 & 3540 & 3874.31843105656 & -20.9206437444165 & -20.9206435812848 & -0.437993627043045 \tabularnewline
3 & 3430 & 3724.12179846944 & -35.0054714344806 & -35.0054714344806 & -0.364684420289874 \tabularnewline
4 & 4200 & 3865.77294748832 & -19.4894881019604 & -19.4894881019606 & 0.496225551547933 \tabularnewline
5 & 3360 & 3696.67076256683 & -30.5250476993798 & -30.5250476993796 & -0.426899770547752 \tabularnewline
6 & 4440 & 3920.32719750566 & -14.2860647380724 & -14.2860647380725 & 0.740088341695832 \tabularnewline
7 & 4390 & 4061.30412820579 & -5.48198629738311 & -5.48198629738312 & 0.460796837850894 \tabularnewline
8 & 4940 & 4329.71820135815 & 8.57504129516225 & 8.57504129516217 & 0.826235114761125 \tabularnewline
9 & 3940 & 4214.27800423471 & 2.72391170084208 & 2.72391170084209 & -0.379111985527875 \tabularnewline
10 & 4560 & 4319.88601202597 & 7.24157566918503 & 7.24157566918502 & 0.3178869678397 \tabularnewline
11 & 4850 & 4482.02668320868 & 13.6331022482687 & 13.6331022482687 & 0.482701749091105 \tabularnewline
12 & 5070 & 4663.22458219467 & 20.1794258957607 & 20.1794258957608 & 0.525770137653013 \tabularnewline
13 & 6210 & 4984.32462248695 & -17.2006445771155 & 189.207089382896 & 1.5202628764778 \tabularnewline
14 & 5200 & 5053.18240238439 & -13.197116006982 & -13.1971151511002 & 0.225899751367588 \tabularnewline
15 & 4860 & 4986.2531169785 & -15.3244699781912 & -15.3244699781913 & -0.153604411913791 \tabularnewline
16 & 5160 & 5034.25175097468 & -13.1467777159013 & -13.1467777159013 & 0.190273613379279 \tabularnewline
17 & 5530 & 5178.98381512177 & -8.32757887397678 & -8.32757887397621 & 0.489110410726759 \tabularnewline
18 & 8830 & 6262.88801619519 & 21.870337079276 & 21.870337079276 & 3.45031642844515 \tabularnewline
19 & 4410 & 5725.66390358585 & 7.62006447670769 & 7.62006447670763 & -1.78902699208933 \tabularnewline
20 & 4850 & 5472.47381038084 & 1.40134308863608 & 1.40134308863635 & -0.841905829928402 \tabularnewline
21 & 8960 & 6489.08429420137 & 24.3139584101048 & 24.3139584101048 & 3.2973497311981 \tabularnewline
22 & 4620 & 5956.65374607515 & 12.3103045207418 & 12.3103045207417 & -1.81631476970034 \tabularnewline
23 & 5120 & 5719.56467675494 & 7.13700379385446 & 7.13700379385455 & -0.81631460495002 \tabularnewline
24 & 4520 & 5375.89646828691 & 0.098233799029301 & 0.0982337990292361 & -1.15110578123808 \tabularnewline
25 & 8870 & 6147.01003912091 & -40.9383081794813 & 450.321387796981 & 3.18270354682147 \tabularnewline
26 & 9470 & 7184.18353633888 & -9.50308542064655 & -9.50308479729029 & 3.15697277340447 \tabularnewline
27 & 6590 & 6999.35085015299 & -13.8780650046485 & -13.8780650046488 & -0.538590147487399 \tabularnewline
28 & 3970 & 6091.28114870176 & -33.4046904495374 & -33.404690449537 & -2.82701188810673 \tabularnewline
29 & 3770 & 5395.82748967319 & -46.3417016936539 & -46.3417016936524 & -2.13098047972587 \tabularnewline
30 & 5500 & 5406.76207947267 & -45.3196171359006 & -45.3196171359006 & 0.186504159040929 \tabularnewline
31 & 6580 & 5726.92336280081 & -39.2588976796205 & -39.2588976796206 & 1.19926659162897 \tabularnewline
32 & 5280 & 5581.57565058872 & -40.9173877291532 & -40.9173877291525 & -0.349943596044305 \tabularnewline
33 & 8640 & 6442.31475566686 & -27.4762522529878 & -27.4762522529879 & 2.98512637058833 \tabularnewline
34 & 5510 & 6163.44797534644 & -31.0816975294823 & -31.0816975294826 & -0.83447188400729 \tabularnewline
35 & 5690 & 6014.70044751023 & -32.7163615372392 & -32.7163615372391 & -0.391336191609164 \tabularnewline
36 & 7620 & 6459.42465963957 & -26.2584000508726 & -26.2584000508729 & 1.59018474584768 \tabularnewline
37 & 4010 & 5785.40678942051 & -4.31449497656671 & 47.459445455989 & -2.51085796403845 \tabularnewline
38 & 3570 & 5106.79883763174 & -18.6419044967296 & -18.6419041885252 & -2.066982722185 \tabularnewline
39 & 4040 & 4781.87778255969 & -24.2249213956802 & -24.2249213956804 & -0.970672588310472 \tabularnewline
40 & 3600 & 4425.90063724575 & -29.5349793045144 & -29.5349793045139 & -1.07288315951918 \tabularnewline
41 & 4000 & 4290.08656834875 & -31.062862073468 & -31.0628620734665 & -0.348098210701983 \tabularnewline
42 & 3070 & 3925.74654281347 & -35.4548586939649 & -35.4548586939649 & -1.10060200892177 \tabularnewline
43 & 3230 & 3711.24302638349 & -37.6557889196105 & -37.6557889196106 & -0.594527625567635 \tabularnewline
44 & 4060 & 3794.74244182095 & -36.2466420492083 & -36.246642049208 & 0.403797779463956 \tabularnewline
45 & 3480 & 3689.42978819937 & -37.015387197562 & -37.0153871975622 & -0.230790068666569 \tabularnewline
46 & 3750 & 3690.73283571149 & -36.6036221413282 & -36.6036221413283 & 0.128282222519456 \tabularnewline
47 & 3990 & 3760.05206558927 & -35.4973394240039 & -35.4973394240039 & 0.355087126879582 \tabularnewline
48 & 3100 & 3557.17406395945 & -37.2050208477703 & -37.2050208477705 & -0.561677015296812 \tabularnewline
49 & 3950 & 3525.13059162428 & -37.3332592990106 & 410.665852630188 & 0.0193988447299174 \tabularnewline
50 & 3010 & 3355.85767862591 & -39.5385390545806 & -39.5385391900801 & -0.414802649141978 \tabularnewline
51 & 3160 & 3282.05108486932 & -40.0306024072417 & -40.0306024072418 & -0.110521233048003 \tabularnewline
52 & 2960 & 3171.89946323152 & -40.9164394524172 & -40.9164394524168 & -0.22970704151492 \tabularnewline
53 & 2750 & 3033.22083379157 & -42.0280844032062 & -42.0280844032047 & -0.323417349332292 \tabularnewline
54 & 3590 & 3174.47566259401 & -40.1134264855497 & -40.1134264855498 & 0.610214173380605 \tabularnewline
55 & 3060 & 3124.60026423782 & -40.2087593135659 & -40.2087593135659 & -0.0326393310083093 \tabularnewline
56 & 2970 & 3063.29620768353 & -40.4041082541111 & -40.4041082541108 & -0.070736906657564 \tabularnewline
57 & 3590 & 3195.37114246126 & -38.8723608460857 & -38.8723608460858 & 0.579524504702987 \tabularnewline
58 & 3450 & 3250.75524562941 & -38.0625446038095 & -38.0625446038096 & 0.317152401852811 \tabularnewline
59 & 2930 & 3143.37630224107 & -38.6425428823103 & -38.6425428823104 & -0.233476200178923 \tabularnewline
60 & 2660 & 2989.73697604475 & -39.5843524715433 & -39.5843524715434 & -0.387636138487298 \tabularnewline
61 & 3540 & 2989.4301981212 & -40.3547975318273 & 443.902772947205 & 0.144932364857101 \tabularnewline
62 & 3160 & 3023.39785123681 & -39.3309984794982 & -39.3309986944521 & 0.23743868943349 \tabularnewline
63 & 2680 & 2907.06551425639 & -40.2430773108536 & -40.2430773108538 & -0.25114243913147 \tabularnewline
64 & 2900 & 2887.9595008152 & -40.022531108586 & -40.0225311085855 & 0.0698189020345024 \tabularnewline
65 & 2920 & 2879.99690797928 & -39.7210110034658 & -39.7210110034641 & 0.106750241506227 \tabularnewline
66 & 2900 & 2868.60101699619 & -39.4759194080502 & -39.4759194080504 & 0.0948062943129512 \tabularnewline
67 & 3150 & 2931.47806299624 & -38.6467901077815 & -38.6467901077815 & 0.343772431356693 \tabularnewline
68 & 3150 & 2976.69433564343 & -38.0016788873805 & -38.0016788873802 & 0.282336469842023 \tabularnewline
69 & 3120 & 3000.78439015081 & -37.5429737018723 & -37.5429737018725 & 0.209383822593883 \tabularnewline
70 & 3720 & 3187.91817833409 & -35.9349907433794 & -35.9349907433795 & 0.758529563272684 \tabularnewline
71 & 3360 & 3220.94137694917 & -35.453695012021 & -35.453695012021 & 0.233004479070331 \tabularnewline
72 & 2740 & 3069.63962998616 & -36.2461567827712 & -36.2461567827714 & -0.391682674740496 \tabularnewline
73 & 3250 & 2986.34427814926 & -35.4837465137561 & 390.32121177533 & -0.171508150887563 \tabularnewline
74 & 2700 & 2887.71436030444 & -36.2235048497976 & -36.2235048724673 & -0.203982008417403 \tabularnewline
75 & 2610 & 2792.15262664898 & -36.8216336572313 & -36.8216336572314 & -0.195046548072091 \tabularnewline
76 & 2410 & 2666.91745826578 & -37.6073828722664 & -37.6073828722661 & -0.293739718076974 \tabularnewline
77 & 2590 & 2628.82477711276 & -37.6112742343347 & -37.6112742343328 & -0.0016232586631044 \tabularnewline
78 & 2630 & 2612.91101790238 & -37.4510419300861 & -37.4510419300863 & 0.0728949121651439 \tabularnewline
79 & 2650 & 2607.19116327411 & -37.2314395179858 & -37.2314395179858 & 0.106916612004775 \tabularnewline
80 & 2600 & 2588.98968010061 & -37.1062489418031 & -37.1062489418027 & 0.0642484695942325 \tabularnewline
81 & 3060 & 2705.94553272226 & -36.1319327125726 & -36.1319327125727 & 0.520861533331059 \tabularnewline
82 & 2650 & 2674.42100702018 & -36.1036766846683 & -36.1036766846683 & 0.0155922270349733 \tabularnewline
83 & 2700 & 2665.9113203209 & -35.9384836405061 & -35.9384836405062 & 0.0934483390363454 \tabularnewline
84 & 2620 & 2637.29698604612 & -35.8954695281765 & -35.8954695281767 & 0.024816329696917 \tabularnewline
85 & 2630 & 2505.71145202953 & -34.574547621377 & 380.320023964056 & -0.345808531125122 \tabularnewline
86 & 2850 & 2591.57314347585 & -33.3471884060347 & -33.347188729957 & 0.392218022948522 \tabularnewline
87 & 2680 & 2602.86535972628 & -32.9555764898866 & -32.9555764898867 & 0.147573778658015 \tabularnewline
88 & 2430 & 2539.36139800343 & -33.1920135898127 & -33.1920135898124 & -0.101926794912527 \tabularnewline
89 & 2550 & 2528.06462534354 & -33.0390023663302 & -33.0390023663283 & 0.0734832807342701 \tabularnewline
90 & 2570 & 2525.6362377349 & -32.8418404155346 & -32.8418404155347 & 0.103124628110481 \tabularnewline
91 & 2520 & 2509.77682606244 & -32.7392531392501 & -32.7392531392501 & 0.0573575871017166 \tabularnewline
92 & 2500 & 2492.76904484856 & -32.6488517121339 & -32.6488517121336 & 0.0532242904822069 \tabularnewline
93 & 2550 & 2494.69186429289 & -32.4577250469129 & -32.4577250469131 & 0.117106461202857 \tabularnewline
94 & 2790 & 2563.80291501191 & -31.9128067981449 & -31.912806798145 & 0.344340104207437 \tabularnewline
95 & 2770 & 2607.98886705285 & -31.5139780757399 & -31.5139780757401 & 0.258147550768569 \tabularnewline
96 & 2460 & 2552.53934435389 & -31.6371294142686 & -31.6371294142687 & -0.0812316609769471 \tabularnewline
97 & 2800 & 2502.746819796 & -31.4188437289616 & 345.607281246766 & -0.0651867012270018 \tabularnewline
98 & 2770 & 2567.01142894464 & -30.5559918310756 & -30.555992215249 & 0.313545697194606 \tabularnewline
99 & 2450 & 2520.4250179887 & -30.6804793206055 & -30.6804793206056 & -0.0532281888333584 \tabularnewline
100 & 2370 & 2464.37163930327 & -30.8544036463419 & -30.8544036463416 & -0.0849368688282243 \tabularnewline
101 & 2540 & 2472.4791438727 & -30.613123009561 & -30.6131230095591 & 0.131100080382532 \tabularnewline
102 & 3470 & 2741.41315987138 & -28.9023980556635 & -28.9023980556636 & 1.01130827428256 \tabularnewline
103 & 2690 & 2714.31585916985 & -28.8927238533141 & -28.8927238533142 & 0.00610786277460357 \tabularnewline
104 & 4110 & 3095.40223301044 & -26.8012927724621 & -26.8012927724619 & 1.38934715131443 \tabularnewline
105 & 3840 & 3293.55768307636 & -25.6966348808574 & -25.6966348808576 & 0.763143000571913 \tabularnewline
106 & 2860 & 3160.21996961825 & -26.2098808388026 & -26.2098808388027 & -0.365432869532096 \tabularnewline
107 & 3540 & 3255.69232690566 & -25.6427836822809 & -25.6427836822811 & 0.413321147862694 \tabularnewline
108 & 3370 & 3276.65653319645 & -25.4294250877993 & -25.4294250877994 & 0.158372283079433 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299241&T=1

[TABLE]
[ROW][C]Structural Time Series Model -- Interpolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Slope[/C][C]Seasonal[/C][C]Stand. Residuals[/C][/ROW]
[ROW][C]1[/C][C]4020[/C][C]4020[/C][C]0[/C][C]0[/C][C]0[/C][/ROW]
[ROW][C]2[/C][C]3540[/C][C]3874.31843105656[/C][C]-20.9206437444165[/C][C]-20.9206435812848[/C][C]-0.437993627043045[/C][/ROW]
[ROW][C]3[/C][C]3430[/C][C]3724.12179846944[/C][C]-35.0054714344806[/C][C]-35.0054714344806[/C][C]-0.364684420289874[/C][/ROW]
[ROW][C]4[/C][C]4200[/C][C]3865.77294748832[/C][C]-19.4894881019604[/C][C]-19.4894881019606[/C][C]0.496225551547933[/C][/ROW]
[ROW][C]5[/C][C]3360[/C][C]3696.67076256683[/C][C]-30.5250476993798[/C][C]-30.5250476993796[/C][C]-0.426899770547752[/C][/ROW]
[ROW][C]6[/C][C]4440[/C][C]3920.32719750566[/C][C]-14.2860647380724[/C][C]-14.2860647380725[/C][C]0.740088341695832[/C][/ROW]
[ROW][C]7[/C][C]4390[/C][C]4061.30412820579[/C][C]-5.48198629738311[/C][C]-5.48198629738312[/C][C]0.460796837850894[/C][/ROW]
[ROW][C]8[/C][C]4940[/C][C]4329.71820135815[/C][C]8.57504129516225[/C][C]8.57504129516217[/C][C]0.826235114761125[/C][/ROW]
[ROW][C]9[/C][C]3940[/C][C]4214.27800423471[/C][C]2.72391170084208[/C][C]2.72391170084209[/C][C]-0.379111985527875[/C][/ROW]
[ROW][C]10[/C][C]4560[/C][C]4319.88601202597[/C][C]7.24157566918503[/C][C]7.24157566918502[/C][C]0.3178869678397[/C][/ROW]
[ROW][C]11[/C][C]4850[/C][C]4482.02668320868[/C][C]13.6331022482687[/C][C]13.6331022482687[/C][C]0.482701749091105[/C][/ROW]
[ROW][C]12[/C][C]5070[/C][C]4663.22458219467[/C][C]20.1794258957607[/C][C]20.1794258957608[/C][C]0.525770137653013[/C][/ROW]
[ROW][C]13[/C][C]6210[/C][C]4984.32462248695[/C][C]-17.2006445771155[/C][C]189.207089382896[/C][C]1.5202628764778[/C][/ROW]
[ROW][C]14[/C][C]5200[/C][C]5053.18240238439[/C][C]-13.197116006982[/C][C]-13.1971151511002[/C][C]0.225899751367588[/C][/ROW]
[ROW][C]15[/C][C]4860[/C][C]4986.2531169785[/C][C]-15.3244699781912[/C][C]-15.3244699781913[/C][C]-0.153604411913791[/C][/ROW]
[ROW][C]16[/C][C]5160[/C][C]5034.25175097468[/C][C]-13.1467777159013[/C][C]-13.1467777159013[/C][C]0.190273613379279[/C][/ROW]
[ROW][C]17[/C][C]5530[/C][C]5178.98381512177[/C][C]-8.32757887397678[/C][C]-8.32757887397621[/C][C]0.489110410726759[/C][/ROW]
[ROW][C]18[/C][C]8830[/C][C]6262.88801619519[/C][C]21.870337079276[/C][C]21.870337079276[/C][C]3.45031642844515[/C][/ROW]
[ROW][C]19[/C][C]4410[/C][C]5725.66390358585[/C][C]7.62006447670769[/C][C]7.62006447670763[/C][C]-1.78902699208933[/C][/ROW]
[ROW][C]20[/C][C]4850[/C][C]5472.47381038084[/C][C]1.40134308863608[/C][C]1.40134308863635[/C][C]-0.841905829928402[/C][/ROW]
[ROW][C]21[/C][C]8960[/C][C]6489.08429420137[/C][C]24.3139584101048[/C][C]24.3139584101048[/C][C]3.2973497311981[/C][/ROW]
[ROW][C]22[/C][C]4620[/C][C]5956.65374607515[/C][C]12.3103045207418[/C][C]12.3103045207417[/C][C]-1.81631476970034[/C][/ROW]
[ROW][C]23[/C][C]5120[/C][C]5719.56467675494[/C][C]7.13700379385446[/C][C]7.13700379385455[/C][C]-0.81631460495002[/C][/ROW]
[ROW][C]24[/C][C]4520[/C][C]5375.89646828691[/C][C]0.098233799029301[/C][C]0.0982337990292361[/C][C]-1.15110578123808[/C][/ROW]
[ROW][C]25[/C][C]8870[/C][C]6147.01003912091[/C][C]-40.9383081794813[/C][C]450.321387796981[/C][C]3.18270354682147[/C][/ROW]
[ROW][C]26[/C][C]9470[/C][C]7184.18353633888[/C][C]-9.50308542064655[/C][C]-9.50308479729029[/C][C]3.15697277340447[/C][/ROW]
[ROW][C]27[/C][C]6590[/C][C]6999.35085015299[/C][C]-13.8780650046485[/C][C]-13.8780650046488[/C][C]-0.538590147487399[/C][/ROW]
[ROW][C]28[/C][C]3970[/C][C]6091.28114870176[/C][C]-33.4046904495374[/C][C]-33.404690449537[/C][C]-2.82701188810673[/C][/ROW]
[ROW][C]29[/C][C]3770[/C][C]5395.82748967319[/C][C]-46.3417016936539[/C][C]-46.3417016936524[/C][C]-2.13098047972587[/C][/ROW]
[ROW][C]30[/C][C]5500[/C][C]5406.76207947267[/C][C]-45.3196171359006[/C][C]-45.3196171359006[/C][C]0.186504159040929[/C][/ROW]
[ROW][C]31[/C][C]6580[/C][C]5726.92336280081[/C][C]-39.2588976796205[/C][C]-39.2588976796206[/C][C]1.19926659162897[/C][/ROW]
[ROW][C]32[/C][C]5280[/C][C]5581.57565058872[/C][C]-40.9173877291532[/C][C]-40.9173877291525[/C][C]-0.349943596044305[/C][/ROW]
[ROW][C]33[/C][C]8640[/C][C]6442.31475566686[/C][C]-27.4762522529878[/C][C]-27.4762522529879[/C][C]2.98512637058833[/C][/ROW]
[ROW][C]34[/C][C]5510[/C][C]6163.44797534644[/C][C]-31.0816975294823[/C][C]-31.0816975294826[/C][C]-0.83447188400729[/C][/ROW]
[ROW][C]35[/C][C]5690[/C][C]6014.70044751023[/C][C]-32.7163615372392[/C][C]-32.7163615372391[/C][C]-0.391336191609164[/C][/ROW]
[ROW][C]36[/C][C]7620[/C][C]6459.42465963957[/C][C]-26.2584000508726[/C][C]-26.2584000508729[/C][C]1.59018474584768[/C][/ROW]
[ROW][C]37[/C][C]4010[/C][C]5785.40678942051[/C][C]-4.31449497656671[/C][C]47.459445455989[/C][C]-2.51085796403845[/C][/ROW]
[ROW][C]38[/C][C]3570[/C][C]5106.79883763174[/C][C]-18.6419044967296[/C][C]-18.6419041885252[/C][C]-2.066982722185[/C][/ROW]
[ROW][C]39[/C][C]4040[/C][C]4781.87778255969[/C][C]-24.2249213956802[/C][C]-24.2249213956804[/C][C]-0.970672588310472[/C][/ROW]
[ROW][C]40[/C][C]3600[/C][C]4425.90063724575[/C][C]-29.5349793045144[/C][C]-29.5349793045139[/C][C]-1.07288315951918[/C][/ROW]
[ROW][C]41[/C][C]4000[/C][C]4290.08656834875[/C][C]-31.062862073468[/C][C]-31.0628620734665[/C][C]-0.348098210701983[/C][/ROW]
[ROW][C]42[/C][C]3070[/C][C]3925.74654281347[/C][C]-35.4548586939649[/C][C]-35.4548586939649[/C][C]-1.10060200892177[/C][/ROW]
[ROW][C]43[/C][C]3230[/C][C]3711.24302638349[/C][C]-37.6557889196105[/C][C]-37.6557889196106[/C][C]-0.594527625567635[/C][/ROW]
[ROW][C]44[/C][C]4060[/C][C]3794.74244182095[/C][C]-36.2466420492083[/C][C]-36.246642049208[/C][C]0.403797779463956[/C][/ROW]
[ROW][C]45[/C][C]3480[/C][C]3689.42978819937[/C][C]-37.015387197562[/C][C]-37.0153871975622[/C][C]-0.230790068666569[/C][/ROW]
[ROW][C]46[/C][C]3750[/C][C]3690.73283571149[/C][C]-36.6036221413282[/C][C]-36.6036221413283[/C][C]0.128282222519456[/C][/ROW]
[ROW][C]47[/C][C]3990[/C][C]3760.05206558927[/C][C]-35.4973394240039[/C][C]-35.4973394240039[/C][C]0.355087126879582[/C][/ROW]
[ROW][C]48[/C][C]3100[/C][C]3557.17406395945[/C][C]-37.2050208477703[/C][C]-37.2050208477705[/C][C]-0.561677015296812[/C][/ROW]
[ROW][C]49[/C][C]3950[/C][C]3525.13059162428[/C][C]-37.3332592990106[/C][C]410.665852630188[/C][C]0.0193988447299174[/C][/ROW]
[ROW][C]50[/C][C]3010[/C][C]3355.85767862591[/C][C]-39.5385390545806[/C][C]-39.5385391900801[/C][C]-0.414802649141978[/C][/ROW]
[ROW][C]51[/C][C]3160[/C][C]3282.05108486932[/C][C]-40.0306024072417[/C][C]-40.0306024072418[/C][C]-0.110521233048003[/C][/ROW]
[ROW][C]52[/C][C]2960[/C][C]3171.89946323152[/C][C]-40.9164394524172[/C][C]-40.9164394524168[/C][C]-0.22970704151492[/C][/ROW]
[ROW][C]53[/C][C]2750[/C][C]3033.22083379157[/C][C]-42.0280844032062[/C][C]-42.0280844032047[/C][C]-0.323417349332292[/C][/ROW]
[ROW][C]54[/C][C]3590[/C][C]3174.47566259401[/C][C]-40.1134264855497[/C][C]-40.1134264855498[/C][C]0.610214173380605[/C][/ROW]
[ROW][C]55[/C][C]3060[/C][C]3124.60026423782[/C][C]-40.2087593135659[/C][C]-40.2087593135659[/C][C]-0.0326393310083093[/C][/ROW]
[ROW][C]56[/C][C]2970[/C][C]3063.29620768353[/C][C]-40.4041082541111[/C][C]-40.4041082541108[/C][C]-0.070736906657564[/C][/ROW]
[ROW][C]57[/C][C]3590[/C][C]3195.37114246126[/C][C]-38.8723608460857[/C][C]-38.8723608460858[/C][C]0.579524504702987[/C][/ROW]
[ROW][C]58[/C][C]3450[/C][C]3250.75524562941[/C][C]-38.0625446038095[/C][C]-38.0625446038096[/C][C]0.317152401852811[/C][/ROW]
[ROW][C]59[/C][C]2930[/C][C]3143.37630224107[/C][C]-38.6425428823103[/C][C]-38.6425428823104[/C][C]-0.233476200178923[/C][/ROW]
[ROW][C]60[/C][C]2660[/C][C]2989.73697604475[/C][C]-39.5843524715433[/C][C]-39.5843524715434[/C][C]-0.387636138487298[/C][/ROW]
[ROW][C]61[/C][C]3540[/C][C]2989.4301981212[/C][C]-40.3547975318273[/C][C]443.902772947205[/C][C]0.144932364857101[/C][/ROW]
[ROW][C]62[/C][C]3160[/C][C]3023.39785123681[/C][C]-39.3309984794982[/C][C]-39.3309986944521[/C][C]0.23743868943349[/C][/ROW]
[ROW][C]63[/C][C]2680[/C][C]2907.06551425639[/C][C]-40.2430773108536[/C][C]-40.2430773108538[/C][C]-0.25114243913147[/C][/ROW]
[ROW][C]64[/C][C]2900[/C][C]2887.9595008152[/C][C]-40.022531108586[/C][C]-40.0225311085855[/C][C]0.0698189020345024[/C][/ROW]
[ROW][C]65[/C][C]2920[/C][C]2879.99690797928[/C][C]-39.7210110034658[/C][C]-39.7210110034641[/C][C]0.106750241506227[/C][/ROW]
[ROW][C]66[/C][C]2900[/C][C]2868.60101699619[/C][C]-39.4759194080502[/C][C]-39.4759194080504[/C][C]0.0948062943129512[/C][/ROW]
[ROW][C]67[/C][C]3150[/C][C]2931.47806299624[/C][C]-38.6467901077815[/C][C]-38.6467901077815[/C][C]0.343772431356693[/C][/ROW]
[ROW][C]68[/C][C]3150[/C][C]2976.69433564343[/C][C]-38.0016788873805[/C][C]-38.0016788873802[/C][C]0.282336469842023[/C][/ROW]
[ROW][C]69[/C][C]3120[/C][C]3000.78439015081[/C][C]-37.5429737018723[/C][C]-37.5429737018725[/C][C]0.209383822593883[/C][/ROW]
[ROW][C]70[/C][C]3720[/C][C]3187.91817833409[/C][C]-35.9349907433794[/C][C]-35.9349907433795[/C][C]0.758529563272684[/C][/ROW]
[ROW][C]71[/C][C]3360[/C][C]3220.94137694917[/C][C]-35.453695012021[/C][C]-35.453695012021[/C][C]0.233004479070331[/C][/ROW]
[ROW][C]72[/C][C]2740[/C][C]3069.63962998616[/C][C]-36.2461567827712[/C][C]-36.2461567827714[/C][C]-0.391682674740496[/C][/ROW]
[ROW][C]73[/C][C]3250[/C][C]2986.34427814926[/C][C]-35.4837465137561[/C][C]390.32121177533[/C][C]-0.171508150887563[/C][/ROW]
[ROW][C]74[/C][C]2700[/C][C]2887.71436030444[/C][C]-36.2235048497976[/C][C]-36.2235048724673[/C][C]-0.203982008417403[/C][/ROW]
[ROW][C]75[/C][C]2610[/C][C]2792.15262664898[/C][C]-36.8216336572313[/C][C]-36.8216336572314[/C][C]-0.195046548072091[/C][/ROW]
[ROW][C]76[/C][C]2410[/C][C]2666.91745826578[/C][C]-37.6073828722664[/C][C]-37.6073828722661[/C][C]-0.293739718076974[/C][/ROW]
[ROW][C]77[/C][C]2590[/C][C]2628.82477711276[/C][C]-37.6112742343347[/C][C]-37.6112742343328[/C][C]-0.0016232586631044[/C][/ROW]
[ROW][C]78[/C][C]2630[/C][C]2612.91101790238[/C][C]-37.4510419300861[/C][C]-37.4510419300863[/C][C]0.0728949121651439[/C][/ROW]
[ROW][C]79[/C][C]2650[/C][C]2607.19116327411[/C][C]-37.2314395179858[/C][C]-37.2314395179858[/C][C]0.106916612004775[/C][/ROW]
[ROW][C]80[/C][C]2600[/C][C]2588.98968010061[/C][C]-37.1062489418031[/C][C]-37.1062489418027[/C][C]0.0642484695942325[/C][/ROW]
[ROW][C]81[/C][C]3060[/C][C]2705.94553272226[/C][C]-36.1319327125726[/C][C]-36.1319327125727[/C][C]0.520861533331059[/C][/ROW]
[ROW][C]82[/C][C]2650[/C][C]2674.42100702018[/C][C]-36.1036766846683[/C][C]-36.1036766846683[/C][C]0.0155922270349733[/C][/ROW]
[ROW][C]83[/C][C]2700[/C][C]2665.9113203209[/C][C]-35.9384836405061[/C][C]-35.9384836405062[/C][C]0.0934483390363454[/C][/ROW]
[ROW][C]84[/C][C]2620[/C][C]2637.29698604612[/C][C]-35.8954695281765[/C][C]-35.8954695281767[/C][C]0.024816329696917[/C][/ROW]
[ROW][C]85[/C][C]2630[/C][C]2505.71145202953[/C][C]-34.574547621377[/C][C]380.320023964056[/C][C]-0.345808531125122[/C][/ROW]
[ROW][C]86[/C][C]2850[/C][C]2591.57314347585[/C][C]-33.3471884060347[/C][C]-33.347188729957[/C][C]0.392218022948522[/C][/ROW]
[ROW][C]87[/C][C]2680[/C][C]2602.86535972628[/C][C]-32.9555764898866[/C][C]-32.9555764898867[/C][C]0.147573778658015[/C][/ROW]
[ROW][C]88[/C][C]2430[/C][C]2539.36139800343[/C][C]-33.1920135898127[/C][C]-33.1920135898124[/C][C]-0.101926794912527[/C][/ROW]
[ROW][C]89[/C][C]2550[/C][C]2528.06462534354[/C][C]-33.0390023663302[/C][C]-33.0390023663283[/C][C]0.0734832807342701[/C][/ROW]
[ROW][C]90[/C][C]2570[/C][C]2525.6362377349[/C][C]-32.8418404155346[/C][C]-32.8418404155347[/C][C]0.103124628110481[/C][/ROW]
[ROW][C]91[/C][C]2520[/C][C]2509.77682606244[/C][C]-32.7392531392501[/C][C]-32.7392531392501[/C][C]0.0573575871017166[/C][/ROW]
[ROW][C]92[/C][C]2500[/C][C]2492.76904484856[/C][C]-32.6488517121339[/C][C]-32.6488517121336[/C][C]0.0532242904822069[/C][/ROW]
[ROW][C]93[/C][C]2550[/C][C]2494.69186429289[/C][C]-32.4577250469129[/C][C]-32.4577250469131[/C][C]0.117106461202857[/C][/ROW]
[ROW][C]94[/C][C]2790[/C][C]2563.80291501191[/C][C]-31.9128067981449[/C][C]-31.912806798145[/C][C]0.344340104207437[/C][/ROW]
[ROW][C]95[/C][C]2770[/C][C]2607.98886705285[/C][C]-31.5139780757399[/C][C]-31.5139780757401[/C][C]0.258147550768569[/C][/ROW]
[ROW][C]96[/C][C]2460[/C][C]2552.53934435389[/C][C]-31.6371294142686[/C][C]-31.6371294142687[/C][C]-0.0812316609769471[/C][/ROW]
[ROW][C]97[/C][C]2800[/C][C]2502.746819796[/C][C]-31.4188437289616[/C][C]345.607281246766[/C][C]-0.0651867012270018[/C][/ROW]
[ROW][C]98[/C][C]2770[/C][C]2567.01142894464[/C][C]-30.5559918310756[/C][C]-30.555992215249[/C][C]0.313545697194606[/C][/ROW]
[ROW][C]99[/C][C]2450[/C][C]2520.4250179887[/C][C]-30.6804793206055[/C][C]-30.6804793206056[/C][C]-0.0532281888333584[/C][/ROW]
[ROW][C]100[/C][C]2370[/C][C]2464.37163930327[/C][C]-30.8544036463419[/C][C]-30.8544036463416[/C][C]-0.0849368688282243[/C][/ROW]
[ROW][C]101[/C][C]2540[/C][C]2472.4791438727[/C][C]-30.613123009561[/C][C]-30.6131230095591[/C][C]0.131100080382532[/C][/ROW]
[ROW][C]102[/C][C]3470[/C][C]2741.41315987138[/C][C]-28.9023980556635[/C][C]-28.9023980556636[/C][C]1.01130827428256[/C][/ROW]
[ROW][C]103[/C][C]2690[/C][C]2714.31585916985[/C][C]-28.8927238533141[/C][C]-28.8927238533142[/C][C]0.00610786277460357[/C][/ROW]
[ROW][C]104[/C][C]4110[/C][C]3095.40223301044[/C][C]-26.8012927724621[/C][C]-26.8012927724619[/C][C]1.38934715131443[/C][/ROW]
[ROW][C]105[/C][C]3840[/C][C]3293.55768307636[/C][C]-25.6966348808574[/C][C]-25.6966348808576[/C][C]0.763143000571913[/C][/ROW]
[ROW][C]106[/C][C]2860[/C][C]3160.21996961825[/C][C]-26.2098808388026[/C][C]-26.2098808388027[/C][C]-0.365432869532096[/C][/ROW]
[ROW][C]107[/C][C]3540[/C][C]3255.69232690566[/C][C]-25.6427836822809[/C][C]-25.6427836822811[/C][C]0.413321147862694[/C][/ROW]
[ROW][C]108[/C][C]3370[/C][C]3276.65653319645[/C][C]-25.4294250877993[/C][C]-25.4294250877994[/C][C]0.158372283079433[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299241&T=1

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299241&T=1

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Interpolation
tObservedLevelSlopeSeasonalStand. Residuals
140204020000
235403874.31843105656-20.9206437444165-20.9206435812848-0.437993627043045
334303724.12179846944-35.0054714344806-35.0054714344806-0.364684420289874
442003865.77294748832-19.4894881019604-19.48948810196060.496225551547933
533603696.67076256683-30.5250476993798-30.5250476993796-0.426899770547752
644403920.32719750566-14.2860647380724-14.28606473807250.740088341695832
743904061.30412820579-5.48198629738311-5.481986297383120.460796837850894
849404329.718201358158.575041295162258.575041295162170.826235114761125
939404214.278004234712.723911700842082.72391170084209-0.379111985527875
1045604319.886012025977.241575669185037.241575669185020.3178869678397
1148504482.0266832086813.633102248268713.63310224826870.482701749091105
1250704663.2245821946720.179425895760720.17942589576080.525770137653013
1362104984.32462248695-17.2006445771155189.2070893828961.5202628764778
1452005053.18240238439-13.197116006982-13.19711515110020.225899751367588
1548604986.2531169785-15.3244699781912-15.3244699781913-0.153604411913791
1651605034.25175097468-13.1467777159013-13.14677771590130.190273613379279
1755305178.98381512177-8.32757887397678-8.327578873976210.489110410726759
1888306262.8880161951921.87033707927621.8703370792763.45031642844515
1944105725.663903585857.620064476707697.62006447670763-1.78902699208933
2048505472.473810380841.401343088636081.40134308863635-0.841905829928402
2189606489.0842942013724.313958410104824.31395841010483.2973497311981
2246205956.6537460751512.310304520741812.3103045207417-1.81631476970034
2351205719.564676754947.137003793854467.13700379385455-0.81631460495002
2445205375.896468286910.0982337990293010.0982337990292361-1.15110578123808
2588706147.01003912091-40.9383081794813450.3213877969813.18270354682147
2694707184.18353633888-9.50308542064655-9.503084797290293.15697277340447
2765906999.35085015299-13.8780650046485-13.8780650046488-0.538590147487399
2839706091.28114870176-33.4046904495374-33.404690449537-2.82701188810673
2937705395.82748967319-46.3417016936539-46.3417016936524-2.13098047972587
3055005406.76207947267-45.3196171359006-45.31961713590060.186504159040929
3165805726.92336280081-39.2588976796205-39.25889767962061.19926659162897
3252805581.57565058872-40.9173877291532-40.9173877291525-0.349943596044305
3386406442.31475566686-27.4762522529878-27.47625225298792.98512637058833
3455106163.44797534644-31.0816975294823-31.0816975294826-0.83447188400729
3556906014.70044751023-32.7163615372392-32.7163615372391-0.391336191609164
3676206459.42465963957-26.2584000508726-26.25840005087291.59018474584768
3740105785.40678942051-4.3144949765667147.459445455989-2.51085796403845
3835705106.79883763174-18.6419044967296-18.6419041885252-2.066982722185
3940404781.87778255969-24.2249213956802-24.2249213956804-0.970672588310472
4036004425.90063724575-29.5349793045144-29.5349793045139-1.07288315951918
4140004290.08656834875-31.062862073468-31.0628620734665-0.348098210701983
4230703925.74654281347-35.4548586939649-35.4548586939649-1.10060200892177
4332303711.24302638349-37.6557889196105-37.6557889196106-0.594527625567635
4440603794.74244182095-36.2466420492083-36.2466420492080.403797779463956
4534803689.42978819937-37.015387197562-37.0153871975622-0.230790068666569
4637503690.73283571149-36.6036221413282-36.60362214132830.128282222519456
4739903760.05206558927-35.4973394240039-35.49733942400390.355087126879582
4831003557.17406395945-37.2050208477703-37.2050208477705-0.561677015296812
4939503525.13059162428-37.3332592990106410.6658526301880.0193988447299174
5030103355.85767862591-39.5385390545806-39.5385391900801-0.414802649141978
5131603282.05108486932-40.0306024072417-40.0306024072418-0.110521233048003
5229603171.89946323152-40.9164394524172-40.9164394524168-0.22970704151492
5327503033.22083379157-42.0280844032062-42.0280844032047-0.323417349332292
5435903174.47566259401-40.1134264855497-40.11342648554980.610214173380605
5530603124.60026423782-40.2087593135659-40.2087593135659-0.0326393310083093
5629703063.29620768353-40.4041082541111-40.4041082541108-0.070736906657564
5735903195.37114246126-38.8723608460857-38.87236084608580.579524504702987
5834503250.75524562941-38.0625446038095-38.06254460380960.317152401852811
5929303143.37630224107-38.6425428823103-38.6425428823104-0.233476200178923
6026602989.73697604475-39.5843524715433-39.5843524715434-0.387636138487298
6135402989.4301981212-40.3547975318273443.9027729472050.144932364857101
6231603023.39785123681-39.3309984794982-39.33099869445210.23743868943349
6326802907.06551425639-40.2430773108536-40.2430773108538-0.25114243913147
6429002887.9595008152-40.022531108586-40.02253110858550.0698189020345024
6529202879.99690797928-39.7210110034658-39.72101100346410.106750241506227
6629002868.60101699619-39.4759194080502-39.47591940805040.0948062943129512
6731502931.47806299624-38.6467901077815-38.64679010778150.343772431356693
6831502976.69433564343-38.0016788873805-38.00167888738020.282336469842023
6931203000.78439015081-37.5429737018723-37.54297370187250.209383822593883
7037203187.91817833409-35.9349907433794-35.93499074337950.758529563272684
7133603220.94137694917-35.453695012021-35.4536950120210.233004479070331
7227403069.63962998616-36.2461567827712-36.2461567827714-0.391682674740496
7332502986.34427814926-35.4837465137561390.32121177533-0.171508150887563
7427002887.71436030444-36.2235048497976-36.2235048724673-0.203982008417403
7526102792.15262664898-36.8216336572313-36.8216336572314-0.195046548072091
7624102666.91745826578-37.6073828722664-37.6073828722661-0.293739718076974
7725902628.82477711276-37.6112742343347-37.6112742343328-0.0016232586631044
7826302612.91101790238-37.4510419300861-37.45104193008630.0728949121651439
7926502607.19116327411-37.2314395179858-37.23143951798580.106916612004775
8026002588.98968010061-37.1062489418031-37.10624894180270.0642484695942325
8130602705.94553272226-36.1319327125726-36.13193271257270.520861533331059
8226502674.42100702018-36.1036766846683-36.10367668466830.0155922270349733
8327002665.9113203209-35.9384836405061-35.93848364050620.0934483390363454
8426202637.29698604612-35.8954695281765-35.89546952817670.024816329696917
8526302505.71145202953-34.574547621377380.320023964056-0.345808531125122
8628502591.57314347585-33.3471884060347-33.3471887299570.392218022948522
8726802602.86535972628-32.9555764898866-32.95557648988670.147573778658015
8824302539.36139800343-33.1920135898127-33.1920135898124-0.101926794912527
8925502528.06462534354-33.0390023663302-33.03900236632830.0734832807342701
9025702525.6362377349-32.8418404155346-32.84184041553470.103124628110481
9125202509.77682606244-32.7392531392501-32.73925313925010.0573575871017166
9225002492.76904484856-32.6488517121339-32.64885171213360.0532242904822069
9325502494.69186429289-32.4577250469129-32.45772504691310.117106461202857
9427902563.80291501191-31.9128067981449-31.9128067981450.344340104207437
9527702607.98886705285-31.5139780757399-31.51397807574010.258147550768569
9624602552.53934435389-31.6371294142686-31.6371294142687-0.0812316609769471
9728002502.746819796-31.4188437289616345.607281246766-0.0651867012270018
9827702567.01142894464-30.5559918310756-30.5559922152490.313545697194606
9924502520.4250179887-30.6804793206055-30.6804793206056-0.0532281888333584
10023702464.37163930327-30.8544036463419-30.8544036463416-0.0849368688282243
10125402472.4791438727-30.613123009561-30.61312300955910.131100080382532
10234702741.41315987138-28.9023980556635-28.90239805566361.01130827428256
10326902714.31585916985-28.8927238533141-28.89272385331420.00610786277460357
10441103095.40223301044-26.8012927724621-26.80129277246191.38934715131443
10538403293.55768307636-25.6966348808574-25.69663488085760.763143000571913
10628603160.21996961825-26.2098808388026-26.2098808388027-0.365432869532096
10735403255.69232690566-25.6427836822809-25.64278368228110.413321147862694
10833703276.65653319645-25.4294250877993-25.42942508779940.158372283079433







Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
13470.974841495433301.5058237284169.46901776703
23444.228269671453308.30404529548135.92422437597
33104.320348173553315.10226686256-210.781918689007
42914.084969365473321.90048842963-407.815519064162
52937.58264319833328.69870999671-391.11606679841
63553.616974772273335.49693156379218.12004320848
72822.509112778623342.29515313086-519.786040352247
83860.519661950543349.09337469794511.426287252603
93737.828287816033355.89159626501381.936691551016
103130.294332810953362.68981783209-232.395485021146
113668.459648539643369.48803939917298.971609140472
123422.333417595643376.2862609662446.047156629401

\begin{tabular}{lllllllll}
\hline
Structural Time Series Model -- Extrapolation \tabularnewline
t & Observed & Level & Seasonal \tabularnewline
1 & 3470.97484149543 & 3301.5058237284 & 169.46901776703 \tabularnewline
2 & 3444.22826967145 & 3308.30404529548 & 135.92422437597 \tabularnewline
3 & 3104.32034817355 & 3315.10226686256 & -210.781918689007 \tabularnewline
4 & 2914.08496936547 & 3321.90048842963 & -407.815519064162 \tabularnewline
5 & 2937.5826431983 & 3328.69870999671 & -391.11606679841 \tabularnewline
6 & 3553.61697477227 & 3335.49693156379 & 218.12004320848 \tabularnewline
7 & 2822.50911277862 & 3342.29515313086 & -519.786040352247 \tabularnewline
8 & 3860.51966195054 & 3349.09337469794 & 511.426287252603 \tabularnewline
9 & 3737.82828781603 & 3355.89159626501 & 381.936691551016 \tabularnewline
10 & 3130.29433281095 & 3362.68981783209 & -232.395485021146 \tabularnewline
11 & 3668.45964853964 & 3369.48803939917 & 298.971609140472 \tabularnewline
12 & 3422.33341759564 & 3376.28626096624 & 46.047156629401 \tabularnewline
\hline
\end{tabular}
%Source: https://freestatistics.org/blog/index.php?pk=299241&T=2

[TABLE]
[ROW][C]Structural Time Series Model -- Extrapolation[/C][/ROW]
[ROW][C]t[/C][C]Observed[/C][C]Level[/C][C]Seasonal[/C][/ROW]
[ROW][C]1[/C][C]3470.97484149543[/C][C]3301.5058237284[/C][C]169.46901776703[/C][/ROW]
[ROW][C]2[/C][C]3444.22826967145[/C][C]3308.30404529548[/C][C]135.92422437597[/C][/ROW]
[ROW][C]3[/C][C]3104.32034817355[/C][C]3315.10226686256[/C][C]-210.781918689007[/C][/ROW]
[ROW][C]4[/C][C]2914.08496936547[/C][C]3321.90048842963[/C][C]-407.815519064162[/C][/ROW]
[ROW][C]5[/C][C]2937.5826431983[/C][C]3328.69870999671[/C][C]-391.11606679841[/C][/ROW]
[ROW][C]6[/C][C]3553.61697477227[/C][C]3335.49693156379[/C][C]218.12004320848[/C][/ROW]
[ROW][C]7[/C][C]2822.50911277862[/C][C]3342.29515313086[/C][C]-519.786040352247[/C][/ROW]
[ROW][C]8[/C][C]3860.51966195054[/C][C]3349.09337469794[/C][C]511.426287252603[/C][/ROW]
[ROW][C]9[/C][C]3737.82828781603[/C][C]3355.89159626501[/C][C]381.936691551016[/C][/ROW]
[ROW][C]10[/C][C]3130.29433281095[/C][C]3362.68981783209[/C][C]-232.395485021146[/C][/ROW]
[ROW][C]11[/C][C]3668.45964853964[/C][C]3369.48803939917[/C][C]298.971609140472[/C][/ROW]
[ROW][C]12[/C][C]3422.33341759564[/C][C]3376.28626096624[/C][C]46.047156629401[/C][/ROW]
[/TABLE]
Source: https://freestatistics.org/blog/index.php?pk=299241&T=2

Globally Unique Identifier (entire table): ba.freestatistics.org/blog/index.php?pk=299241&T=2

As an alternative you can also use a QR Code:  

The GUIDs for individual cells are displayed in the table below:

Structural Time Series Model -- Extrapolation
tObservedLevelSeasonal
13470.974841495433301.5058237284169.46901776703
23444.228269671453308.30404529548135.92422437597
33104.320348173553315.10226686256-210.781918689007
42914.084969365473321.90048842963-407.815519064162
52937.58264319833328.69870999671-391.11606679841
63553.616974772273335.49693156379218.12004320848
72822.509112778623342.29515313086-519.786040352247
83860.519661950543349.09337469794511.426287252603
93737.828287816033355.89159626501381.936691551016
103130.294332810953362.68981783209-232.395485021146
113668.459648539643369.48803939917298.971609140472
123422.333417595643376.2862609662446.047156629401



Parameters (Session):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
Parameters (R input):
par1 = 12 ; par2 = 12 ; par3 = BFGS ;
R code (references can be found in the software module):
require('stsm')
require('stsm.class')
require('KFKSDS')
par1 <- as.numeric(par1)
par2 <- as.numeric(par2)
nx <- length(x)
x <- ts(x,frequency=par1)
m <- StructTS(x,type='BSM')
print(m$coef)
print(m$fitted)
print(m$resid)
mylevel <- as.numeric(m$fitted[,'level'])
myslope <- as.numeric(m$fitted[,'slope'])
myseas <- as.numeric(m$fitted[,'sea'])
myresid <- as.numeric(m$resid)
myfit <- mylevel+myseas
mm <- stsm.model(model = 'BSM', y = x, transPars = 'StructTS')
fit2 <- stsmFit(mm, stsm.method = 'maxlik.td.optim', method = par3, KF.args = list(P0cov = TRUE))
(fit2.comps <- tsSmooth(fit2, P0cov = FALSE)$states)
m2 <- set.pars(mm, pmax(fit2$par, .Machine$double.eps))
(ss <- char2numeric(m2))
(pred <- predict(ss, x, n.ahead = par2))
mylagmax <- nx/2
bitmap(file='test2.png')
op <- par(mfrow = c(2,2))
acf(as.numeric(x),lag.max = mylagmax,main='Observed')
acf(mylevel,na.action=na.pass,lag.max = mylagmax,main='Level')
acf(myseas,na.action=na.pass,lag.max = mylagmax,main='Seasonal')
acf(myresid,na.action=na.pass,lag.max = mylagmax,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test3.png')
op <- par(mfrow = c(2,2))
spectrum(as.numeric(x),main='Observed')
spectrum(mylevel,main='Level')
spectrum(myseas,main='Seasonal')
spectrum(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test4.png')
op <- par(mfrow = c(2,2))
cpgram(as.numeric(x),main='Observed')
cpgram(mylevel,main='Level')
cpgram(myseas,main='Seasonal')
cpgram(myresid,main='Standardized Residals')
par(op)
dev.off()
bitmap(file='test1.png')
plot(as.numeric(m$resid),main='Standardized Residuals',ylab='Residuals',xlab='time',type='b')
grid()
dev.off()
bitmap(file='test5.png')
op <- par(mfrow = c(2,2))
hist(m$resid,main='Residual Histogram')
plot(density(m$resid),main='Residual Kernel Density')
qqnorm(m$resid,main='Residual Normal QQ Plot')
qqline(m$resid)
plot(m$resid^2, myfit^2,main='Sq.Resid vs. Sq.Fit',xlab='Squared residuals',ylab='Squared Fit')
par(op)
dev.off()
bitmap(file='test6.png')
par(mfrow = c(3,1), mar = c(3,3,3,3))
plot(cbind(x, pred$pred), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred + 2 * pred$se, rev(pred$pred)), col = 'gray85', border = NA)
polygon(c(time(pred$pred), rev(time(pred$pred))), c(pred$pred - 2 * pred$se, rev(pred$pred)), col = ' gray85', border = NA)
lines(pred$pred, col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the observed series', side = 3, adj = 0)
plot(cbind(x, pred$a[,1]), type = 'n', plot.type = 'single', ylab = '')
lines(x)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] + 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,1]), rev(time(pred$a[,1]))), c(pred$a[,1] - 2 * sqrt(pred$P[,1]), rev(pred$a[,1])), col = ' gray85', border = NA)
lines(pred$a[,1], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the level component', side = 3, adj = 0)
plot(cbind(fit2.comps[,3], pred$a[,3]), type = 'n', plot.type = 'single', ylab = '')
lines(fit2.comps[,3])
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] + 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = 'gray85', border = NA)
polygon(c(time(pred$a[,3]), rev(time(pred$a[,3]))), c(pred$a[,3] - 2 * sqrt(pred$P[,3]), rev(pred$a[,3])), col = ' gray85', border = NA)
lines(pred$a[,3], col = 'blue', lwd = 1.5)
mtext(text = 'forecasts of the seasonal component', side = 3, adj = 0)
dev.off()
load(file='createtable')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Interpolation',6,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Slope',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.element(a,'Stand. Residuals',header=TRUE)
a<-table.row.end(a)
for (i in 1:nx) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,x[i])
a<-table.element(a,mylevel[i])
a<-table.element(a,myslope[i])
a<-table.element(a,myseas[i])
a<-table.element(a,myresid[i])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable.tab')
a<-table.start()
a<-table.row.start(a)
a<-table.element(a,'Structural Time Series Model -- Extrapolation',4,TRUE)
a<-table.row.end(a)
a<-table.row.start(a)
a<-table.element(a,'t',header=TRUE)
a<-table.element(a,'Observed',header=TRUE)
a<-table.element(a,'Level',header=TRUE)
a<-table.element(a,'Seasonal',header=TRUE)
a<-table.row.end(a)
for (i in 1:par2) {
a<-table.row.start(a)
a<-table.element(a,i,header=TRUE)
a<-table.element(a,pred$pred[i])
a<-table.element(a,pred$a[i,1])
a<-table.element(a,pred$a[i,3])
a<-table.row.end(a)
}
a<-table.end(a)
table.save(a,file='mytable1.tab')